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Abstract
This paper presents a method for analyzing constant-pressure drawdown test of infinite-conductivity fractured wells in 
bounded reservoirs. The presented method is based on the Tiab direct synthesis approach. The fracture and reservoir param-
eters are directly determined from the rate and rate derivative of the well test data. New equations describing the elliptical 
flow regime and the transition from the pseudoradial regime to the boundary-dominated regime of different rectangular 
reservoirs are also presented. The various flow regimes occurring during the well test are easily identified based on the 
shape of the plotted data and the slope of each flow regime. The unique features of the slopes of the various regimes and 
their intersection points are utilized to determine the fracture half-length, formation permeability, skin factor, well drainage 
area, and reservoir shape factor. Moreover, new equations defining the intersection points of the straight lines corresponding 
to different flow regimes are presented. These equations are very important for confirming the precision of the calculated 
results. A systematic process demonstrating the application of the proposed method to linear, elliptical, pseudoradial, and 
boundary-dominated regimes is well delineated. Comprehensive examples are presented to validate the efficiency of the 
proposed technique. The examples show that even if some of the flow regimes are not fully developed, the method can still 
be used to determine the formation and fracture properties using information obtained from the remaining flow regimes. 
This is one of several advantages of the proposed technique over conventional techniques.

Keywords Transient rate and rate derivative · Constant-bottomhole pressure test · Infinite-conductivity fracture · TDS · 
Linear flow · Elliptical flow · Pseudoradial flow · Boundary-dominated flow

List of symbols
A  Drainage area of the well,  ft2

B  Formation volume factor, bbl/STB
CA  Reservoir shape factor
ct  Reservoir compressibility,  psi−1

dq/dt  Rate derivative, STB/D/hour
FCD  Dimensionless fracture conductivity
h  Thickness of the producing layer, ft
k  Formation/reservoir permeability, mD

kf  Fracture permeability, mD
mCB  Slope of the closest parallel boundary straight line
mE  Slope of the elliptical flow regime straight line
mL  Slope of the linear flow regime straight line
pi  Initial reservoir pressure, psi
pwf  Flowing sandface pressure, psi
q  Flow rate, STB/D
qD  Dimensionless rate for the constant pressure test
rw  Well radius, ft
s  Skin factor
t  Production time, hour
tbBD  Starting time of the boundary-dominated regime 

on the log–log plot of 1/q vs. t, hour
tBD  Time during the boundary-dominated regime on 

the rate derivative plot, hour
tBDi  Time of intersection between the reciprocal rate 

and reciprocal rate derivative plots during the 
boundary-dominated flow period, hour

tD  Dimensionless time
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tDA  Dimensionless time based on the drainage area of 
the well

tDABD  Dimensionless time based on drainage area during 
the boundary-dominated flow period

tDABDi  Dimensionless time based on drainage area corre-
sponding to the intersection between the recipro-
cal rate and reciprocal rate derivative plots during 
the boundary-dominated flow period

tDxf  Dimensionless time based on the fracture 
half-length

tECB  Time of intersection between the elliptical flow 
regime and the closest parallel boundary lines, 
hour

tER  Time of intersection between the straight lines in 
the elliptical and pseudoradial flow regimes, hour

tLCB  Time of intersection between the linear flow 
regime and the closest parallel boundary lines, 
hour

tLE  Time of intersection between the straight lines in 
the linear and elliptical flow regimes, hour

tLR  Time of intersection between the straight lines in 
the linear and pseudoradial flow regimes, hour

tR  Time during the pseudoradial regime on the rate 
derivative plot, hour

tRBD  Time of intersection between the pseudoradial 
and boundary-dominated flow regimes, hour

tRCB  Time of intersection between the pseudoradial 
flow regime and the closest parallel boundary 
lines, hour

wf  Fracture width, ft
xe  Drainage radius of the reservoir, ft
xf  Fracture half-length, ft

Greek symbols
γ  Constant = 0.5772
µ  Oil viscosity, cp
π  Constant = 3.141592654
ϕ  Reservoir hydrocarbon porosity, fraction

Abbreviations
HF  Hydraulically fractured
TDS  Tiab direct synthesis

Introduction

Massive hydraulic fracturing is a stimulation process that 
is typically implemented in tight oil and gas reservoirs to 
improve well productivity. Appropriate liquids are injected 
into the reservoir zone for stimulation, creating a vertical 
fracture. Massive hydraulic fracturing has recently received 
considerable attention and has been widely and success-
fully applied in shale gas reservoirs in the US and world-
wide (King 2020; Jiang et al. 2021; Ibrahim 2022; Temizel 

et al. 2022). Efficient evaluation of reservoirs and fracture 
properties is essential for assessing stimulation treatments, 
forecasting well performance, and developing optimal 
reservoirs.

Several semianalytical methods, asymptotic analytical 
approaches, numerical models, and type curves describing 
the pressure or rate variations with time of finite- and infi-
nite-conductivity vertically fractured wells have been pre-
sented in the literature. Prats (1961) and Prats et al. (1962) 
investigated the impacts of massive hydraulic fracturing on 
the productivity and behavior of liquid and gas wells and 
proposed analysis techniques for both constant-rate and 
constant-pressure producing wells. Russel and Truitt (1964) 
developed a mathematical model with synthetic buildup test 
plots to forecast the pseudoradial flow regime performance 
of hydraulically fractured (HF) wells. They presented their 
results in terms of the dimensionless pressure versus the 
time and fracture penetration. In 1977, Cinco-Ley and Sam-
aniego-V (1977) investigated the impact of wellbore storage 
and fracture impairment on well performance. They con-
sidered the skin as a very thin layer covering the fracture 
face and noted that the skin effect or fracture face damage 
must be considered to efficiently assess the pressure tran-
sient behavior of HF wells. Cinco-Ley et al. (1978) revised 
the mathematical model of Russell and Truitt (1964) and 
developed analytical and type curve methods for well test 
analysis of HF wells in infinite systems.

Hanley and Bandyopadhyay (1979) presented an analyti-
cal solution for wells intercepted by a uniform-flux infinite-
conductivity fractures that penetrate the pay zones of square 
reservoirs. They examined the impacts of wellbore storage, 
fracture penetration and capacity, and reservoir properties on 
well performance and concluded that the wellbore storage 
effects must be considered to understand the transient pres-
sure behavior of HF wells in low-permeability reservoirs. 
More recently, Guo et al. (2015) investigated the various 
factors affecting the flow regimes in finite-conductivity HF 
wells producing from shale gas reservoirs. They presented 
pressure transient and rate decline models that describe gas 
flow behavior in HF wells.

Type-curve matching has also been utilized to character-
ize HF wells. Well test analysts have proposed type-curves 
as effective diagnostic tools that cover the full spectrum of 
flow regimes and incorporate the overlapping transition peri-
ods occurring during the well test. Nevertheless, since type 
curves yield nonunique matching results, these models must 
be interpreted carefully.

In 1989, Tiab (1989) developed the Tiab direct synthe-
sis (TDS) approach for interpreting the transient pressure 
behavior of infinite-conductivity HF wells. The TDS method 
does not require type-curve matching. It enables accurate 
calculation of various reservoir and well parameters such 
as the formation permeability, well damage/improvement, 
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and fracture penetration, based directly on the characteristic 
plots of the pressure derivative versus time. In another paper, 
Tiab (1994) successfully applied his technique to HF wells 
with constant flux produced from closed systems under con-
stant flow rate conditions. In 1999, Tiab et al. (1999) applied 
the TDS method to wells intersected by finite-conductivity 
hydraulic fracture. The TDS technique has been demon-
strated to be highly effective in calculating different reservoir 
and fracture properties. The strength of the technique is that 
the developed equations are based on exact analytical solu-
tions. However, similar to other conventional constant-rate 
methods, the TDS method is limited by time delays caused 
by wellbore storage phenomena. Moreover, researchers in 
the well test community have suggested that the wellbore 
storage effect distorts the critical early well test data mainly 
in low-permeability and/or low-pressure reservoirs and in 
some circumstances masks the presence of natural fractures 
in the area surrounding the wellbore, leading to uninterpret-
able fracture flow data. On the other hand, many authors 
have demonstrated that constant-bottomhole pressure tech-
niques are not influenced by the wellbore storage effect, 
allowing the fracture and reservoir area near the tested well 
to be well characterized using early test data (Earlougher 
1977; Samaniego-V and Cinco-Ley 1980; Thompson 1981; 
Guppy et al. 1981, 1988; Lio and Lee 1994; Berumen et al. 
1997; Nashawi 2006; Malallah et al. 2007). More recently, 
Escobar et al. (2015) applied the TDS technique to analyze 
the production rate of HF horizontal wells in naturally frac-
tured shale gas reservoirs. Their results were in excellent 
agreement with the actual reservoir and fracture parameters.

This paper presents an efficient and straightforward 
technique to analyze well test data of infinite-conductivity 
HF wells produced at constant-bottomhole pressure from 
bounded systems. The proposed method uses rate and rate 
derivative plots to determine the various reservoir and 
fracture properties. The presented procedure covers the 
linear, elliptical, pseudoradial, and boundary-dominated 
flow regimes. New equations describing the elliptical flow 
regime and the flow behavior during the transition time from 
the pseudoradial regime to the fully developed boundary-
dominated regime are presented. Moreover, new equations 
for calculating the fracture and formation properties are 
developed. Two examples are utilized to demonstrate the 
implementation of the method and its efficiency in reducing 
the wellbore storage effect and providing accurate well test 
results.

Reservoir and fractured well modeling

The investigated reservoir has a single layer with constant 
thickness and uniform and invariant formation properties. 
A massive vertical hydraulic fracture penetrates the entire 

producing zone. The tested well produces single-phase oil 
at a constant bottomhole pressure.

The reservoir model is divided into four identical quad-
rants and the well is in the center of the reservoir. The 
gridding network used in the simulation is identical to the 
networks used by Morse and Von Gonten (1972), Agarwal 
et al. (1979), and Nashawi (2008). Figure 1 shows a sche-
matic illustration of the gridding mesh surrounding the 
vertical fracture in the bounded square reservoir (Nashawi 
2008). The fine grid cells near the fracture and parallel 
to the fracture face enable precise prediction of the flow 
regime performance. Furthermore, the small grids perpen-
dicular to the fracture near the well and fracture tips allow 
accurate description of the fluid flow behavior in these 
vital locations, with high pressure gradients occurring in 
the reservoir near the fracture. The grid size parallel to 
the fracture face increases exponentially toward the outer 
reservoir boundary.

The numerical simulator used in this work is a two-
dimensional finite-difference single-phase model for simu-
lating fluid flow behavior reservoirs. The simulation can 
be performed with either x–y or r–z geometries (Lee and 
Wattenbarger 1996). Although this simulator was initially 
developed to simulate real gas flow behavior in reservoirs, 
Rattu (2002) presented numerous detailed examples to 
demonstrate that the model could be easily modified to 
accurately simulate black oil in homogenous, fractured, 
layered reservoirs, and HF wells.

Fig. 1  Schematic of the gridding mesh near a vertical fracture in a 
bounded square reservoir
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Reservoir and fracture properties

The following reservoir and fracture properties were 
adopted in the simulation:

1. The producing formation is bounded by upper and 
lower impermeable layers. It has a constant thickness, 
h, porosity, ϕ, and permeability, k.

2. The well is intercepted by a massive infinite-conductiv-
ity vertical fracture that fully penetrates the pay zone.

3. The fracture is modeled by a rectangular slab with con-
stant fracture length, 2xf, width, wf, and permeability, kf.

4. The fracture half-length, xf, is less than the reservoir 
drainage radius, xe. This ensures that the pseudoradial 
flow regime occurs during the well test.

5. The fractured well produces single-phase oil under con-
stant bottomhole pressure conditions.

Theoretical and mathematical 
considerations

Fluid flow behavior near a hydraulically fractured well and 
the surrounding formation highly depends on the type of 
created fracture, which could have finite or infinite con-
ductivity. For infinite-conductivity fractures in closed 
systems, the major flow regimes that may evolve include 
fracture and formation linear flow regimes, elliptical flow 
regimes, and pseudoradial flow regimes; moreover, for suf-
ficiently long tests, boundary-dominated flow regimes may 
also appear.

The fracture linear flow regime diminishes quickly and 
is often dominated by wellbore storage effects. Neverthe-
less, when this regime prevails, the equations describ-
ing its flow behavior and data analysis methodology are 
exactly the same as those used for the formation linear 
flow regime. The elliptical flow regime and the transition 
to the pseudoradial flow regime were well described by 
Kucuk and Brigham (1979).

The subsequent sections present the mathematical for-
mulation of the working equations corresponding to the lin-
ear, elliptical, pseudoradial, and boundary-dominated flow 
regimes and the methodology required to determine the dif-
ferent reservoir and fracture properties.

Dimensionless equations

Dimensionless equations are often used in well test analysis 
to represent the various analytical solutions in precise and 
concise forms. The subsequent dimensionless equations are 
vital to this study.

Dimensionless time

Many forms of dimensionless time are used in well test anal-
ysis. The differences among the various forms are dictated 
by the specific application goal. The following equations are 
used in this investigation.

Dimensionless time, tD The dimensionless time tD is defined 
as:

This form is based on the wellbore radius, rw. It is the 
most commonly used form in reservoir characterization.

Dimensionless time, tDA tDA is related to the drainage area, 
A, of the well. It is defined as:

Dimensionless time, tDxf tDxf is related to the fracture half-
length, xf. It is defined as:

This form is frequently used in well test analysis of HF 
wells.

Dimensionless fracture conductivity

The dimensionless fracture conductivity, FCD, is defined as:

FCD is used to specify the type of fracture created by 
the hydraulic fracturing in the stimulation. For infinite-
conductivity fractures, FCD is greater than or equal to 100π 
(FCD ≥ 100π).

Dimensionless production rate

The dimensionless rate, qD, is defined as:

qD is used for constant-pressure well test analyzes and 
decline curve analyzes.

(1)tD =
0.0002637 k t

�� ctr
2
w

(2)tDA =
0.0002637 k t

�� ctA

(3)tDxf =
0.0002637 k t

�� ctx
2
f

(4)FCD =
kf wf

k xf

(5)qD =
141.2 qB�

kh(pi − pwf )
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Analysis of the fracture and formation linear flow 
regimes

Two distinct linear flow regimes occur during well test of 
infinite-conductivity HF wells. The first linear flow regime 
occurs in the fracture itself, while the other linear flow 
regime occurs in the area adjacent to the fracture, as shown 
in Fig. 2. Both regimes are modeled by the same analytical 
equation; consequently, identical analysis techniques are 
used to investigate both flow regime periods.

In the linear flow regime, the dimensionless reciprocal 
rate is defined as (Earlougher 1977):

Substituting Eqs. (3) and (5) into Eq. (6) and solving 
for 1/q yields:

Define:

Then, Eq. (7) can be rewritten as:

The subscript L designates linear flow.

(6)
1

qD
=

�

2

√
� tDxf

(7)
1

q
=

6.3838B

h(pi − pwf )

√
�

� ctx
2
f
k
t

(8)mL =
6.3838B

h
(
pi − pwf

)
√

�

� ctx
2
f
k

(9)
1

q
= mL

√
t

For the constant bottomhole pressure test, a log–log 
plot of 1/q versus t should yield a half-slope straight line 
during the linear flow period. Similarly, a Cartesian plot of 
1/q versus t1/2 should also yield a straight line. The slopes 
of the log–log plot and the Cartesian plot are both equal 
to mL, which is defined in Eq. (8). The Cartesian plot is 
normally used in conventional constant-pressure analyzes 
of infinite-conductivity HF wells.

In conventional analyzes, the fracture half-length, xf, 
is determined based on the slope of the Cartesian plot as:

Equation (9) can be rewritten as:

For t = 1 h, Eq. (11) becomes:

Combining Eqs. (8) and (12) and solving explicitly for 
xf yields:

Moreover, xf can be determined based on the reciprocal 
rate derivative curve. Differentiating Eq. (9) with respect 
to time yields:

Equation (14) can be rewritten as:

Equation (15) indicates that a log–log plot of –t(1/q2)dq/
dt versus t should also yield a half-slope straight line dur-
ing the linear flow period, similar to the log–log plot of 
the reciprocal rate (Eq. 11).

Substituting t = 1  h in Eq.  (15) and solving for mL 
yields:

Solving Eqs. (8) and (16) for xf yields:

(10)xf =
6.3838B

h
(
pi − pwf

)
mL

√
�

� ctk

(11)log

(
1

q

)
= 0.5 log(t) + log(mL)

(12)mL =

(
1

q

)

L1hour

(13)xf =
6.3838B(

1

q

)
L1hour

h
(
pi − pwf

)
√

�

� ctk

(14)−t
1

q2

dq

dt
= 0.5mL

√
t

(15)log

(
−t

1

q2

dq

dt

)
= 0.5 log(t) + log(0.5mL)

(16)mL = 2

(
−t

1

q2

dq

dt

)

L1hour

WellFracture Fracture

Well FractureFracture

(a) Fracture linear flow

(b) Formation linear flow

Fig. 2  a Fracture and b formation linear flow regimes
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Hydraulically fractured wells in bounded systems

The dimensionless reciprocal rate equation describing the 
linear flow behavior of infinite-conductivity HF wells in 
bounded systems is defined as:

Equation (18) indicates that during the linear flow period, 
a log–log plot of 1/qD versus tDA should produce a half-slope 
line.

Differentiating Eq. (18) with respect to tDA yields:

Similar to the cases of the reciprocal rate (Eq. 9) and 
the reciprocal rate derivative (Eq. 14), a log–log plot of the 
dimensionless rate derivative of HF wells in bounded sys-
tems should also produce a half-slope straight line during 
the linear flow regime period.

Equation (19) is applicable to HF wells in bounded cylin-
drical reservoirs. For square systems, Eq. (19) can be written 
as:

Analysis of the elliptical flow regime

Fluid flow in homogeneous systems is usually radial. How-
ever, when areal anisotropy is present in the reservoir, the 
radial flow geometry is distorted. The inner geometry of the 
well can also alter the radial flow geometry and change the 
flow pattern from radial to an elliptical flow regime. One 
of the many cases in which elliptical flows are encountered 
is near an infinite-conductivity fractured well (Kucuk and 
Brigham 1979). Figure 3 shows a schematic illustration of 
elliptical flow lines around a fractured well.

For an infinite-conductivity fractured well producing from 
a bounded system under constant bottomhole pressure condi-
tions, a log–log plot of the reciprocal rate derivative exhibits 
a straight line immediately after the end of the linear flow 
period, indicating the presence of an elliptical flow regime. 
Tiab (1994) and Escobar et al. (2014) noted the presence of 
the elliptical flow regime and called it biradial flow. Extensive 

(17)xf =
3.1919B(

−t
1

q2

dq

dt

)
L1hour

h(pi − pwf )

√
�

� ctk

(18)1

qD
=

�

2

√√√√�

(
A

x2
f

)
tDA

(19)−tDA
1

q2
D

dqD

tDA
=

�

4

√√√√�

(
A

x2
f

)
tDA

(20)−tDA
1

q2
D

dqD

dtDA
=

�

2

�
xe

xf

�√
� tDA

simulations with various bounded systems and fracture param-
eters were conducted in this study to derive an analytical equa-
tion that best describes the elliptical flow behavior. Regres-
sion analyzes of the simulation data illustrate that the elliptical 
flow regime is best described by a straight line with a slope 
of 0.3345. Analytical analyzes of the various cases proved 
that this slope provides a good match between the simulated 
input parameters and the calculated parameters, as illustrated 
in the presented examples. The following equation efficiently 
describes the elliptical flow regime in square systems:

Using Eqs. (3) and (5), Eq. (21) can be written for a real 
rate and time as:

Let:

Then, Eq. (22) can be written as:

where the subscript E designates elliptical flow.
Equation (24) can be written as:

A log–log plot of –t(1/q2)dq/dt versus t should yield a 
straight line with a slope of 0.3345 during the elliptical 
period.

(21)−tDA
1

q2
D

dqD

dtDA
= 0.89214

(
xe

xf

)0.66899

t0.3345
DA

(22)

−t
1

q2

dq

dt
= 5.03199

[
B

h
(
pi − pwf

)
](

�

k

)0.6655

(
1

� ctx
2
f

)0.3345

t0.3345

(23)mE = 5.03199

[
B

h(pi − pwf )

](
�

k

)0.6655

(
1

� ctx
2
f

)0.3345

(24)−t
1

q2

dq

dt
= mE t

0.3345

(25)log

(
−t

1

q2

dq

dt

)
= 0.3345 log(t) + log(mE)

WellFracture Fracture

Fig. 3  Elliptical flow regime
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For t = 1 h, Eq. (25) becomes:

Solving Eqs. (23) and (26) for xf yields:

The elliptical flow behavior is often not easily recognized 
on reciprocal rate plot. However, for the cases in which the 
elliptical flow regime is well defined, the behavior can be 
described by the following equation:

Substituting Eq. (23) into Eq. (28) yields:

Equation (29) can be written as:

A log–log plot of 1/q versus t should yield a straight line 
with a slope of 0.3345 during the elliptical flow period.

For t = 1 h, Eq. (30) becomes:

Solving Eqs. (23) and (31) for xf yields:

Thus, the technique presented in this paper provides four 
different options for calculating xf. Two options use the 
log–log plot of the reciprocal rate data: the first option is 
based on the slope of the linear flow regime (Eq. 13), and 
the second option is based on the slope of the elliptical flow 
regime (Eq. 32). The other two options use the log–log plot 
of the reciprocal rate derivative: the first option is based on 
the slope of the linear flow regime (Eq. 17), and the second 
option is based on the slope of the elliptical flow regime 
(Eq. 27). Moreover, xf can be calculated based on the con-
ventional Cartesian graph of the linear flow regime (Eq. 10). 

(26)mE =

(
−t

1

q2

dq

dt

)

E1hour

(27)

xf = 11.1932

⎡⎢⎢⎢⎣
B�

−t
1

q2

dq

dt

�
E1hour

h
�
pi − pwf

�
⎤⎥⎥⎥⎦

1.4948

�
�

k

�0.9948
�

1

� ct

�0.5

(28)

1

q
= 15.04332

[
B

h
(
pi − pwf

)
](

�

k

)0.6655

(
1

� ctx
2
f

)0.3345

t0.3345

(29)
1

q
= 2.98954mE t

0.3345

(30)log

(
1

q

)
= 0.3345 log(t) + log(2.98954mE)

(31)mE = 0.3345

(
1

q

)

E1hour

(32)

xf = 57.5249

⎡⎢⎢⎢⎣
B�

1

q

�
E1hour

h(pi − pwf )

⎤⎥⎥⎥⎦

1.4948

�
�

k

�0.9948
�

1

� ct

�0.5

These alternative methods are a major advantage of the pro-
posed method over other conventional methods.

Analysis of the pseudoradial flow regime

During the pseudoradial period, the dimensionless recipro-
cal rate of a well producing from a cylindrical system under 
constant pressure conditions is defined as:

Substituting Eqs. (1) and (5) into Eq. (33) yields:

Equation (34) is utilized in constant pressure analyzes to 
calculate the reservoir permeability and skin factor using a 
conventional semilog plot of 1/q versus t during the pseu-
doradial period.

Differentiating Eq. (34) with respect to time yields:

where the subscript R designates pseudoradial flow.
If the pseudoradial regime occurs during the well test, a 

log–log plot of –t(1/q2)dq/dt versus t should yield a horizon-
tal line. In this case, Eq. (35) can be used to calculate the 
formation permeability, k, as follows:

where [–t(1/q2)dq/dt]R is any convenient point selected on 
the horizontal straight line passing through the pseudoradial 
flow points.

For the cases in which the pseudoradial flow regime does 
not appear in the log–log plot of the well test data, the tech-
nique presented in this work provides an alternative method 
to calculate k based on the straight lines passing through the 
linear and elliptical flow regimes. Equations (17) and (27) 
can be equated to develop a new equation to calculate k that 
is independent of the pseudoradial regime data as follows:

The mechanical skin factor, s, can also be calculated 
based on the pseudoradial flow regime. Taking the ratio of 
Eqs. (34) and (35) and solving for s yields:

(33)
1

qD
= 0.5

[
ln(tD) + 0.80907 + 2 s

]

(34)

1

q
=

162.6B�

k h
(
pi − pwf

)
[
log(t) + log

(
k

��ctr
2
w

)
− 3.23 + 0.869 s

]

(35)

(
−t

1

q2

dq

dt

)

R

=
70.6B�

kh
(
pi − pwf

)

(36)k =
70.6B�

h
(
pi − pwf

)(
−t

1

q2

dq

dt

)
R

(37)k = 12.6259

[
B�

h
(
pi − pwf

)
][(

−t
1

q2

dq

dt

)
L1hour

]2.021
[(

−t
1

q2

dq

dt

)
E1hour

]3.021
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Equation (38) can also be expressed in natural loga-
rithm form as:

where tR in Eqs. (38) and (39) is any convenient time dur-
ing the pseudoradial period. [–t(1/q2)dq/dt]R and (1/q)R are 
selected based on the reciprocal rate derivative and recipro-
cal rate plots at tR, respectively.

Well test analysis of a well in a bounded reservoir

The dimensionless reciprocal rate equation describing the 
flow behavior during the pseudoradial period for a well in 
a bounded reservoir is defined as:

Differentiating Eq. (40) with respect to tDA yields:

Equation (41) indicates that a horizontal line should be 
produced in the log–log plot of −tDA(1/qD)2dqD/dtDA versus 
tDA in the pseudoradial flow regime.

Analysis of the boundary‑dominated flow regime

When the production effects spread to all external res-
ervoir boundaries, the boundary-dominated flow regime 
prevails. Under constant bottomhole pressure conditions, 
the log–log plots of the reciprocal rate and reciprocal rate 
derivative of the well test data divert from the behavior 
observed in the horizontal pseudoradial flow regime and 
exhibit an exponential trend as a function of time.

The dimensionless rate behavior in the boundary-dom-
inated flow regime was presented by Raghavan (1993) as:

where a is defined as:

(38)

s = 1.1513

⎡
⎢⎢⎢⎣
0.4343

�
1

q

�
R�

−t
1

q2

dq

dt

�
R

− log

�
k tR

��ctr
2
w

�
+ 3.23

⎤
⎥⎥⎥⎦

(39)s = 0.5

⎡
⎢⎢⎢⎣

�
1

q

�
R�

−t
1

q2

dq

dt

�
R

− ln

�
k tR

��ctr
2
w

�
+ 7.437

⎤
⎥⎥⎥⎦

(40)
1

qD
= 0.5

[
ln(tDA) + ln

(
A

r2
w

)
+ 0.80907 + 2 s

]

(41)−tDA
1

q2
D

dqD

dtDA
= 0.5

(42)
1

qD
= aExp

(
2� tDA

a

)

Differentiating Eq. (42) with respect to tDA yields:

Equating Eqs. (41) and (44) yields:

Equation (45) includes many unknown well and reser-
voir properties such as the reservoir shape factor, skin fac-
tor, and well drainage area. Nashawi and Malallah (2007) 
conducted comprehensive simulation work for different 
reservoir geometries, formation properties, and fracture 
half-lengths to find an accurate tDA value that fits Eq. (45). 
Their work showed that a tDA value of 0.0625 in Eq. (45) 
is remarkably accurate under various reservoir conditions.

Equation  (2) can be utilized to determine the well 
drainage area, A, during the boundary-dominated flow as 
follows:

Using tDA = 0.0625, Eq. (46) can be written as:

where tRBD is the intersection time between the reciprocal 
rate derivative curves in the pseudoradial and boundary-
dominated regimes.

Wattenbarger et al. (1998) and El-Banbi and Watten-
barger (1998) demonstrated that the boundary-dominated 
flow regime begins at a tDA value of 0.25 on the log–log 
plot of 1/qD versus tDA. Using tDA = 0.25, Eq. (46) can be 
written as:

where tbBD denotes the time at which the boundary-domi-
nated period starts on the log–log plot of 1/q versus t.

As previously stated, the boundary-dominated period 
begins at a tDA value of 0.0625 on the log–log plot of the 
reciprocal rate derivative. This time value is four times 
less than the value proposed by Wattenbarger et al. (1998) 
and El-Banbi and Wattenbarger (1998) for the reciprocal 
rate plot. This is a remarkable advantage when calculating 
the drainage area using Eq. (47) instead of Eq. (48). This 
is also another advantage of the reciprocal rate derivative 
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plot presented in this study over the conventional recipro-
cal rate plot.

The boundary-dominated period can also be utilized to 
determine the reservoir shape factor, CA. Solving Eq. (43) 
for CA yields:

The reciprocal rate derivative during the boundary-
dominated period (Eq. 44) can be formulated with real 
parameters as follows:

Using Eqs. (35) and (50) and solving for parameter a 
gives:

Substituting Eq. (51) into Eq. (49) yields:

where the subscript BD denotes the boundary-dominated 
regime. tDABD can be calculated at any time tBD in the bound-
ary-dominated period.

For the cases in which the fracture extends to the outer 
reservoir boundary, the pseudoradial regime does not 
appear on the reciprocal rate derivative plot. For these 
cases, CA can be calculated as follows:

where (1/q)BD and [−t(1/q2)(dq/dt)]BD can be obtained based 
on the reciprocal rate and the reciprocal rate derivative 
curves, respectively, at any time tBD during the boundary-
dominated flow regime.

Furthermore, if the reciprocal rate and the reciprocal 
rate derivative plots of the well test data intersect during 
the boundary-dominated flow period, Eq. (53) can be fur-
ther simplified as follows:
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where tDABDi is the dimensionless time corresponding to the 
intersection of the two curves.

The real-time expression of Eq. (54) can be written as:

where tBDi is the intersection time of the two curves during 
the boundary-dominated flow regime period.

Since the CA values calculated in Eqs. (52–55) are valid 
under constant pressure conditions, it is vital to mention that 
these values should not be compared to the Dietz (1965) 
shape factor, which is calculated under constant rate condi-
tions. Helmy and Wattenbarger (1998) demonstrated that 
when Dietz shape factors are applied to constant bottomhole 
pressure well tests, the production forecasting and oil recov-
ery calculations can have errors as high as 10%.

Well test analysis of rectangular reservoirs

For rectangular systems, the reciprocal rate derivative plot 
shows a straight line trend during the transition from the 
pseudoradial regime to the fully developed boundary-dom-
inated regime, indicating the presence of two boundaries 
parallel to the fracture face. The equation for the straight line 
is defined as (Malallah et al. 2007):

where the constant C is a function of the reservoir dimen-
sions. Figure 4 displays the behavior of the well test data for 
several rectangular reservoirs during the transition period.

For a four-to-one reservoir, Eq. (56) can be represented 
with a real time and rate as follows:

let:

Then, Eq. (57) can be rearranged as:

where the subscript CB designates the nearby boundary par-
allel to the fracture face.
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Equation (59) can be written as:

For t = 1 h, Eq. (60) becomes:

Thus far, in this work, two equations, Eq.  (47) and 
Eq. (48), have been presented to calculate A based on the 
boundary-dominated flow regime. In this section, another 
equation is derived based on the straight line passing 
through the data at the closest parallel boundary. Using 
Eqs. (58) and (61) and solving for A yields:

Moreover, two equations, Eqs.  (36) and (37), have 
been proposed to calculate k. Equation (36) was derived 
based on the pseudoradial flow regime, while Eq. (37) was 
derived based on the straight lines observed in the lin-
ear and elliptical flow regimes. Here, a third equation is 
derived based on Eqs. (58) and (61) as follows:
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The importance of this equation is that it does not 
require pseudoradial flow data, which is needed in con-
ventional analysis. Thus, it can be used to calculate k even 
when the pseudoradial flow regime does not occur during 
the well test.

Intersection points on the straight lines 
in the various flow regimes

The straight lines drawn through the data points in the 
various flow regimes in the reciprocal rate derivative plot 
intersect at distinct and very useful points in the analysis 
of the well test data. These intersection points are impor-
tant indicators for confirming the precision of the k, A, and 
xf values calculated based on the various flow regimes. 
Moreover, the intersection points can be applied to calcu-
late these properties when the required flow regimes do not 
occur in the log–log plot. Figure 5 displays the intersec-
tion points among the linear, elliptical, and pseudoradial 
straight lines for a bounded square system. The subsequent 
sections present the equations of the intersection points 
and their important role in the analysis procedure.
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Intersection time between the straight lines 
in the linear and elliptical flow regimes

The intersection time between the straight lines passing 
through the linear and the elliptical flow regimes in the 
reciprocal rate derivative plot (Fig. 5) can be obtained from 
Eqs. (20) and (21) in dimensionless form as:

The real-time expression of Eq. (64) can be written as:

Equation (65) can be utilized to confirm the precision of 
the k value calculated from Eq. (37) and the xf value calcu-
lated from the linear period using Eq. (17) or the elliptical 
period using Eq. (27).

Intersection time between the straight lines 
in the linear and pseudoradial flow regimes

The intersection time between the straight lines passing 
through the linear and pseudoradial flow regimes in the 
reciprocal rate derivative plot (Fig. 5) can be obtained from 
Eqs. (19) and (41) in dimensionless form as:

The real-time expression of Eq. (66) can be written as:

Equation (67) can be utilized to confirm the precision 
of the xf and k values calculated from Eqs. (17) and (36), 
respectively.

Intersection time between the straight lines 
in the elliptical and pseudoradial flow regimes

The intersection time between the straight lines passing 
through the elliptical and pseudoradial flow regimes in the 
reciprocal rate derivative plot (Fig. 5) can be obtained from 
Eqs. (21) and (41) in dimensionless form as:
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The real-time expression of Eq. (68) can be written as:

Equation (69) can be used to confirm the precision of the xf 
and k values calculated from Eqs. (27), (36) and (37), respec-
tively, by comparing the value of tER obtained from Eq. (69) 
and the graphically determined value based on the log–log 
plot of the test data.

Intersection between the straight lines in the linear 
flow regime and the closest parallel boundary

Figure 6 illustrates the intersection points on the straight lines 
passing through the various flow regimes for a four-to-one 
rectangular system. The reciprocal dimensionless rate deriva-
tive of a four-to-one rectangular system during the transition 
period is defined as (Malallah et al. 2007):

The dimensionless time corresponding to the intersection 
point between the straight line in the linear flow regime and 
the closest boundary can be determined based on Eqs. (19) 
and (70) as:
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The real-time expression of Eq. (71) can be written as:

Equation (72) can be utilized to confirm the precision of 
the xf, k, and A values calculated based on Eqs. (17), (36) or 
(37), and (47) or (62), respectively, by comparing the tLCB 
value calculated from Eq. (72) with the value determined 
based on the log–log plot of the test data.

Intersection time between the straight lines 
in the pseudoradial flow regime and the closest 
parallel boundary

For four-to-one rectangular systems (Fig. 6), the intersection 
time between the straight lines passing through the pseudo-
radial flow regime and the closest parallel boundary can be 
obtained from Eqs. (41) and (70) as follows:

Solving Eq. (73) for tDA yields:

Equation (74) can be expressed in real time as:

Equation (75) has many important applications. This 
equation can be used to calculate k provided that A is known 
or to calculate A provided that k is known. Moreover, once 
the values of k and A are available, Eq. (75) can be used to 
confirm their accuracies by comparing the tRCB value com-
puted based on Eq. (75) with the value determined graphi-
cally based on the log–log plot of the test data.

Intersection between the straight lines 
in the elliptical flow regime and the closest parallel 
boundary

For four-to-one rectangular systems (Fig. 6), the intersec-
tion time between the straight lines passing through the 
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elliptical flow regime and the closest parallel boundary can 
be obtained from Eqs. (21) and (70) as follows:

Equation (76) can be expressed in real time as:

Similar to the other intersection time equations presented 
in this work, Eq. (77) has several applications for the well 
test analysts. This equation can be used to calculate k pro-
vided that A and xf are known; calculate A provided that 
k and xf are known; calculate xf provided that k and A are 
known; or confirm the accuracy of these parameters by com-
paring the tECB value calculated from Eq. (77) with the value 
obtained graphically based on the log–log plot.

The constant values associated with Eqs. (56), (62), (63), 
(72), (75) and (77) for rectangular reservoirs of different 
dimensions are presented in Table 1. The intersection points 
are applied in the analysis of the example well test data.

Characteristics of the infinite‑conductivity 
vertical fracture

Figures 7 and 8 illustrate the behavior of the reciprocal rate 
and the reciprocal rate derivative, respectively, of the well 
test data for infinite-conductivity HF wells in the center of 
square reservoirs of various dimensions. The two figures 
clearly show the distinctive behaviors of the linear and 
boundary-dominated flow regimes. However, the reciprocal 
rate derivative plot (Fig. 8) is more advantageous than the 
reciprocal rate plot (Fig. 7) since the unique features of the 
different flow regimes that may be observed during the well 
test are clearly visualized. These features are very important 
for calculating the formation and fracture parameters. The 
straight lines passing through the linear and elliptical flow 
regimes can be utilized to compute xf with either Eq. (13) 
and Fig. 7 or Eqs. (17) and (27) and Fig. 8. They can also be 
used to calculate k with Eq. (37). The horizontal line drawn 
through the pseudoradial flow regime displayed in Fig. 8 can 
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Table 1  Constants associated with the equations for rectangular reservoirs

Rectangular reservoir Equation (56) Equation (62) Equation (63) Equation (72) Equation (75) Equation (77)

Three-to-one 6 8.428 52.380 4.477 82.911 9.0235
Four-to-one 7 10.683 81.366 12.512 65.406 5.5359
Five-to-one 8 13.120 119.161 30.475 53.260 3.6256
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also be utilized to determine k based on Eq. (36) and s based 
on Eqs. (38) or (39).

The exponential trends shown in Figs. 7 and 8 are con-
sistent with the analytical solutions presented in Eqs. (42) 
and (44) for the reciprocal rate and reciprocal rate deriva-
tive, respectively. This graphical behavior is a characteristic 
feature of the boundary-dominated regime. The well test 
measurements collected during this period can be utilized to 
determine A based on either Eq. (47) and Fig. 8 or Eq. (48) 
and Fig. 7. Moreover, CA can be calculated using either the 
reciprocal rate derivative plot alone or the reciprocal rate 

and reciprocal rate derivative plots, as formulated in Eqs. 
(52–55). Furthermore, the intersection time tLR (Eq. (67)) 
between the straight lines in the linear and pseudoradial 
flow regimes is critical in the proposed methodology. This 
intersection time can be utilized to confirm the precision of 
the xf and k values calculated based on Eqs. (17) and (36), 
respectively. The intersection time tER (Eq. 69) between the 
straight lines in the elliptical and pseudoradial flow regimes 
is also important, and tER can be used to validate the accu-
racy of the xf and k values calculated based on Eqs. (27) and 
(36), respectively.

The straight line drawn through the transition data points 
on the reciprocal rate derivative plot (Fig. 8) can be uti-
lized to either calculate k with Eq. (63) provided that A is 
known or calculate A based on Eq. (62) provided that k is 
known during the pseudoradial period (Eq. (36)) or the lin-
ear and elliptical flow periods (Eq. 37). Moreover, the tran-
sition straight line intersects the straight line in the linear, 
elliptical, and pseudoradial flow regimes at three distinctive 
times (Fig. 6). The first intersection time, tLCB, defined by 
Eq. 72, can be utilized to validate the results obtained from 
the straight lines in the linear and transition periods. The 
second intersection time, tECB, defined by Eq. (77), can be 
used to confirm the results obtained from the straight lines 
in the elliptical and transition periods. Moreover, tLCB and 
tECB can both be used to calculate the fracture and reservoir 
parameters. Finally, the third intersection time, tRCB, defined 
by Eq. (75), has multiple advantages in the analysis method-
ology. This value can be used to either calculate A provided 
that k is known or calculate k provided that A is known. 
Moreover, this value can be used to confirm the accuracy of 
the two calculated values.

Therefore, our proposed method provides well test ana-
lysts with several alternatives for calculating xf based on 
Eq. (13), (17), or (27), k based on Eq. (36), (37), or (63), CA 
based on Eq. (52–55), and A based on Eq. (47), (48), or (62). 
These multiple options demonstrate the great advantage of 
the proposed method over conventional schemes. Further-
more, it is worth mentioning that the time required to deter-
mine A using the equation presented in this work (Eq. 47) 
is four times shorter than the time required to calculate A 
using Eq. (48) proposed by Wattenbarger et al. (1998) and 
El-Banbi and Wattenbarger (1998).

Applications

Two synthetic cases are analyzed to illustrate the applica-
bility and effectiveness of the proposed technique with HF 
wells in the center of bounded systems. The first case rep-
resents a well producing from a square reservoir, while the 
second case represents a well producing from a four-to-one 
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rectangular reservoir. The main oil, reservoir, and fracture 
properties of the two examples are listed in Table 2.

Synthetic case no. 1

This case represents an oil well produced at a constant bot-
tomhole pressure of 2900 psi. A vertical infinite-conductiv-
ity hydraulic fracture with an xf value of 125 ft intercepts 
the well and penetrates the entire 150 ft thick pay zone. The 
reservoir has a permeability of 1 mD.

The reciprocal rate and reciprocal rate derivative data 
for this well test are displayed in Fig. 9. The reciprocal 
rate derivative plot shows that the data are influenced by 
the reservoir outer boundary starting at 584 h during the 
well test. The reciprocal rate derivative plot exhibits a half-
slope straight line, a 0.3345 slope straight line, a horizontal 
straight line, and exponential behavior, indicating the exist-
ence of all four flow regimes: linear, elliptical, pseudoradial, 
and boundary-dominated. Moreover, the reciprocal rate plot 
displays a half-slope straight line at the beginning of the test 
and exponential behavior at the end of the test, reflecting the 
presence of linear and boundary-dominated flow regimes; 
however, the elliptical and pseudoradial flow regimes are 
not clearly visible in this plot.

Two points at one hour during the well test, 
(1/q)L1hour = 0.00513 (STB/D)−1 and [−t(1/q2)dq/
dt]L1hour = 0.002565(STB/D)−1, were selected from the 
straight lines in the linear flow regime in the reciprocal 
rate and reciprocal rate derivative plots, respectively. 
These values are used to calculate xf with Eqs. (13) and 
(17). Both equations yield an xf value of 125 ft. This value 
is exactly the same as the input value for the simulation. A 

third point at 1 h was also selected from the straight line in 
the elliptical flow regime in the reciprocal rate derivative 
plot, [-t(1/q2)dq/dt]E1hour = 0.001809 (STB/D)−1. Substitut-
ing this value into Eq. (27), xf was calculated to be 125.05 
ft. To calculate k based on the reciprocal rate derivative 
data in the linear and elliptical flow regimes, the same val-
ues that were previously selected in these flow regimes at 
1 h were substituted into Eq. (37). The calculation yielded 
a k value of 1 mD, which is identical to the input value 
for the simulation. As previously discussed, k can also be 
calculated based on the reciprocal rate derivative data in 
the pseudoradial flow regime. Any convenient point on 
the horizontal line drawn through the pseudoradial flow 
regime can be used to calculate this value. In this study, 
the intersection point between the horizontal line and the 
y-axis, [-t(1/q2)dq/dt]R = 0.0049 (STB/D)−1, was selected. 
Using Eq. (36), k was calculated to be 1.02 mD.

To determine s, two points in the pseudoradial flow period 
at t = 100 h in Fig. 9 were selected. One point was selected 
from the reciprocal rate plot, (1/q)R = 0.02 (STB/D)−1, while 
the other point was selected from the reciprocal rate deriva-
tive plot, [-t(1/q2)dq/dt]R = 0.0049 (STB/D)−1; then, s was 
calculated to be -4.504 and -4.507 using Eqs. (38) and (39), 
respectively.

A close inspection of Fig. 9 indicates that the boundary-
dominated period starts at tRBD = 584 h in the reciprocal rate 
derivative plot and at tbBD = 2350 h in the reciprocal rate 
plot. Using these values, A was calculated to be 5,059,214 
 ft2 and 5,089,535  ft2 using Eqs. (47) and (48), respectively. 
The first calculated area is very similar to the actual input 
area, with a relative error of 0.06%, while the latter value 
has a relative error of 0.5%.

Table 2  Fluids, fracture, well, and reservoir properties

Oil viscosity, µ (cp)  = 0.72
Oil formation volume factor, B (RB/STB)  = 1.475
Thickness of the producing layer, h (ft)  = 150
Reservoir hydrocarbon porosity, ϕ (%)  = 0.23
Initial reservoir pressure, pi (psi)  = 3000
Flowing bottomhole pressure, pwf (psi)  = 2900
Reservoir compressibility, ct  (psi−1)  = 3 ×  10–6

Synthetic case no. 1
Wellbore radius, rw (ft)  = 0.5
Formation/reservoir permeability, k (mD)  = 1
Fracture half-length, xf (ft)  = 125
Drainage area of the well, A  (ft2)  = 5,062,500
Synthetic case no. 2
Wellbore radius, rw (ft)  = 0.25
Formation/reservoir permeability, k (mD)  = 3
Fracture half-length, xf (ft)  = 250
Drainage area of the well, A  (ft2)  = 10,240,000
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To complete the analysis, CA was calculated using 
Eqs. (52–55). To use Eq. (52), two readings at arbitrary 
times tBD in the boundary-dominated flow regime on the 
reciprocal rate derivative plot are needed. Therefore, 
[−t(1/q2)dq/dt]BD = 0.065562 (STB/D)−1 and [−t(1/q2)
dq/dt]R = 0.0049 (STB/D)−1 were selected at tBD = 3550 h 
from the exponential curve and the horizontal line, respec-
tively. Using these values, CA was determined to be 44.8. To 
calculate CA with Eq. (53), (1/q)BD = 0.065985 (STB/D)−1 
was chosen from the reciprocal rate plot at the same tBD 
value used for Eq. (52). Substituting this value along with 
the value previously selected on the horizontal line (0.0049 
(STB/D)−1) into Eq. (53), CA was calculated to be 45.03. 
Finally, to calculate CA with Eq. (55), the intersection time 
tBDi between the reciprocal rate and reciprocal rate deriva-
tive curves was determined to be 3574 h based on Fig. 9. 
Substituting tBDi into Eq. (55) yields a CA value of 44.96. 
The various calculations demonstrate that all computed val-
ues of CA are consistent. Thus, the proposed method allows 
well test analysts to select the equation that best suits their 
need. However, Eq. (55) is the simplest equation to use to 
calculate this value.

As shown in Fig. 9, the horizontal straight line drawn 
through the pseudoradial flow data intersects the straight 
lines in the linear and elliptical flow regimes at tLR = 3.65 h 
and tER = 19.69 h, respectively. These inputs were used to 
confirm the accuracy of the fracture and reservoir param-
eters calculated based on these flow regimes by comparing 
the graphically obtained results with the values calculated 
using the proposed equations. For instance, using xf = 125 
ft and k = 1.02 mD, which were calculated with Eqs. (17) 
and (36), respectively, tLR was calculated to be 3.72 h based 
on Eq. (67). Similarly, a tER value of 20.44 h was calculated 
using Eq. (69). The computed values of tLR and tER are con-
sistent with the values determined graphically from Fig. 9. 
This agreement between the graphical and calculated values 
demonstrates that the computed values of xf and k are accu-
rate. Similarly, Fig. 9 indicates that the straight lines in the 
linear and elliptical flow regimes intersect at tLE = 0.12 h. 
Using the values of xf = 125 ft and k = 1 mD calculated based 
on the linear and elliptical flow regimes, a tLE value of 0.12 h 
was calculated based on Eq. (65). This consistency between 

the graphical and analytical values of tLE proves that the 
calculated values of xf and k are accurate.

The calculated reservoir and fracture properties for this 
example are summarized in Table 3. The reported results 
clearly show that the properties calculated using the different 
equations are consistent with each other and the simulation 
parameters.

Synthetic case no. 2

The objective of this example is to illustrate the application 
of the proposed method to a rectangular system. For this 
purpose, a bounded four-to-one reservoir with a formation 
permeability of 3 mD and a pay zone thickness of 150 ft 
is used. The well, which is in the center of the reservoir, 
is intercepted by a massive infinite-conductivity vertical 
hydraulic fracture with a fracture half-length of 250 ft. The 
tested well produces oil at a constant bottomhole pressure 
of 2900 psi.

The reciprocal rate and reciprocal rate derivative 
plots based on the well test data are illustrated in Fig. 10. 
In addition to the linear, elliptical, pseudoradial, and 

Table 3  Results of synthetic case no. 1

Parameter Formation permeabil-
ity k, mD

Fracture half-length 
xf, ft

Drainage area of the 
well A,  ft2

Reservoir shape factor 
CA

Mechanical skin factor s

Calculated values Equation (36): 1.02 Equation (13): 125.0 Equation (47): 
5,059,214

Equation (52): 44.80 Equation (38): −4.504

Equation (37): 1.0 Equation (17): 125.0 Equation (48): 
5,089,535

Equation (53): 45.03 Equation (39): −4.507

Equation (27): 125.05 Equation (55): 44.96
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boundary-dominated flow periods, the reciprocal rate deriva-
tive plot indicates the presence of a no-flow boundary par-
allel to the direction of the fracture. This no-flow barrier is 
identified by a well-defined straight line during the transition 
period from the pseudoradial flow regime to the fully devel-
oped boundary-dominated flow regime.

To compute xf based on Eqs. (13) and (17), two points at 
1 h of the test were selected from the straight lines passing 
through the linear flow data. One point was selected from 
the reciprocal rate plot, (1/q)L1hour = 0.0014808 (STB/D)−1, 
while the other point was selected from the reciprocal rate 
derivative plot, [−t(1/q2)dq/dt]L1hour = 0.0007404 (STB/
D)−1. Substituting these values into Eqs. (13) and (17), both 
equations yield xf values of 250.01 ft. Similarly, [-t(1/q2)
dq/dt]E1hour = 0.0005478 (STB/D)−1 was selected from the 
straight line passing through the elliptical flow data in the 
reciprocal rate derivative plot. Using this value, xf was 
computed to be 250.01 ft based on Eq. (27). This value is 
exactly the same as those computed based on the linear flow 
regimes. The relative errors between the calculated values 
of xf and the actual input value are all less than 0.006%. The 
same values previously selected from the linear and ellipti-
cal flow regimes at 1 h were used to compute k based on 
Eq. (37). The calculation showed that k = 3 mD. This value 
is consistent with the input value for the simulation. The 
straight line passing through the pseudoradial flow data was 
also used to calculate k using Eq. (36). For this purpose, 
[-t(1/q2)dq/dt]R = 0.001575 (STB/D)−1 was selected from the 
pseudoradial straight line and substituted in Eq. (36). The 
calculation yielded k = 3.17 mD. The pseudoradial period 
was also used in conjunction with the linear period to cal-
culate s. (1/q)R = 0.005389 (STB/D)−1 was selected from the 
reciprocal rate plot at t = 54 h; then, s was computed with 
Eqs. (38) and (39). Both equations yielded identical values 
of −5.786.

To calculate the drainage area, A ,  [−t(1/q2)
dq/dt]CB1hour = 0.0000765 (STB/D)−1 was selected from 
the straight line drawn through the data points in the tran-
sition period. Substituting this value into Eq. (62), A was 
calculated to be 10,255,925  ft2. This value is very similar 
to the actual value, with a relative error of less than 0.16%. 
Importantly, the fully developed boundary-dominated flow 
regime for this type of reservoir requires a long production 
time to appear on the test plot; hence, it is impractical to 
calculate the drainage area with the conventional methods. 
Thus, Eq. (62) presented herein is another advantage of the 
proposed method over conventional techniques.

Finally, CA can be computed using Eqs. (52), (53), or 
(55). To use Eq. (52), two points were selected from Fig. 10 
at 9950  h of the well test. [-t(1/q2)dq/dt]R = 0.001575 
(STB/D)−1 and [-t(1/q2)dq/dt]BD = 0.69895 (STB/D)−1 were 
selected from the pseudoradial and boundary-dominated 
periods, respectively. Using these points, CA was calculated 

to be 4.36. Equation (53) also requires two readings from 
Fig. 10. Both readings were taken from the boundary-domi-
nated flow period at 3500 h. One point was selected from the 
reciprocal rate curve, (1/q)BD = 0.035697 (STB/D)−1, and the 
other point was selected from the reciprocal rate derivative 
curve, [-t(1/q2)dq/dt]BD = 0.038557(STB/D)−1. Using these 
points, CA was calculated to be 4.32 based on Eq. (53). Equa-
tion (55) is the simplest equation to calculate CA. This equa-
tion requires only the intersection time, tBDi, between the 
reciprocal rate and reciprocal rate derivative curves. A close 
inspection of Fig. 10 reveals that tBDi = 3225 h. Using this 
time value, CA was computed to be 4.49 based on Eq. (55). 
Thus, the technique presented in this work not only provides 
good results but is also efficient since it is impractical to run 
very long well tests to reach the fully developed boundary-
dominated regime, which is needed for this type of reservoir 
to calculate the drainage area of the well and the reservoir 
shape factor.

To further prove the accuracy of the fracture and reser-
voir parameters calculated with the various equations, the 
intersection points of the straight lines passing through the 
various flow regimes were computed by substituting the 
calculated parameters into the appropriate equations; then, 
the results were compared with the graphically obtained 
values. Using xf = 250.01 ft and k = 3 mD, tLE = 0.16  h 
was calculated based on Eq. (65). This value is exactly the 
same as the graphically determined value based on Fig. 10. 
Similarly, using xf = 250.01 ft and k = 3.17 mD, tLR = 4.79 h 
and tER = 26.31 h were computed with Eqs. (67) and (69), 
respectively. These values are in good agreement with 
tLR = 4.52 h and tER = 23.50 h obtained from Fig. 10. Finally, 
tRCB = 105.12 h was calculated with Eq. (75) using the k and 
A values calculated with Eqs. (36) and (62), respectively. 
This value is consistent with tRCB = 104.94 h obtained from 
Fig. 10. Consequently, the good match between the analyti-
cally obtained intersection times using the xf, k, and A values 
calculated based on the various flow regimes and the graphi-
cally obtained values from Fig. 10 confirms the precision of 
the calculated parameters.

All results obtained from this case are presented in 
Table 4. The calculated reservoir and fracture properties 
displayed in the table illustrate the effectiveness and excel-
lent results of the proposed technique.

Conclusions

The important conclusions of this study can be summarized 
as follows:

1. The presented technique is straightforward and simple. 
No type curves or regression analyzes are needed, which 
guarantees the uniqueness of the calculated parameters.
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2. The fracture and reservoir properties, such as the frac-
ture half-length, xf, permeability, k, skin factor, s, well 
drainage area, A, and reservoir shape factor, CA, are 
computed directly using the log–log plots of the recip-
rocal rate and reciprocal rate derivative of the well test 
data.

3. Equations describing the behavior of the different flow 
regimes observed during well tests of infinite-conduc-
tivity HF wells are established and utilized to accurately 
determine the various fracture and reservoir properties.

4. Since the proposed method is based on a constant bot-
tomhole pressure approach, wellbore effects are dimin-
ished, allowing the interpretation of early well test meas-
urements and good characterization of the reservoir near 
the wellbore.

5. The intersection points of the characteristic straight lines 
offer an exceptional opportunity to confirm the precision 
of the calculated parameters and to compute some of 
the unknown fracture and/or reservoir properties for the 
cases in which the required flow regime is not observed 
in the test plots.
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