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Abstract
Organic–inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component 
and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of 
the embedded particles. The approach is based on Ostwald–Freundlich equation, which was adapted to deposition in ion 
exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modifi-
cation, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by 
the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution 
(50 µg dm−3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.
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Introduction

The sorbents combining organic and inorganic constituents 
are more attractive than ion exchange resins and mineral 
ion-exchangers, since they possess unique conjunction of 
functional properties: considerable exchange capacity, high 
sorption rate and considerable selectivity. Comparing with 
many inorganic sorbents, some composites are obtained in 
a form of large durable grains; they can be used as fillers 
of columns for sorption processes under dynamic condi-
tions (Naushad 2009). The application field of composite 
materials involves water softening, removal of toxic metal 
ions from water, separation and preconcentration of metal 
ions for analytical purposes, separations of radionuclides, 
electrode ionization, hydrometallurgy, effluent treatment, 
manufacture of ion selective electrodes and membranes.

Organic–inorganic sorbents can be divided into two 
classes based on interaction between organic and inorganic 

constituents (Sanchez et al. 2005). In class I, organic and 
inorganic compounds are bonded with weak interactions: 
hydrogen bonding, Van der Waals, π–π or weak electrostatic 
interactions. In the composites of class II, the constituents 
of different nature are linked with strong covalent or coor-
dinative bonds.

Organic–inorganic polymers are related to the sorbents 
of the second class (Liu et al. 2010). The polymers contain 
silanol groups attached to hydrocarbonaceous chains or built 
into the polymer backbones. Sometimes even biopolymers 
loaded with transition metal ions are related to hybrid sor-
bents (An et al. 2015). The sorbents of the class II are also 
inorganic matrices, such as silica (Awual et al. 2014, 2016; 
Shvets and Belyakova 2015), zirconium (Veliscek-Carolan 
et al. 2014) or clay (Liang et al. 2013), functionalized with 
organic fragments.

Natural minerals, for instance, clays (Liu et al. 2016; Ma 
et al. 2016; Muir et al. 2016), or synthetic double hydrated 
oxides (Starukh 2016) modified with surfactants are prob-
ably intermediate types of sorbents. The modifier is attached 
to the surface with electrostatic attraction on the one hand, 
but this interaction with the material causes extension of 
oxide layers on the other hand. Weak interaction between the 
matrix and modifier provides chemical instability of these 
sorbents.

The sorbents of the class II involves nanocomposites 
consisting of both inorganic and polymer nanoparticles 
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(El-Naggar et al. 2014; Inamuddin et al. 2007; Qi et al. 
2016; Sharma et al. 2015, 2016). The nanoparticles of dif-
ferent origin are formed simultaneously in the same reac-
tion medium or the inorganic particles are inserted to the 
medium, where polymerization occurs. Other types of the 
sorbents are characterized by core–shell structure (Gha-
semi et al. 2015; Shuang et al. 2012; Xu et al. 2013; Zhao 
et al. 2014). They consist of magnetic nanoparticles (core) 
coated with functionalized polymer (shell). Grains of ion 
exchange resin (Acelas et al. 2015) or chitosan (Kamari 
and Ghiaci 2017) covered with inorganic ion-exchanger 
can be also related to core–shell materials. At last, the 
second class of organic–inorganic materials involves poly-
mer matrix, which was formed preliminarily (particularly 
ion exchange resins), containing inorganic nanoparticles. 
The nanoparticles are distributed uniformly in the poly-
mer (Dzyazko et al. 2013a, 2017b; Perlova et al. 2017) or 
exist in the form of aggregates and agglomerates (Dzyazko 
et al. 2017a, b; Dzyazko et al. 2013a; Pan et al. 2007). 
These composites possess necessary functional proper-
ties: high exchange capacity, fast sorption rate and selec-
tivity towards toxic ions. Where zirconium phosphate is 
used as a modifier, selectivity is due to complex formation 
of sorbed cations and phosphorus-containing functional 
groups (Dzyazko et al. 2013b; Pan et al. 2007).

Regarding to anion sorption, hydrated oxides of multi-
valent metals (containing no grafted functional groups) are 
probably only exclusive type of inorganic sorbents, which 
shows anion exchange ability (Amphlett 1964). This prop-
erty is most expressed in acidic media. Hydrated double 
oxides demonstrate better selectivity towards cations (Malt-
seva et al. 2009) and anions (Li et al. 2012). As shown, a 
size of incorporated particles affects sorption (Dzyazko et al. 
2017a; Perlova et al. 2017). The size of cation-exchanger 
particles can be controlled purposefully during synthe-
sis (Perlova et al. 2017). The aim of the investigation is to 
develop the approach, which would allow us to control a size 
of anion-exchanger particles incorporated to the polymer 
matrix. Other purpose is testing of the composite by example 
of As(V)-containing anions.

Arsenic appears in ground water and, ad a result, in 
drinking water due to working of metallurgical enter-
prises and thermal power plants, other source is mining 
water (Ravenscroft et al. 2011). The sources of arsenic are 
mining water, metallurgical plants, thermal power plants. 
Removal of these ions from water is an important prac-
tical task, since arsenic compounds are extremely toxic. 
Adsorption and ion exchange are the most widespread 
methods for arsenic recovery from water. Both inorganic 
sorbents (Li et al. 2012), particularly their composite with 
graphene (Fu et al. 2017), and organic–inorganic materials 
(An et al. 2015; DeMarco et al. 2003; Elton et al. 2013; 
Hristovski et al. 2008). Simultaneous insertion of different 

oxides into polymer matrix should provide significant 
selectivity of the composites towards arsenate anions.

Experimental

Synthesis of ion‑exchangers

Gel-like strongly basic anion exchange resin Dowex 
SBR-P (Dow Chemical Company) was used for modifi-
cation. The polymer matrix is styrene-divinylbenzene 
containing strongly quaternary aminogroups, According 
to data of the producing company, the resin character-
istics are as follows: exchange capacity is 1.2 meq cm3, 
water content in swollen state is 53–60%, the average 
grain size—0.3–1.2 mm. Such reagents as ZrOCl2·8H2O, 
FeCl3·6H2O, KCl, NH4OH, HCl (Cherkassy Khimprom 
LTD, Ukraine), Na2AsO4·7H2O (Merck) were used for 
modification of the resin or for investigation of functional 
properties of the composites. Solutions were prepared 
using deionized water.

The resin was modified with hydrated zirconium diox-
ide (HZD), or simultaneously with HZD and hydrated 
iron oxide (HIO). The polymer was immersed in water 
for swelling, then it was impregnated with a 1 M aqueous 
solution of metal salt (ZrOCl2). Impregnation was carried 
out during 1 h at 60o C under stirring. Further the beads 
were filtered and rinsed with a 0.1 M solution to remove 
additionally sorbed electrolyte from the largest pores of 
micron size. Then the resin was filtered again, immersed 
with a 25% NH4OH solution under room temperature, fil-
tered, rinsed with deionized water down to pH 7 of the 
effluent and dried in a desiccator over calcinated CaCl2 
down to constant mass. Further the sample was immersed 
in water again and treated with ultrasound at 30 kHz using 
a Bandelin bath (Bandelin). The treatment was carried out 
until disappearance of turbidity. Then the solid and liq-
uid were separated, the ion-exchanger was dried down to 
constant mass. The modification procedure was repeated 
several times. The resins were marked as, for instance, 
AR-Zr-1, AR-Zr-2 etc. The number corresponds to modi-
fication cycle.

HZD and HIO were also deposited simultaneously. In 
this case, a mixture of 1 M solutions of ZrOCl2 and FeCl3 
was used for immersion of the resin. A ratio of the solution 
volumes was 1:1. Other stages are similar to those described 
above.

For comparison, concentrations of ZrOCl2 and ammo-
nia were varied. The pairs of concentration are as follows 
(salt: precipitator, M): 0.1:1, 1:0.01, 0.01:0.01. HIO was also 
precipitated from a 0.1 M FeCl3 solutions. A 1 M NH4OH 
solution was used for precipitation.
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Characterization of the samples

Morphology of the samples was researched using transmis-
sion electronic microscope JEOL JEM 1230. Preliminarily 
the beads were crushed and then they were cleaned with 
ultrasound.

The amount of inorganic components (relatively to water-
free oxide) in the resin was determined by burning of the 
weighting sample at 1000 °C. Analytical weight form, which 
corresponds to ZrO2 and Fe2O3, can be obtained under these 
conditions.

Investigation of sorption

The ion-exchangers containing the highest amount of modi-
fier (the most concentrated solutions were used for modi-
fication) were applied to sorption experiments. Sorption 
was performed under batch conditions at 20 °C. A series 
of weighted air-dry samples (0.2 g) was inserted to flasks, 
then deionized water was added. After swelling, water was 
removed and the solution (100 cm3) contained 150 mg dm−3 
As(V) or simultaneously As(V) and KCl (7.4 g) was added. 
As shown preliminarily, no complete removal of As(V) from 
the liquid occurs under this dosage and solution concentra-
tion. Thus, sorption capacity of the composites could be 
different; it is determined by properties of the ion-exchanger.

The content of the flasks was stirred by means of a Water 
Bath Shaker Type 357 (Elpan, Poland). After predetermined 
time, the liquid was removed from one flask, stored and 
analyzed later. Then the solution from the second flask was 
removed, etc. The equilibrium solution was analyzed with an 
atomic absorption method at wave length of 193,7 nm using 
a Pye Unicam SP 9 spectrophotometer (Philips).

One-component As(V)-containing solution, the initial 
concentration of which was 50 µg dm−3, was also used 
for the research. In this case, the mass ratio of sorbent and 
solution was 0.5:500. Arsenic was determined in a form 
of molybdenum blue with spectrophotometric method at 
wave length of 700 nm (Sandell 1950). A Shimadzu UV-
mini1240 spectrophotometer (Shimadzu, Japan) was used 
for this purpose.

Results and discussion

Precipitation of inorganic component in polymer 
matrix

Earlier thermodynamic approach to precipitation of inorganic 
constituent inside cation exchange resin has been considered 
(Perlova et al. 2017). In this case, impregnation of the resin 
with a solution of metal salt, for instance, ZrOCl2 is accompa-
nied by ion exchange of soluble zirconium hydroxocomplexes 

an H+ counter-ions of functional groups. It was shown that a 
size of the embedded particles depends on exchange capacity 
of the resin. Regarding anion exchange resin, metal ions are 
additionally sorbed electrolyte (Helfferich 1994). A size of 
the embedded particles is determined by Ostwald–Freundlich 
equation (Myerson 2002):

Here the composition of hydrated oxide is written down as 
Cat(OH)z for simplicity, CCat(OH)z

 and CCat(OH)z,∞
 are the con-

centration of dissolved compound in ion-exchanger and satu-
rated solution, respectively (for oxides of multivalent metals, 
these magnitudes are low), � is the shape factor of particles, Vm 
is the molar volume of a compound, � is the surface tension of 
a solvent, r is the particle radius.

Thus, CCat(OH)z
= [Cat

z+

] =
Ksp

[OH]z
 , here the square brackets 

denote equilibrium molar concentration, Ksp is the solubility 
product, z is the charge number of metal ions. Dissociation 
degree of NH4OH ( � ) can be determined according to Ostwald 
law (Ostwald 1888):

where KNH4OH
 is the dissociation constant of NH4OH, 

CNH4OH
 means concentration. The precipitating solution 

provides certain equilibrium concentration of OH− ions.

Taking formula (2) into consideration, Eq. (3) can be writ-
ten as:

OH− ions are partially consumed for Cat(OH)z deposition:

This consumption is equal to zCCat . In the first approxima-
tion, it is possible to suppose that a volume of additionally 
sorbed electrolyte (zirconium hydroxocomplexes in our case) 
corresponds to a volume of the ion-exchanger ( Vi ). Resulting 
concentration of OH− ions is:

where VNH4OH
 is the volume of the precipitating solution. 

Thus;

(1)ln
CCat(OH)z

CCat(OH)z,∞

=
�Vm�

RTr
.

(2)� = K
0.5
NH4OH

C
0.5
NH4OH

,

(3)[OH−
] = [NH+

4
] = �CNH4OH

(4)[OH−
] = K

0.5
NH4OH

C
1.5
NH4OH

(5)Catz+ + zOH−
↔ Cat(OH)z ↓ .

(6)[OH−
] = K

0.5
NH4OH

C
1.5
NH4OH

−
zCCatVi

VNH4OH

,

(7)
CCat(OH)z

=
Ksp

(

K0.5
NH4OH

C1.5
NH4OH

−
zCCatVi

VNH4OH

)z
.



1000	 Applied Nanoscience (2019) 9:997–1004

1 3

Substituting this expression into Eq. (1), it is possible to 
obtain:

The particles, a size of which is lower than the r value, are 
dissolved and reprecipitated as larger particles. In accord-
ance with expression (8), the compound, molar volume of 
which is larger, is deposited as coarser particles. Increase of 
salt concentration and reducing of precipitator concentra-
tion should provide smaller particles. Decrease of the charge 
number (for instance, due to hydrolysis during dilution of the 
salt solution) results in reducing of the particle size, when 
the precipitator concentration is sufficient (in other words, 
when the first term in the square brackets is larger comparing 
with the second one).

Visualization of embedded particles

As shown from photos of different resolution (Fig. 1), non-
aggregated globular nanoparticles (3–10  nm) and their 
aggregates of irregular shape are visible. The particles of 
smaller size dominate. A size of the aggregates, a shape of 
which is the most close to spherical, is about 40–50 nm. A 
length of elongated aggregates is up to 100 nm, a width is up 
to 50 nm. The nanoparticles inside the polymer are stabilized 
by walls of pores, which contain functional groups. These 
pores are nanosized, they provide ion transport. Porous 
structure of ion exchange polymers, which is described in 
detail in (Yaroslavtsev and Nikonenko 2009), was suggested 
for homogeneous (Hsu and Gierke 1983) and heterogeneous 
(Kononenko et al. 1985) ion exchange membranes as well 
for ion exchange resins (Dzyazko et al. 2012).

Increase of salt concentration from 0.01 to 0.1 M causes 
formation of nanoparticles of the same size (Fig. 2). How-
ever, larger particles dominate, tendency of aggregation 
become expressed. Further growth of ZrOCl2 concentration 

(8)
r =

�Vm�

RT ln
Ksp

CCat(OH)z ,∞

(

K0.5
NH4OH

C1.5
NH4OH

−
zCCatVi

VNH4OH

)z

.

leads to formation of particles, a size of which is up to 
20  nm. This is probably due to depression of hydroly-
sis, which is transition from which is transition from 
[Zr4(OH)8(H2O)16]n

8+ to [Zr4(OH)16(H20)8] hydroxocom-
plexes (Kostrikin et al. 2010). Larger charge number for zir-
conium hydroxocomplexes in more concentrated solution 
provides larger particles in accordance to Eq. (8).

Indeed, decrease of ammonia concentration from 1 M 
down to 0.01 M causes enlargement of the particles (Fig. 3). 
This is in agreement with Eq. (8). Aggregated nanoparticles 
dominate.

During HIO deposition, small aggregates (up to 
40–50 nm) are formed (Fig. 4). The size of the primary 
particles are about 10 nm and even larger (compare with 
Fig. 2b, which shows HZD nanoparticles precipitated from 
the solution of the same concentration).

At last, deposition from the mixed solution results in for-
mation of aggregated HZD nanoparticles embedded to HIO. 
As seen from Fig. 5, more contrast HZD is observed as black 
spots). Moreover, HIO form particles of micron size, which 
contain elongated HZD blotches.

In this case, the factor, which depends on nature of pre-
cipitated compound, is molar volume (see Eq. (8)). Since the 
particle surface contains ion exchange groups (uncertainty 
of the modifier composition), the effect of this factor should 
not be expressed. However, it is possible to compare molar 
volume of water-free crystalline oxides: Vm = 21.69 cm3 
mol−1 (ZrO2) and 30.47 (Fe2O3). As a result, HIO forms 
larger particles; this is in agreement with Eq. (8).

Sorption of arsenate anions

Fractional attainment of As(V) sorption (At/Aω. where At and 
A∞ are the capacity of the ion-exchanger after certain time 
and under equilibrium conditions, respectively) is given in 
Fig. 6 for some AR-ZrFe samples. It is seen that the modi-
fier accelerates sorption. In the case of sorption from the 
solution containing also KCl, equilibrium is reached after 5 
(composite) and 9 (pristine resin) h. When the initial solu-
tion is one-component, sorption is slower.

Fig. 1   Aggregated (a) and 
non-aggregated (b) HZD nano-
particles obtained by precipita-
tion from 0.01 M ZrOCl2 and 
NH4OH solutions
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The models of film and particle diffusion (Helfferich 1994), 
chemical reactions of the pseudo-first (Lagergren 1898) and 
pseudo-second order (Ho and McKay 1999) were applied to 
experimental data. As found, the model of pseudo-second 
order:

(9)
t

A
=

1

K2A
2
∞

+
1

A∞

× t

can be applied to all samples (Fig. 7, the correlation coef-
ficient is 0.99). Here K2 is the constant. Chemical reactions 
are probably formation of undissociated ion pairs or redis-
tribution of water molecules between hydrate shells of fixed 
and counter-ions, these processes are more expressed for 
the polymer matrix. As found earlier, the embedded parti-
cles block and squeeze pores of the polymer, which contain 

Fig. 2   HZD nanoparticles 
embedded to ion exchange 
resins obtained by precipita-
tion from 0.1 M ZrOCl2 and 
1 M NH4OH solutions (a, b), 
1 M ZrOCl2 and 1 M NH4OH 
solutions (c, d), the sample is 
marked as AR-Zr-1)

Fig. 3   HZD nanoparticles obtained by precipitation from 1 M ZrOCl2 
and 1 M NH4OH solutions

Fig. 4   HIO nanoparticles obtained by precipitation from 0.1 M FeCl3 
and 1 M NH4OH solutions
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functional groups. As a result, a part of functional groups 
(quaternary amino groups) is excluded from ion exchange 
(Dzyazko et al. 2012, 2017a). This exclusion accelerates 
sorption.

Evolution of sorption properties illustrates Fig.  8, 
the data are given for the initial As (V) concentration 
of 150 mg dm−3. It is seen that modification with nano-
particles and small aggregates (AR-Zr-1, see Fig. 2c, d) 
increases distribution coefficient of As(V)-containing ani-
ons (this characteristic is determined as a ratio of concen-
trations of ions is solid and liquid). At the same time, par-
ticles of micron size (AR-ZrFe) depress sorption despite 
high selectivity of HIO. This is evidently due to partial 
exclusion of quaternary ammonia groups of the polymer 
from ion exchange.

Regarding the solution containing initially 50 µg dm−3 
of As(V), the distribution coefficient is higher for all com-
posites comparing with pristine resin.

Concluding remarks

Organic–inorganic composite ion-exchangers based on anion 
exchange resins have been obtained. Particles of one-compo-
nent and two-component modifier were embedded using the 
approach, which allows us to realize purposeful control of 
a size of the embedded particles. The approach is based on 
Ostwald–Freundlich equation, which was adapted to depo-
sition in ion exchange matrix. The equation was obtained 
experimentally. HZD and HIO were applied to modification, 
concentration of the reagents were varied. The embedded 
particles accelerate sorption, the rate of which is fitted by 
the model equation of chemical reactions of pseudo-second 
order. When sorption of arsenate ions from very diluted 

Fig. 5   HZD nanoparticles inter-
spersed to HIO. The modifier 
was obtained by simultaneous 
precipitation of HZD and HIO 
in the anion exchange resin

Fig. 6   Sorption rate of As(V)-containing ions. Asterisk means solu-
tion containing excess of KCl

Fig. 7   Application of the model of pseudo-second order to As(V) 
sorption. The solution contained KCl
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solution (50 µg dm−3) occurs, the composites show higher 
distribution coefficients comparing with the pristine resin.
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