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Abstract
BaSnO3 nanorods were produced by a sol–gel mode. Indium, as dopant, was introduced to the surface of  BaSnO3 via photo-
assisted deposition technique. Phase composition, microstructure and surface area of the synthesized samples were identi-
fied via X-ray diffraction, field emission scanning electron microscopy (FESEM) and BET techniques, respectively. State 
of element, band gap energy and position of emission energy were measured via X-ray photoelectron spectroscopy (XPS), 
ultraviolet and visible spectroscopy (UV–Vis) and photoluminescence emission spectra (Pl), respectively. Furthermore, the 
catalytic performance of both  BaSnO3 and In/BaSnO3 specimens was implemented for photocatalytic destruction of thio-
phene solution via visible light irradiation. XPS results displayed the patterns corresponding to the In–In at about 443.8 eV, 
illustrating the presence of indium metal in a nano-sized scale. A red shift was observed after indium loading within the 
 BaSnO3 lattice which was proved via the UV–Vis analysis. 100% oxidation efficiency percent was attained using 0.3 wt% 
 In/BaSnO3 photocatalyst after 1 h reaction time. The enhancement of the photocatalytic activity was mainly attributed to 
the indium doping into  BaSnO3 as a result of its capability to hinder the  e−–h+ re-combination. The catalyst was reused up 
to five cycles without any change in its efficiency.

Keywords In doping · BaSnO3 · Photocatalyst · Thiophene oxidation

Introduction

Sulfur elimination from fluidized catalytic cracker naphtha 
to the desirable restriction is a crucial issue in the refin-
ing industry. One of the major components in gasoline 
pool is The FCC naphtha. Thiophenes are considered the 

preeminent sulfur-incorporating compounds in FCC naph-
tha. Thiophenes are inert relative to other sulfur-containing 
compounds since they are aromatic. Hydrodesulfurization 
process is one of the most important methods that have 
been utilized in removal of thiophenes (Teng-fei et al. 2015; 
Boukoberine and Hamada 2016; Kabe et al. 1992; Gates 
and Topsoe 1997; Ma et al. 1994, 1995; Olguin-Orozco 
et al. 1997; Kilanowski et al. 1978). The drawbacks of this 
method are its high cost besides, affecting the octane num-
ber of gasoline. Many alternative efficient and economical 
methods have been examined, for thiophene elimination, to 
overcome these drawbacks such as pervaporation method 
(Lin et al. 2009; Bettermann and Staudt 2009; Qi et al. 2006; 
Jain et al. 2015, 2016). The superiority of pervaporation 
method is the relatively lower demands of temperature and 
pressure compared to those in hydrodesulfurization method 
and it was concluded that thiophene could be removed suc-
cessfully from FCC gasoline up to any desirable limit via 
the pervaporation method. Other successful alternative 
techniques were investigated too for thiophene elimination. 
For instance, reactive adsorption using solid adsorbents and 
 H2 (Song 2003), selective adsorption in absence of  H2 at 
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ambient temperature (Ma et al. 2001, 2002a, b; Velu et al. 
2002; 2003a, b; Qi et al. 2015), hydrodesulfurization accom-
panied with distillation (Rock 2002; Rock and Shorey 2003), 
absorption using ionic liquids (Bösmann et al. 2001; Zhang 
and Zhang 2002; Mafi et al. 2016). Although there are broad 
scale applications of these processes they are very costly. 
Recently, different polymeric materials such as polyhedral 
oligomeric silsesquioxane (POSS), polyvinylidene fluoride 
(PVDF), polyimide (PI), polyethylene glycol (PEG), etc. 
were handled as membranes for thiophene withdrawal from 
gasoline (Yu et al. 2015; Konietzny et al. 2014; Amaral et al. 
2014; Qu et al. 2010; Chen et al. 2008; Zhao et al. 2008; Jain 
et al. 2017; Yang et al. 2014; Liu et al. 2014a, b; Lin et al. 
2012, 2014; Yang et al. 2013). In modern trends, extraction 
desulfurization has been devoted to be the most effective 
and suitable method as a result of its mild operational con-
ditions of temperature and pressure without any hydrogen 
consumption (Mokhtarani et al. 2014). Recently, there has 
been an extensive significance in heterogeneous photoca-
talysis adopting semiconductors for the pollutant removal. 
The main advantage of photocatalysis is that it provides 
a more environmentally sustainable solution for pollutant 
removal without any need for further treatment. Thiophene 
destruction over polyaniline/mesoporous  Cu2O nanocom-
posites was investigated (Mohamed and Aazam 2014). It 
was found that the semiconductor/conductive polymer com-
posite had large photocatalytic activity under visible light. 
 TiO2 was doped with Ag and the resulted photocatalyst 
was supported on MWCNTs, and then Ag–TiO2/MWCNT 
photocatalysts were used to degrade thiophene by photoca-
talysis under visible light irradiation in an aqueous solution 
and it was found that 0.02:1.0:0.05 was the optimum mass 
ratio of MWCNT:TiO2:Ag, which lead to about 100% pho-
tocatalyst’s experimental performance for thiophene oxida-
tion in a 600 mg/l solution within 30 min (Aazam 2014). 
Other researchers studied the photooxidation of thiophene 
using different materials as,  RuO2/SO2–TiO2 (Lina et al. 
2016), NiO/AgInS2 nanoparticles (Baeissa 2014), Pd/
ZrO2–chitosan nanocomposite (Abdelaala and Mohamed 
2014), Ag–BiVO4 (Gao et  al. 2013),  TiO2/Cr-MCM-41 
(Marques et al. 2008),  TiO2 (Dedual et al. 2014),  TiO2/Ni-
ZSM-5 (Wang et al. 2013). Pt/PbS nanoparticles (Mohamed 
and Aazam 2014),  MoO3/γ-Al2O3 (Xue et al. 2017), titania/
MWCNT composite (Barmala et al. 2015). The notable and 
wonderful characteristics involving dielectric, electrical and 
optical properties of Barium stannate (Zhang et al. 2007; 
Mizoguchi et al. 2004), makes it one of the most significant 
materials to be used as photocatalyst, catalyst support, solar 
cell and capacitor, etc. (Wang et al. 2014; Shin et al. 2013; 
Cerda et al. 2002). A new simple coprecipitation method 
was applied to prepare nanocrystalline barium stannate 
(Moshtaghi et al. 2016). Many other attempts had been made 
to prepare barium stannate (Upadhyay et al. 1997; Reddy 

et al. 2001; Upadhyay 2013; Ihlefeld et al. 2008). Doped 
barium stannate could be prepared via different methods 
(Ansaree and Upadhyay 2015; Bévillon et al. 2008; Kumar 
et al. 2007; Singh et al. 2005; Wang et al. 2007). Indium is 
elected to be the dopant for different metal oxide nanostruc-
tures; this selection is attributed to its ability to magnify the 
photocatalytic activity properties of these metal oxides. Dif-
ferent morphologies of indium-doped ZnO nanostructures 
have been prepared via solvothermal method (Rezapourn 
and Talebian 2014). Indium-doped titania particles in a 
nano-scale were prepared via a sol–gel method (Tahir and 
Amin 2015). In addition, indium doping of different mate-
rials were prepared by various methods (Singh et al. 2010; 
Chava and Kang 2017; Feng et al. 2016; Kumar et al. 1999; 
Nishio et al. 2006; Saquib et al. 2008; Yang et al. 2018). In 
this project, we address the preparation of a novel In/BaSnO3 
nanocomposite through sol–gel method and we apply this 
material for thiophene degradation.

Experimental techniques

Synthesis of  BaSnO3

Chemicals in this study were used without further purifi-
cation as they are of analytical grade. 1 mmol of tin(IV) 
isopropoxide solution and 1 mmol of barium nitrate were 
dissolved in a mixture containing 30 ml of ethanol, 20 ml 
of de-ionized water and 0.05 mmol of  HNO3. The resultant 
mixture was stirred for 90 min, then added to glass vessel 
and kept in a microwave at 180 °C for 20 min. After that, 
the product was gathered via centrifugation and then washed 
many times using absolute ethanol and de-ionized water. The 
delivered sample was left to dry at about 80 °C overnight 
and air-heated at 400 °C for 1 h. The produced specimen 
was titled  BaSnO3.

Synthesis of In/BaSnO3

The synthesized  BaSnO3 nanorods were added to 20 ml of 
distilled water containing suitable amount of indium(III) 
nitrate hydrate. The suspension was stirred and irradiated 
overnight by strong UV lamp. The resultant material was 
gathered and heated at 140 °C for 1 h in air. In was permitted 
to be doped within  BaSnO3 structure with the ratios of 0.1, 
0.2, 0.3, and 0.4% wt, and the products were named 0.1 wt% 
In/BaSnO3, 0.2 wt% In/BaSnO3, 0.3 wt% In/BaSnO3 and 
0.4 wt% In/BaSnO3, respectively.

Identification techniques

X-ray diffracto-grams of both  BaSnO3 and In–BaSnO3 nano-
composites were measured using X-ray diffraction (XRD) 
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analysis via Cu-Kα radiation (λ = 1.540 Å). A Nova-2000 
instrument was adopted for specific surface area determi-
nation of the synthesized  BaSnO3 and In–BaSnO3 nano-
composites through  N2-adsorption at 77 K. Before each 
measurement, specimens were heated at about 250 °C for 
4 h to remove gases from these specimens. Band gap ener-
gies corresponding to the synthesized  BaSnO3 as well as 
In–BaSnO3 nanocomposites were measured applying a spec-
tro-photometer (V-570, JASCO, Japan) via determination 
of UV–Visible diffuse reflectance spectra (UV–Vis-DRS) 
in air at ambient temperature within the wavelength range 
of 200 up to 800 nm. Morphology and microstructure of 
the prepared nanocomposites were investigated using scan-
ning electron microscopy (JEOL-JEM-5410). The elemental 
analysis of the synthesized specimens was attained using 
X-ray photoelectron spectroscope (XPS) of Thermo Scien-
tific K-ALPHA type, England.

Photocatalytic efficiency

A pyrex reaction cell was handled for thiophene oxidation 
using the photocatalyst through  O2, the oxidant, bubbling in 
a steady-state flow. 1 g/l photocatalyst was spread in thio-
phene-containing acetonitrile solution (initial content of sul-
fur = 6 × 102 ppm). After that, the suspension was agitated 
in the absence of light for 0.5 h, to attain equilibrium, before 
being irradiated by a 125-W mercury lamp with a UV cut 
filter. The reaction solution temperature was then kept at low 
temperature (12 °C) through cooling water flow. At the end 
of the reaction and after catalyst separation, the major and 
minor products were analyzed by GC-FPD (Agilent 7890, 
FFAP column) and GC–MS.

Results and discussion

Phase composition, morphology and microstructure

XRD diffractograms of both  BaSnO3 and In/BaSnO3 nano-
composites are illustrated in Fig. 1. The patterns of Fig. 1 
indicate that  BaSnO3 and In/BaSnO3 nanocomposites 
are primarily composed of  BaSnO3 phase (JCPDS Card: 
15-0780), this result reveals that the  BaSnO3 skeleton will 
persist after indium doping. It is clear from the diffraction 
pattern of In/BaSnO3 sample that the peak characteristic to 
indium are absent. The absence of the characteristic peaks of 
indium in the patterns of In/BaSnO3 sample may be ascribed 
to the low indium-dopant content. Evidently, the data illus-
trate that indium is well dispersed within the  BaSnO3 lattice. 
In fact, indium played a prominent aspect in the process of 
crystallization since the characteristic diffraction peaks of 

 BaSnO3 phase became broader and the diffraction peaks’ 
intensities became lesser by increasing indium loading.

XPS spectra of In3d for the 0.3 wt% In/BaSnO3 nano-
composite are displayed in Fig. 2. The existence of the 
peaks committed to the indium–indium at about 443.8 and 
451.3 eV for  In3d5/2 and  In3d3/2, respectively, confirms the 
formation of indium metal in a nano-sized scale.

The SEM micrographs of  BaSnO3 and In/BaSnO3 nano-
composites are presented in Fig. 3. The results reveal that as 
weight percent of indium metal increases, the dispersion on 
the surface of  BaSnO3 nanorods increases and this finding 
is valid up to 0.3 wt% of indium dopant (Fig. 3a–d). On the 
contrary, indium is doped as aggregate by increasing weight 
percent of indium over 0.3 wt% as shown in Fig. 3e.
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Fig. 1  XRD patterns of  BaSnO3 and In/BaSnO3 nanocomposites
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Fig. 2  XPS spectra of In3d for the 0.3 wt% In/BaSnO3 nanocomposite
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Surface area measurement

Specific surface areas (SBET) of both  BaSnO3 and In/
BaSnO3 nanocomposites were determined. The surface 
area of the parent  BaSnO3 and In/BaSnO3 nanocomposites 
are given in Table 1. The SBET values are found to be 45, 
43, 41, 39 and 34 m2/g for  BaSnO3, 0.1 wt% In/BaSnO3, 
0.2 wt% In/BaSnO3, 0.3 wt% In/BaSnO3 and 0.4 wt% In/
BaSnO3, respectively. In fact, the bigger characters of the 
specific surface area of  BaSnO3 in comparison to those of 

Fig. 3  SEM images of  BaSnO3 
and In/BaSnO3 nanocomposites, 
where wt% of In is 0.0 (a); 0.1 
(b); 0.2 (c); 0.3 (d); and 0.4 (e)

Table 1  BET surface area 
of  BaSnO3 and In/BaSnO3 
nanocomposites

Sample Surface 
area 
 (m2/g)

BaSnO3 45
0.1 wt% In/BaSnO3 43
0.2 wt% In/BaSnO3 41
0.3 wt% In/BaSnO3 39
0.4 wt% In/BaSnO3 34
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the In/BaSnO3 samples reveal that indium doping causes 
some pores to be blocked.

Optical characterization

The spectra corresponding to UV–Vis diffuse reflectance 
of  BaSnO3 as well as In/BaSnO3 nano-materials are dem-
onstrated in Fig. 4. The results of Fig. 4 illustrates that the 
introduction of indium metal into the  BaSnO3 lattice causes 
a shift of spectra towards higher wavelengths from 526 to 
653 nm (red shift) by the various percentages of indium 
metal, comparing to  BaSnO3wavelength at nearly 400 nm. 
The band gaps for both  BaSnO3 and In/BaSnO3 nanocom-
posites were determined from their own spectra of reflec-
tion found in the form proposed by Kumar et al. (1999), 
the band gap characters of the both synthesized nanocom-
posites are given in Table 2. Evidently, it is obvious from 
the data of Table 2 that the band gap energy decreases with 
increasing the weight percentages of the dopant indium. The 
values of band gap were found to be 3.1, 2.36, 2.16, 1.92 
and 1.90 eV for the parent  BaSnO3, 0.1 wt% In/BaSnO3, 
0.2 wt% In/BaSnO3, 0.3 wt% In/BaSnO3 and 0.4 wt% In/
BaSnO3, respectively. This finding illustrates that indium 
doping enhances the photocatalytic activity of the catalyst 
via its band gap narrowing.

The deportation of holes and photogenerated electrons 
was studied via investigating photoluminescence (Pl) 
emission spectra. The PI emission spectra for the differ-
ent investigated samples are shown in Fig. 5. It is obvious 
from the illustrations of Fig. 5 that the intensity of Pl is 
largely decreased with increasing the indium metal per-
centage. Moreover, separation of the photogenerated elec-
tron–hole couples occurs. This finding might be accredited 

to the capturing of photogenerated electrons from the CB by 
indium metal which acts as a trapping center. It is generally 
acknowledged that an enhancement in light retention of the 
catalysts in the wave length range of the visible region may 
occur as a result of the rare metal nanoparticles’ embodiment 
into catalysts made of semiconductors. And so a deflection 
of the absorption threshold towards higher values of wave-
lengths occurs pointing out a reduction in the band gap 
energy. Consequently, extra photogenerated electrons along 
with holes will cooperate in the photocatalytic reaction. In 
the current study, indium implies to vary the interface of 
 BaSnO3 in such a manner that develops the system in which 
photo-originated charge carriers experience reconsolidation. 
And so, it will strengthen  BaSnO3 to be highly stimulated in 
the visible region. On the other hand, the displacement in the 
location of emission could be correlated to the conduction 
band (CB) of  BaSnO3 as a semiconductor and the charge 
transfer between the indium-generated bands.
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Fig. 4  UV–Vis absorption spectra of  BaSnO3 and In/BaSnO3 nano-
composites

Table 2  Band gap of  BaSnO3 and In/BaSnO3 nanocomposites

Sample Band gap 
energy (eV)

BaSnO3 3.10
0.1 wt% In/BaSnO3 2.36
0.2 wt% In/BaSnO3 2.16
0.3 wt% In/BaSnO3 1.92
0.4 wt% In/BaSnO3 1.90
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Fig. 5  Pl spectra of  BaSnO3 and In/BaSnO3 nanocomposites
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Photocatalytic efficiency

Effect of catalyst kind

Figure 6 shows the photocatalytic degradation of thiophene 
compound over both  BaSnO3 and In/BaSnO3 nanocompos-
ites in the wavelength of the visible light. The examination 
was accomplished using the subsequent settings: 500 mL 
of thiophene solution having the concentration 600 ppm 
and 0.4 g/l catalyst. The results confirm the lower activ-
ity of  BaSnO3 photocatalyst beneath visible light. Moreo-
ver, the photocatalytic efficiency of In/BaSnO3 doped with 
various loadings of In is increased in the following order: 
0.1 wt% In/BaSnO3 < 0.2 wt% In/BaSnO3 < 0.3 wt% In/
BaSnO3 ≤ 0.4 wt% In/BaSnO3, this finding is in agreement 
with those found in SEM, XRD, and band gap investigations.

Concerning the investigation of the photoproducts, the 
gas from the products’ outlet is introduced to 0.2 M NaOH 
aqueous solution. When 0.2 M Ba(NO3)2 aqueous solution 
was added into the latter NaOH aqueous solution, a precipi-
tate of white color was produced (designated as precipitate 
1). The XRD pattern of precipitate 1 is illustrated in Fig. 7a. 
The XRD pattern proves the presence of  BaCO3, which is 
in acceptable convenience with the standard card of ICDD-
PDF no. 05-0378. This finding ensures that thiophene can 
be oxidized to  CO2 in the presence of photocatalyst and cap-
tured in the NaOH aqueous solution. Meanwhile, if  HNO3 
solution is added to precipitate 1, part of the white precipi-
tate will still remain without dissolving in  HNO3 solution, 
designated as precipitate 2. The XRD diffractogram of pre-
cipitate 2 is displayed in Fig. 7b. The data of Fig. 7b indicate 
the formation of  BaSO4, which agrees with the standard card 
of ICDD-PDF no. 24-1035. This illustrates that the sulfur 
atom in thiophene can be oxidized to  SO3 in the presence of 

the photocatalyst. In conclusion, thiophene could be read-
ily photocatalytically oxidized to both  CO2 and  SO3. And 
so, the photocatalytic degradation of thiophene will be as 
follows:

Effect of photocatalyst loading

The photocatalyst loading is considered another crucial fac-
tor that governs photocatalytic destruction of thiophene solu-
tion under Vis light irradiation. In this investigation, 0.3 wt% 
In/BaSnO3 having loadings ranging from 0.2 up to 1.4 g/l 
in 600 mg/l thiophene solutions, were operated. The data of 
Fig. 8 illustrates that the time needed for thiophene oxidation 
decreases from 150 to 60 min by increasing the catalyst dose 
from 0.2 up to 0.8 g/l, respectively. On the contrary, further 

Thiophene + photo-catalyst ⟶ CO2 + SO3 + H2O.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100  0.4 wt % In/BaSnO
 0.3 wt % In/BaSnO
 0.2 wt % In/BaSnO
 0.1 wt % In/BaSnO3

 BaSnO3

C
on

ve
rs

io
n 

of
 th

io
ph

en
e,

 %

Reaction time, min

Fig. 6  Effect of catalyst type on photocatalytic conversion of thio-
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increase of the photocatalyst dose, above 0.8 g/l, leads to a 
repeated expansion in the reaction time up to 150 min. Actu-
ally, the increase of the photocatalyst dose will develop the 
total number of active centers on the photocatalyst (Nishio 
et al. 2006). And so, the number of the absorbed photons and 
thiophene molecules increases. However, at photocatalyst 
loadings above 0.8 g/l, the time needed to oxidize thiophene 
is increased due to the rendering of light entrance by the 
extra load of photocatalyst (Saquib et al. 2008).

Photocatalyst recovery

From the economic point of view, handling the photocatalyst 
several times is a serious subject. Photocatalytic activity of 
0.3 wt% In/BaSnO3 photocatalyst after recycling five times 
is shown in Fig. 9. The data confirm that the photocatalytic 
activity remains without change after recycling up to about 
five times. Hence, recycling and separation of 0.3 wt% In/
BaSnO3 photocatalyst could be preceded easily.

Conclusion

On the basis of our study, the subsequent conclusions could 
be stated

1. In/BaSnO3, photocatalyst was profitably synthesized and 
verified to be a talented catalyst due to its great oxida-
tion capability of pollutants in the wavelength range of 
visible light region.

2. Weight percentage of doped indium in  BaSnO3 controls 
the red shift phenomenon.

3. In/BaSnO3 with a 0.3 wt% of In performed the greatest 
catalytic efficiency.

4. The synthesized photocatalyst is considered to be an effi-
cient photocatalytic catalyst towards water disinfection.

5. Optimum conditions in our study were found to be; 
0.3 wt% In/BaSnO3, 0.8 g/l photocatalyst, 600 mg/l 
thiophene solution and these conditions yielded 100% 
oxidation of thiophene solution after 60 min of irradia-
tion of visible light.

6. It was found that the photocatalyst under investigation 
remains impressive after about five cycles, which illus-
trates the talented recovery of the In/BaSnO3 photocata-
lyst.
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