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Abstract
Drilling is a complex destructive action that induces vibrations due to the rock-bit interaction, which affects the overall 
drilling efficiency and wellbore quality. This study aims to enhance drilling efficiency by deploying artificial neural networks 
(ANNs) to integrate in-cutter force sensing and vibration data. Data is collected from experiments conducted with sharp 
cutters on rock samples of varying mechanical properties, measuring variables such as weight on bit, torque, rotational speed, 
in-cutter force, and vibration measurements. A scoring system is used to evaluate the drilling efficiency by coupling the 
mechanical specific energy and vibration modes. An ANN is trained with these variables to predict the rate of penetration 
and rock strength, which are also measured in the experiments to be used as ground truth. The reliability of the framework 
is demonstrated by testing the validity of the ANN model on samples with various mechanical properties. It introduces a 
reliable and swift method for determining optimal drilling parameters, supported by a sensitivity analysis to fine-tune the 
ANN and assess the influence of each parameter on performance. This study demonstrates that ANN could be successfully 
implemented to predict the rate of penetration and rock strength on a laboratory-scaled drilling rig. The results show that 
the ANN model accurately predicts training and testing datasets for scoring while drilling multiple layers with a correlation 
coefficient of 0.966. Integration of in-cutter sensing technology, vibration data, and ANN can be of significant interest and 
be used on field applications to provide a reliable and rapid decision about drilling efficiency.
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List of symbols

Latin symbols
A	� Cutting area [ mm2]
DOC	� Depth of cut [mm]
Fn	� Normal force [N]
Fs	� Force perpendicular to cutter’s face [N]

Ft	� Tangential force [N]
MSE	� Mechanical specific energy [MPa]
RPM	� Revolutions per minute
TOB	� Torque on bit [Nm]
UCS	� Uniaxial compressive strength [MPa]
ROP	� Rate of penetration [mm/s]
WOB	� Weight on bit [N]
RMSE	� Root mean square error
AAPE	� Average absolute percentage
RMS	� Root mean square

Greek symbols
�	� Intrinsic specific energy [MPa]
�est	� Estimated/predicted value
�exp	� Expected value

Abbreviations
ANN	� Artificial neural network
ML	� Machine learning
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Introduction

Drilling optimization has been the primary focus of 
research for the past 70 years, with the initial research 
focusing on the effect of surface parameters, including 
weight on bit (WOB) and rotational speed (RPM) to the 
rate of penetration (Speer 1959). The effect of rotary 
speed seems to be more complex and is a function of 
bit life (Wardlaw Wardlaw 1961). Rate of penetration 
(ROP) is a complex variable that is a function of several 
parameters, including surface and downhole drilling 
parameters (Bingham 1965; Hareland and Rampersad 
1994; Motahhari et al. 2010), drill bit and drilling fluid 
design (Durrand et al. 2010; Rahmani et al. 2021), drill bit 
wear state (Dupriest and Koederitz 2005), wellbore quality 
(Samuel et al. 2017), and rock properties (Bourgoyne Jr 
and Young Jr 1974; Kelessidis et al. 2015; Koulidis et al. 
2021b).

Recent advances in machine learning and artificial 
intelligence have unlocked new technological innovations, 
gaining interest in the drilling industry (Zhong et  al. 
2022). Initially, the main focus was to detect and prevent 
unexpected events in the drilling process, including stuck 
pipe (Siruvuri et al. 2006; Miri et al. 2007) and associated 
challenges regarding drilling hydraulics (Ozbayoglu et al. 
2002; Osman and Aggour 2003). Drilling hydraulics 
plays a critical role in the entire drilling process and 
involves a complex analysis to evaluate and predict the 
performance while drilling. Standpipe pressure prediction 
can provide an overview of the current condition of the 
wellbore (Todorov and Thonhauser 2014). Elkatatny et al. 
(2016) utilize an ANN model with 9000 drilling fluid field 
data, to predict rheological properties, including plastic 
viscosity, yield point and fluid density. Erge and van Oort 
(2022) developed a hybrid model to predict standpipe 
pressure during well construction using multiple sensor 
measurements. The results show an increase in the 
correlation coefficient to 0.9867 and a reduction of root-
mean-square error (RMSE) by 22%.

Machine learning has started to be integrated into 
drilling optimization systems. Over the years, several 
models have been proposed to act as an advisory system 
and provide recommendations for the optimum drilling 
parameters, considering bit wear and real-time drilling 
data (Valisevich et al. 2015; Barbosa et al. 2019). The 
concept of mechanical specific energy (MSE) was 
introduced by Teale (1965) and built the foundation for 
addressing drilling optimization. Nautiyal and Mishra 
(2023) developed an ROP prediction model that utilizes 
ANN and random forest classifier by considering confined 
compressive strength (CCS), drill bit cutters, and drilling 
parameters. ANN has been used to evaluate the drilling 

performance for real-time operations. Hassan et al. (2020) 
utilized 20,000 actual drilling data to train seven ANN 
models and predict the drilling efficiency by coupling 
MSE and ROP. The results indicate that the developed 
ROP model provides a reliable prediction with an average 
absolute percentage error of 7.9%.

In the process of identifying the optimum optimization 
parameters, several more factors have to be considered. 
Drillstring vibrations are produced due to the forces 
acting on the drill bit while drilling and the contact of the 
drillstring with the wellbore (Sotomayor et al. 1997). An 
early investigation of surface measurements and analysis of 
drillstring vibrations was conducted by Macpherson et al. 
(1993). Their study provides insightful information regarding 
BHA dynamics modeling to identify the optimum operating 
conditions and shed light on the importance of real-time 
vibrations monitoring. Further development allowed the 
installation of the sub at any position in the drillstring (Deily 
et al. 1968). Currently, triaxial accelerometers are installed 
either on the surface or downhole (or at both locations) 
to acquire acceleration data in 3-axes (Xue et al. 2016). 
Drilling limiters are developed while drilling to consider 
the influence of the drilling action on wellbore quality (Kline 
et al. 2005; Dupriest et al. 2011).

This work utilizes the computed cutting forces obtained 
with in-cutter sensing technology to estimate the rock 
strength. An ANN model is utilized to predict the rock 
strength, rate of penetration and performance-scoring that is 
used to assess the drilling efficiency by considering vibration 
modes.

Methodology

Experimental setup and workflow

Machine learning is used to predict a variable and for 
the current case study rock strength, rate of penetration 
and performance-scoring. An extensive experimental 
study was performed using a scaled drilling rig to train 
the machine learning models. The scaled drilling rig is 
utilized to recreate the drilling process in the laboratory, 
but the main aim is to evaluate and utilize the cutter sens-
ing technology. Safety limitations are applied as threshold 
values, including torque and axial force. Table 1 provides 

Table 1   Scaled drilling rig operating limits

Parameter Value Unit

Rotary speed 0–1400 RPM
Drillstring buckling 580 N
Torque 0–7.2 Nm
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information on some constraints of the scaled drilling rig. 
Safety factors are applied to each component, and in case 
the measured value reaches the drillstring buckling or 
torque limit, the motor that provides the axial displace-
ment automatically stops.

The scaled drilling rig design allows a precise depth of 
cut control with an accuracy of ± 0.004 inches per foot. 
Data are transferred to LabVIEW using a data acquisition 
device (DAQ), serial interface, and on-screen buttons to 
control the setup and acquire the data. The instrumentation 
in the scaled drilling rig structure allows the acquisition of 
high-frequency sensor data, including rate of penetration, 
weight on bit, rotational speed, torque, force at the cutter, 
and vibrations. Details regarding the scaled drilling rig 
design, data acquisition and control system are discussed 
by Koulidis et al. (2021c). The workflow that describes the 
methodology of the current work is illustrated in Fig. 1.

In‑cutter sensing

The two additional variables introduced and utilized in 
the current case study are in-cutter force sensing data and 
intrinsic specific energy ( � ). Several experiments have been 
conducted with the in-cutter sensing and the results show a 
promising technology towards estimating the rock strength 
and cutter state while drilling (Koulidis et al. 2021c, 2022, 
2023b)

The experiments were conducted in atmospheric con-
ditions with controlled axial and rotational speed (0.2176 
mm/s and 30 RPM, respectively). Figure 2 shows the place-
ment of the miniature load cell behind the PDC cutter to 
measure the force perpendicular to cutter’s face while 
drilling.

Samples of artificial gypsum are created with two 
layers of various mechanical properties. The test samples 

Fig. 1   Acquired data and derived parameters that are utilized as input variables for the ANN

Fig. 2   The scaled drill bit 
design that is utilized for the 
drilling tests
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are drilled using random drilling parameters (WOB and 
RPM) for the preliminary testing in order to measure the 
corresponding MSE, force at the cutter, and vibrations. 
The mechanical oscillations of an object are referred to 
as vibrations. During the drilling process, due to the axial 
forces and rotation, different vibrations can be observed 
using accelerometers either downhole or at the surface 
(Koulidis et al. 2021a). To detect vibrations, an MPU9250 
GYRO is installed close to the motor shaft, and Arduino 
Uno is used to collecting 3-axis accelerometer data in real-
time. Manual classification is used to calculate the root mean 
square (RMS), skewness, kurtosis, and standard deviation to 
assess the vibration modes when off and on-bottom. Since 
there is no drilling activity, it is noted that the variances 
are minimal, particularly for RMS and standard deviation. 
However, the established measurements and the system’s 
response to vibrations serve as the corresponding benchmark 
values.

Acquired experimental drilling data and vibrations 
classification

Since the formation tops are known, at the beginning of each 
formation, the axial and rotational speed are switched to 
0.2176 mm/s and 30 RPM, to estimate the intrinsic specific 
energy ( � ), which is correlated to the rock strength (Richard 
et al. 1998, 2012). The artificial gypsum samples are consid-
ered homogeneous and isotropic; thus, the intrinsic specific 
energy is estimated only at the beginning of the rock sample, 
and the average value is assumed for the remaining part of 
the layer. Figure 3 illustrates the acquired data and derived 
parameters from a drilling test that contains two rock lay-
ers. The data are utilized in the depth domain but, for more 
convenient illustration, are in the time domain. It is observed 
that the vibrations in X and Y direction are affected accord-
ingly depending on the operating parameters. Naturally, the 
vibrations levels observed in the scaled drilling rig experi-
ments are significantly lower compared to the ones observed 
during the actual drilling process. It is important to state that 
any mechanical equipment have limitations such as maxi-
mum torque limit or vibrations; thus, physical constrains are 
essential to evaluate the process.

To reliably assess the acquired vibration data, the 
sampling frequency should be substantially higher to 
capture even the transition between two rock samples. The 
synchronization between the two acquisition systems is 
accomplished by saving the data with a timestamp from both 
devices. Figure 4 provides an overview of the vibrations 
on X, Y and Z axis while rotating off bottom for different 

rotational speeds. For the acquired vibration data in Fig. 4, 
the corresponding RMS (root mean square), skewness, 
kurtosis, and standard deviation, as Fig. 5 illustrates. For 
the Y axis, the initial 9.8 g is due to gravity acceleration.

Each formation is drilled with a range of weight on bit, 
rotational and axial speed to create a dataset library for offline 
analysis. The data are then analyzed, classified, and prepared 
to be utilized as input to train the ANN model. Classifying the 
vibrations requires observing specific intervals while drilling, 
as shown in Fig. 6. The vibration mode (low, medium, and 
high) varies from off-bottom and depends on the drilling con-
ditions for a particular formation. RMS and standard deviation 
are the primary two characteristics that distinguish between 
the vibration modes. The ranges for standard deviation are 
the following: 0–0.05 g corresponds to low vibration mode, 
0.05–0.07 is medium, and greater than 0.07 is high, respectiv
ely.

Artificial neural network (ANN)

Employed ANN maps the non-linear relationship of the inputs 
and corresponding outputs. All machine learning models are 
trained on the platform of MATLAB. The implemented ANN 
consists of three layers (input, hidden, and output) connected 
by weights and biases. Each layer is assigned with an acti-
vation function to introduce the nonlinearity. The coupled-
training validation process is evaluated by their metric param-
eters, including relative mean square error (RMSE), average 
absolute percentage error (AAPE) and correlation coefficient 
(Tariq et al. 2022). Figure 7 illustrates the ANN architecture 
and workflow that is used to predict ROP.

The Levenberg-Marquardt method is used in the 
backpropagation of the training process. This method bypasses 
the need to compute the Hessian matrix and is one of the 
fastest algorithms in supervised learning problems using 
small- and moderate-sized ANNs. One-hot encoding is utilized 
to classify low, medium and high vibration modes. Since the 
ML output is data dependent, the most common comparison 
tool is the RMSE, as Eq. 1 shows (Tariq et al. 2022):

where xexp is the expected and xest is the estimated/predicted 
value. In addition, the average percentage relative error 
shows the difference of the expected to the estimated value 
as per Eq. 2 (Tariq et al. 2022):

(1)RMSE =

√√√√1

n

n∑

i=1

(xexp − xest)
2

(2)AAPE =
100

n

n∑

i=1

|
xexp − xest

xest
|
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Rate of penetration and scoring prediction 
for single rock

Grid search optimization of neural network 
hyperparameters

This section details the optimization of the number of lay-
ers of the ANN and the number of neurons in each layer via 
the grid search method (Liashchynskyi and Liashchynskyi 
2019; Erdogan Erten et al. 2021). In many machine learn-
ing problems, shallow ANNs lack the capability to learn 

higher-order features, while deeper ANNs suffer from van-
ishing and exploding gradients. On the other hand, including 
excessive amounts of neurons in an ANN result in unneces-
sary memory and computational costs (Hu et al. 2016). The 
grid search method allows a complete analysis of selected 
ANN hyperparameters over the search space within pre-
defined boundaries and suitable grid resolutions (Bengio 
2012). Since the dimensions of the input and output data in 
this study are relatively small, the grid search method can 
be completed within a reasonable amount of time. Based 
on the number of inputs, the search is conducted on a grid 

Fig. 3   Acquired data and derived variables from a single test. The footage drilled is approximately 40 mm
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constructed by varying the hyperparameters, as shown in 
Table 2.

The ANNs constructed according to the hyperparameters 
on the grid points are trained with the same dataset that feed 
1 × 10 vectors to the input layer and corresponds to a single 
float value ROP label. From the search, the optimal values 
for the number of layers and neurons are 1 and 15, respec-
tively. The resulting mean absolute errors (MAEs) (Reich 
et al. 2016) are shown in Fig. 8.

Scoring

It was stated in the introduction section that wellbore qual-
ity could significantly be decreased during high-vibration 
modes. Even though the drilled intervals for the current 

tests are approximately 40 mm, the effect of vibrations can-
not be generalized and evaluated. Thus, it is important to 
implement this reaction as part of the drilling efficiency. 
The classified vibration modes are low, medium and high, 
corresponding to 1, 0.5 and 0.01 respectively. In the actual 
drilling process, excessive vibrations significantly increase 
the surface MSE, which impacts the drilling efficiency. The 
following Fig. 9 provides vibration data from a deviated well 
(16A (78)-32) located in Utah (Gilmour et al. 2021). As the 
drillstring oscillates in higher frequency, it has a low effect 
on the downhole MSE, since it is near to the drill bit, but 
higher peaks on the surface MSE as it is observed at approxi-
mately 6245 ft (Koulidis et al. 2023a).

For the current case, the weight coefficient of the vibra-
tions with respect to ROP is 0.6. The weight coefficient is an 

Fig. 4   Example of vibrations 
data for different rotational 
speeds (off-bottom). The data 
are separated per applied 
rotational

Fig. 5   Vibration’s interpretation to analyze low, medium and high modes while rotating off bottom
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Fig. 6   Vibration’s interpretation to analyze low, medium and high modes while drilling

Fig. 7   ANN architecture and workflow
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empirical value that is selected to demonstrate the importance 
of coupling the vibrations with MSE; thus, the optimum seg-
regation value is the 0.6 for our dataset to capture the behavior 
and to distinguish efficient and insufficient drilling process. 
The normalized MSE and score are calculated as per Eqs. 3 
and 4.

(3)MSENormalized =
MSE −MSEmin

MSEmax −MSEmin

Sensitivity analysis

An exhaustive sensitivity analysis has been conducted on 
the input data to evaluate the importance of each attribute in 
training the ANN (Szecówka et al. 2011). Although numer-
ous methods in the literature reduce the dimensions of data 
and provide lower computational costs, such as the principal 
component analysis (Hameed et al. 2021) and the Monte 
Carlo method (Guevara et al. 2015) and, the relatively small 
input size of this study allows the complete search for opti-
mal feature combinations. The features are combined into 
nCr arrangements, where n represents the total number of 
attributes and r = 1, 2, ..., n. From the results, the combina-
tion that provides the lowest RMSE is WOB, RPM, Torque, 

(4)
Score = MSENormalized

+ VibrationsScoreNormalized ∗ Coefficient

Table 2   Grid search hyperparameter properties

Hyperparameter Star value Step size End value

Neurons per layer 5 5 50
Number of layers 1 1 10

Fig. 8   Heatmap of the grid search test data root mean square errors (RMSEs)
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Fs, MSE, low vibration, medium vibration, and high vibra-
tion. The importance of each attribute is investigated with 
identical sensitivity analysis that is implemented for the 
scoring as Fig. 10 illustrates.

Results

Two layer rate of penetration prediction

The experiments were separated into different subsets 
depending on the drilling parameters vibrations, with 70% of 
the data to be used for training, 15% for testing and 15% for 
validation. Figure 11 illustrates the corresponding predicted 
rate of penetration by utilizing the Levenberg–Marquardt 
(LM) training algorithm.

The rate of penetration has significantly high variations 
in actual drilling applications due to the drilling action that 
produces vibrations. As it is observed in Fig. 3, the ROP 
shows a discrete behavior since the DC motor provides 
an accurate rotational speed (which is converted to axial). 
During the drilling of two rock layers (Fig. 3), different 
vibrations modes are observed that are produced from 
different rotational and axial speeds (ROP). Figure  11 

provide the training and testing data sets, with the results 
showing accurate and reliable ROP prediction for two 
different layers.

In addition, several outliers are observed during the tran-
sition between two different ROP intervals. The R2 for train-
ing and testing is 0.988 and 0.993, accordingly.

Two layer scoring prediction

From an operational perspective, predicting the score can 
provide significant insights regarding the drilling process, 
and this can be implemented in drilling operations where 
vibrations significantly impact the drilling process and 
wellbore quality. Figure 12 provides insights regarding the 
predicted score for drilling two rock samples with different 
parameters. The scoring procedure can be used as an advi-
sory system regarding MSE and vibrations. For the current 
study, scoring below 0.6 represents low drilling efficiency.

Compared to the rate of penetration prediction, the AAPE 
is significantly higher. Outliers on the training and the test-
ing dataset are observed, affecting the prediction model, 
and increasing the residual error. The following Fig. 13 

Fig. 9   (Left) Surface and downhole MSE, (Right) Schematic illustrating the effect of vibrations. Excessive vibrations result in an increase of 
contact of the drillstring with the wellbore
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visualizes the distribution of the residual error, which is 
close to the mean value for training and testing.

Interestingly, the scoring can be evaluated and assessed 
as quick visualization regarding the drilling efficiency while 
drilling (Fig. 14). The effect of the vibrations on MSE can be 
captured and utilized as a drilling efficiency indicator while 
drilling different rock layers. From a practical aspect, scor-
ing intervals with a value below 0.6 represent the decreased 
rate of penetration, increased MSE and increased vibration.

Multiple layer rock strength prediction

For the training process we used the dataset of 8 samples 
and the 9th sample is an unseen layer. Figure 15 shows 
that utilizing the input data to train the model that contains 
great variations of the intrinsic specific energy (which is 
correlated with the rock strength), significantly assists in 
predicting the intrinsic specific energy ( � ) for the unseen 
rock layer. The results show an excellent match with the 
actual intrinsic specific energy.

Fig. 10   Maximum RMSE per attribute visualized on a spider plot
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Fig. 11   Training and tested 
datasets and the corresponding 
R
2 and AAPE

Fig. 12   Training and tested 
datasets and the corresponding 
R
2 and AAPE

Fig. 13   Residual error for the 
training and testing datasets
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Compared with the previous methodology to predict 
rock strength, all the acquired data are utilized for training 
the ANN model. The unseen rock layer is a formation that 
has a uniaxial compressive strength of approximately 1.7 
MPa. The rate of penetration and rotational speed are 
analogous to the trained dataset but WOB, torque and 
intrinsic specific energy significantly differ.

Multiple layer scoring prediction

Even though the scoring prediction is feasible for two lay-
ers, the great challenge remains in predicting after drilling 
multiple layers. In total, five tests (two-layer samples) are 
performed that contain rock samples with a rock strength 
from 2.5 MPa to approximately 10 MPa. Four rock sam-
ples have similar rock strength, but the applied drilling 

parameters during the test varied. For each drilling test, one-
hot encoding is performed to classify the vibration modes 
and estimate the intrinsic specific energy to obtain the rock 
strength. Figure 16 shows that utilizing the input data to train 
the model that contains great variations of the mechanical 
specific energy significantly assists in predicting the scoring.

The scoring mechanism provides a rapid visualization 
regarding the drilling efficiency, as Fig. 17 illustrates. The 
score can instantly change by reducing the rotational speed. 
This can be observed at approximately 3000 data points 
(Fig. 17), in which while drilling a rock of 10 MPa, by 
reducing rotational speed, the vibration mode changes from 
high to low; thus, the score increases. Overall, in several 
intervals, the drilling efficiency is significantly low, but it is 
important to state that the output is purely case-dependent in 
this stage. The same formations might be drilled more effi-
ciently if the machine’s mechanical limitations are greater, 
or the drill bit design differs. Thus, the resulted score only 
indicates the efficiency for the current scaled drilling rig.

Fig. 14   Predicted and actual 
score for the two layers drilled

Fig. 15   Training and testing 
results with the suggested ANN 
model
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Discussion

The foundations of implementing the ANN model with 
in-cutter sensing and vibration data have already been 
established, but additional elements must be considered 
for an actual field application. The current methodology 
utilizes artificial gypsum samples where the mechanical 
properties can be controlled depending on the gypsum-
to-water ratio and curing period. The rock strength can be 
accurately estimated and predicted for a new unseen layer 
for the same axial and rotational speed (0.2175 mm/s and 
30 RPM). This corresponds to the major implementation 
of in-cutter sensing, which allows us to compute the rock 
strength while drilling. The main restriction of a scaled 
drilling rig is the output power, and due to the rotational 
cutting action of the drill bit, torque is the primary limiting 
variable. It is observed that during the experimental drilling 
tests, the variability of the measured forces is induced due to 
several factors, including [1] the brittle nature of the rock-
cutting process, [2] axial and rotational movement, and 

[3] heterogeneities in the gypsum samples. To assess rock 
samples with higher rock strength, the drillstring rotational 
speed has to be increased to reduce the instantaneous depth 
of the cut.

The optimum depth of cut to achieve ductile failure 
and determine the rock strength is a function of the 
rock’s mechanical characteristics. In the lab, each cutter’s 
instantaneous depth of cut can be computed accurately, 
with the design providing an accuracy of ± 0.004 inches per 
foot. Actual drill bits are complex mechanical designs, with 
the cutting area of several cutters to intercept. The main 
attribute, the depth of cut, is very challenging to compute 
with accuracy while using surface measurements and a 
drillstring that is extended for several kilometers. Several 
technological advancements show the industry’s interest 
and capabilities to invent technologies specified to the cutter 
scale, including shaped-cutter technology (Shao et al. 2022), 
rolling PDC cutter (Giumelli et al. 2014), and drill bits with 
incorporated depth of cut control (Alkhazal et al. Alkhazal 
et al. 2022).

Fig. 16   Predicted and actual 
score for a combined dataset of 
five tests

Fig. 17   Predicted score is excel-
lently matched with the actual 
score
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In-bit sensing and subs are well-established technologies 
that are currently utilized (Sugiura 2008; Sugiura and Jones 
2019; Kouzaiha et al. 2022). The main benefit of switching 
from a cutter scale to a drill bit scale is the integration of 
downhole sensors either on the drill bit body or a sub. Some 
of these bit-subs can provide feedback on torsional, lateral, 
and axial vibrations to the surface and detect severe down-
hole conditions. Integrating in-cutter and in-bit sensing can 
unlock the full potential of downhole data and predict the 
drilling efficiency with the current methodology.

The concept behind the proposed system is based on 
knowledge of the rock strength while drilling. The advisory 
system should utilize the acquired data and conduct the 
AI-based solution to evaluate the drilling efficiency and 
optimize the drilling process.

Conclusions

This work extended the drilling experiments to approximately 
40 mm of drilled footage. Installing the vibration sensors 
allows for conducting a more comprehensive analysis of 
the drilling process and the applied drilling parameters. 
We introduced a novel framework that integrates AI and 
in-cutter sensing to enhance the prediction of rock strength 
and the drilling efficiency (scoring), providing a rapid and 
robust method to identify the optimum drilling parameters 
concerning physics constraints. Salient conclusions follow: 

1.	 The rock strength can be accurately predicted for a new 
unseen layer for the same axial and rotational speed, 
0.2175 mm/s and 30 RPM.

2.	 The in-cutter force sensing measurements allow 
monitoring of the forces acting on a single PDC cutter, 
which corresponds to a better prediction of the rock 
strength and is associated with a decrease in absolute 
error.

3.	 The ANN could be successfully implemented to predict 
the rock strength with the same accuracy that it was 
estimated by utilizing analytical modelling.

4.	 Statistical analysis demonstrates that the best 
performance occurred with 1 hidden layer and 15 
neurons.

5.	 The ANN achieved an accuracy comparable to analytical 
modelling using less variables as input while operating 
in real-time.

6.	 It is shown via iterative permutations that rock strength 
and modes of vibration are crucial measurements for the 
prediction of ROP.

7.	 Ultimately, the score prediction could provide insight 
into the drilling efficiency, and its implementation 

allows quick visualization and evaluation of the drilling 
operation.

8.	 To provide a scoring concerning the drilling process, 
grid-search optimization is deployed to determine 
the optimum hyperparameters of ANN. In addition, 
a comprehensive sensitivity analysis is performed to 
evaluate each parameter’s influence on ANN.

9.	 The results show that the ANN model accurately predicts 
training and testing datasets for scoring while drilling a 
single layer.
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