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Abstract
The complete characteristics knowledge of clay minerals is necessary in the evaluation studies of hydrocarbon reservoirs. 
Ten samples taken from two wells in a heterogeneous clastic gas reservoir formation in NE Iran were selected to conduct 
the transmission Fourier transform infrared spectroscopy (FTIR) tests for the clay mineralogy studies. The FTIR analysis 
showed that there were clear signs of clay minerals in all samples. The wavenumber region of the clay minerals in FTIR 
tests was detected to be 3621, 3432, 1034, and 515 cm−1 for illite, 3567, 3432, 1613, 1088, 990, 687, 651, and 515 cm−1 for 
magnesium-rich chlorite, 3700, 3621, 3432, 1034, 687, and 463 cm−1 for kaolinite, and 3567, 1088, 990, and 463 cm−1 for 
glauconite. After screening of samples by the FTIR method, the samples were then analyzed by powder X-ray diffraction 
(PXRD), wavelength dispersive X-ray fluorescence (WDXRF), and scanning electron microscopy (SEM). The PXRD and 
SEM result showed illite was by far the most common clay present. Kaolinite, magnesium-rich chlorite, and traces of smectite 
and the mixed-layer clays of both the illite–smectite and chlorite-smectite types were also recognized. The combination of 
PXRD and WDXRF results could quantify the clay abundances in the each well too. It was concluded that the FTIR analysis 
successfully could show the absorption bonds of all constituent clays. However, the infrared absorption spectra of mixed-layer 
clays overlapped those of the respective constituents of each mixed-layer minerals. This can be considered as the evidence 
of the usefulness of FTIR technique in the screening of the samples for the clay mineralogy studies.

Keywords  Transmission Fourier transform infrared spectroscopy (FTIR) · Powder X-ray diffraction (PXRD) · Wavelength 
dispersive X-ray fluorescence (WDXRF) · The clay minerals

Introduction

The clay minerals, even in the small amounts, strongly affect 
the properties of petroleum reservoirs as well as the response 
of most well logging tools (Attia et al. 2015; Abudeif et al. 
2016a, 2016b, 2018; Hasan et  al. 2020; Radwan 2020; 
Radwan et al. 2020; Jiu et al. 2021). Thus, a comprehen-
sive knowledge of clay mineralogy is needed for both the 
reservoir modeling and the interpretation of wire-line log 
data (Hong et al. 2020; Wang et al. 2020; Radwan, 2021a; 

Radwan et al., 2021a). In addition, clays may react with drill-
ing fluids causing formation damage (Radwan et al. 2019a; 
Radwan et al. 2019b; Radwan 2020, 2021b; Radwan et al. 
2021b, 2021c), so a good knowledge of clay mineralogy may 
influence the choice of drilling fluids and additives. Number 
of techniques has been used to characterize the individual 
clay minerals (Ashraf et al. 2019; Ali et al. 2020) of which 
the X-ray diffraction (XRD) is the most popular one (Jozani-
kohan et al. 2016; Abd Elmola et al. 2020). The conventional 
XRD method needs careful sample preparation besides sev-
eral specialized treatments to identify particular clay miner-
als (Kumar & Lingfa 2020). However, such treatments run 
the risk of destroying or altering clays of interest (Moore & 
Reynolds 1989). Infrared spectroscopy (IR) is a widely used 
analytical technique in the geosciences studies (Stanienda 
2016) and sometimes used as a screening tool to recognize 
the samples containing clays for more sophisticated and 
time-consuming procedures such as XRD. The FTIR analy-
sis has several advantages over the XRD including: (i) the 
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preparation of powder samples is quite easy and fast (KBr 
pellets normally take 5–8 min to be ready); (ii) the collection 
of spectrum is fast (it takes almost 1–2 min), (iii) only small 
amount of samples (about 0.3 g) are required; (iv) additional 
treatments of samples are not required, and (v) it is cheap 
compared to the XRD method (Madejová & Komadel 2001; 
Ji et al. 2009; Pálková et al. 2020). The spectral absorption 
characteristics in the IR spectra are qualitatively related to 
the variations in the constituent minerals and can be used for 
investigating the crystalline structure, type of bonding, and 
some chemical information on the clay minerals (Madejová, 
2003; Du et al. 2010; Yan et al. 2021). The Fourier trans-
forms of IR spectra are being increasingly used to aid the 
clay mineral identification (Madejová, 2003; Vaculíková & 
Plevová, 2005; Nayak & Singh 2007; Worasith et al. 2011; 
Repacholi 1994; Djomgoue & Njopwouo 2013; Chen et al. 
2020; El-Shater et al. 2021). The high signal-to-noise ratios 
as well as the high speed of data acquisition and accuracy 
enhancement in frequency measurements have made the 
FTIR method a suitable candidate for the initial analysis 
method to characterize the clay minerals (Madejová, 2003; 
Ma et al. 2021).

The clay minerals consist of hydroxyl groups, tetrahedral 
and octahedral sheets, and interlayer cations (Meunier 2005). 
The valuable “fingerprint” absorptions in clay mineral char-
acterization are mainly contributed by the stretching and 
bending vibration bands of Si–O, Al–O, and O–H (Farmer 
2000). The absorption of IR radiation by individual clay 
minerals are determined by the strength, length, and force 
constants of chemical bonds in the structures of clay miner-
als as well as crystalline order, shape and size of particles, 
atomic mass, and some symmetry-related elements such as 
the unit cell constraints of the symmetry, and finally the 
local site symmetry of each individual atom within the unit 
cell (Repacholi 1994). Different aspects of clay mineralogy, 
including the study of relationships between the clay chem-
ical composition and the absorption band variations, and 
the study of variations in the absorption features after acid 
treatment/heating were carried out using the FTIR analysis 
(Madejová et al. 1998; Tyagi et al. 2006). In nature, clay 
minerals are often accompanied by quartz, K-feldspar and 
plagioclase, carbonates, iron oxide, and/or sulfide or sulfates 
(Meunier 2005). Differences in the absorption bands of these 
non-clay minerals make them clearly distinguishable from 
each other. The clay minerals can exclusively be differen-
tiated from the other minerals by the absorption bands of 
structural OH and Si–O groups. However, each clay mineral 
may have similar types of bonds, which make them more 
difficult to distinguish (Farmer 2000).

The contribution of the FTIR method in the oil and gas 
industry has been included, but not limited to the determi-
nations of oil acidity (Li 2009), the assessment of the shale 
gas and shale oil potentials (Wright et al. 2015), the study 

of the petroleum fluid inclusions (Li & Parnell 2003), the 
assessment of the pyrolysis gases (Primpke et al. 2020), 
the identification of the insoluble fraction of pyrolysis oil 
(Scholze & Meier 2001), the composition characterization 
of the collected bio-oils (Shen et al. 2010), the study of the 
chemical structures of individual macerals as well as their 
relative generation kinetics (Lin & Ritz 1993).

Some previous FTIR studies on the pure clay minerals 
have been carried out (Madejová, 2003; Nayak & Singh 
2007; Repacholi 1994; Du et al. 2010), but analogously little 
consideration has been given to the identification of the clay 
minerals in the clastic formations with complex lithologies 
by the transmission FTIR method (Adamu 2010). Since the 
Shurijeh formation is considered as a heterogeneous sand-
stone reservoirs, it needs to be mineralogically identified 
in the eastern part of Kopet-Dagh sedimentary Basin, NE 
Iran. In this research, the ability of one of the most famous 
spectral analysis methods, i.e., transmission Fourier trans-
form infrared (FTIR) spectroscopy, as a screening tool, has 
been investigated to select the samples containing clays, for 
further studies along with the traditional methods such as 
powder X-ray diffraction (PXRD), wavelength dispersive 
X-ray fluorescence (WDXRF), and the scanning electron 
microscopy (SEM) analysis. The results of this study will 
aid the geoscientists in oil and gas upstream industries to 
evaluate and screen the samples for the purpose of clay min-
eralogy studies in reservoir evaluation stages more fast and 
convenient, before conducting expensive and time-consum-
ing analysis such as the XRD, SEM, and XRF.

Experimental methods

Materials

The coring operation was conducted on the reservoir for-
mation at depths of 3202.8–3210 m and 3180–3207.6 m 
of the gas-producing and non-producing wells, respec-
tively. A total of 76 core samples was taken almost every 
one and a half meter from the Shurijeh formation in a 
gas-producing well and a non-producing one. The wells 
are located in the Iranian part of eastern Kopet-Dagh 
Basin, NE Iran (Fig. 1). The understudy reservoir forma-
tion is mainly composed of sandstone with interlayer of 
clay minerals. Therefore, all of the collected core samples 
did not contain the clay minerals in the major quanti-
ties. Ten samples were carefully selected based on the 
macroscopic features related to the lithological variations 
such as texture, grain size, cementation, beddings, and 
looseness degree to determine the samples containing 
the most amounts of clay minerals for further detailed 
analysis methods. Five samples, labeled with “GP,” were 
taken from the gas-producing well between the depths of 
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3204.6 and 3209.1 m, and the remaining samples, labeled 
with “NP,” were selected from depths of 3180–3205.57 m 
in the non-producing well. The outside parts of each core 
sample were carefully removed to avoid from the possible 
contaminations or oxidation effects. The samples were 
then ground to pass through a 200-μm sieve and carefully 
mixed to give a homogeneous mixture. The location of 
each sample is shown in Fig. 2. All of the ten samples 
were made ready to be analyzed by the FTIR method.

Methods

Transmission Fourier transform infrared (FTIR) spectroscopy

The vibrational spectra for all samples were obtained 
using a Bruker TENSOR 27 FTIR spectrometer, equipped 
with an infrared source, potassium bromide beam split-
ter, and high sensitive DigiTectTMdetector system. Disks 
of 13-mm diameter and 1–2-mm thickness, consisting of 

Fig. 1   Geographic location map of the studied area, modified from Jozanikohan et al. 2015
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approximately 0.6 mg sample gently dispersed in 200 mg 
of KBr, were carefully heated at 120 °C to minimize the 
amount of the absorbed water. Disks were then immedi-
ately and thoroughly scanned in the wavenumber region of 
4000–400 cm−1 in transmission mode with a resolution of 
4 cm−1 with 128 successive scans.

Powder X‑ray diffraction (PXRD) analysis

The most important step in the quantitative XRD analysis 
is to prepare the samples with respect to all the possible 
sources of error. To gain a preliminary knowledge of the 
existing minerals, the randomly oriented powder samples 
were first exposed to the X-ray and analyzed. A Bruker AXS, 
D8 Advance X-ray powder diffractometer with CuKα radia-
tion and a 2theta/theta goniometer was used for the XRD 
analysis. Diffraction patterns of the samples were recorded 
by the step scanning from 4 to 70 degrees (2θ), with a step 
size of 0.02° and counting for 5 s per step at 40 kV and 
30 mA.

Since the non-clays can cover up some basic reflections 
of the clay minerals, thus the non-clay separation is a nec-
essary task which was performed based on the procedure 
described by Moore & Reynolds (1989). The chemical 

procedure for removal of XRD-proved non-clays, i.e., 
carbonate and sulfate minerals was to use the mild heat-
ing of the samples in a C2H3NaO2–CH3COOH buffer at 
pH = 5 (Jackson and Barak 2005), and also with using the 
sodium salt of C10H16N2O8 (EDTA) (Bodine and Fernalld 
1973), respectively. The iron oxide content of samples was 
negligible, and to avoid the risk of peak alteration in the 
mixed-layer clay minerals and or dissolution of iron-rich 
chlorite minerals, the iron content was not removed. The 
physical procedure for removal of other minerals such as 
quartz, plagioclase, and alkali feldspars was to settle them 
in a coarser residue of a wide-mouth glass tube, on the 
basis of Stokes’ law. After several times of decantation 
the supernate, the clay fraction (< 2 µm) was extracted 
after 246 min at 20 °C. To prevent the clays from forming 
the polymineralic aggregates, a 0.1% solution of sodium 
hexametaphosphate was used in the each removal stage 
to disperse the clay minerals into the individual colloi-
dal particles. Four small homogeneous glass slides were 
prepared from smearing the paste of < 2 µm. The XRD 
analyses were then performed from 4 to 40 (2θ) degrees on 
four oriented clay small glass slides of naturally dried in 
the air, saturated with the C2H6O2 (ethylene glycol) vapor, 
boiled in the hydrochloric acid, and heated.

Fig. 2   Schematic core sample 
locations of the both wells. 
Sample codes and the litho-
logical units are shown. Right: 
Gas-producing well, and Left: 
Non-producing well
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Wavelength dispersive X‑ray fluorescence (WDXRF)

Elemental analysis of the Shurijeh samples was performed on 
an automated Philips MagiX PRO wavelength dispersive X-ray 
fluorescence (WDXRF) spectrometer. Loss on ignition (LOI) 
was also determined (Table 1).

The mineral quantification based on a combined analysis 
method (XRD‑XRF)

Several distinguished researches have proved that the min-
eral quantification could be done by means of combination of 
chemical and mineralogical data obtained from the XRF and 
XRD test, respectively (Paktunc 2001; Prandel et al. 2014; 
Jozanikohan et al. 2016; Zhang et al. 2020, 2021). Method 
basically includes solving a series of formulated simultane-
ous equations relating the chemical composition data to the 
percentages of each individual mineral (Eq. 1 to i).

(1)�_1 A + b_1 � +⋯ + �_1 Z = 100k_1

(2)�_2 A + b_2 � +⋯ + �_2 Z = 100k_2

where α_i, β_i, …, ω_i, and k_i, display the ith element 
percentages in the each individual mineral phases and the 
whole bulk rock, respectively. A, B, …, and Z indicate the 
present phases percentages in the studied sample.

In the current study, the combined XRD–XRF method 
has been used for the phase quantification purpose. Hav-
ing identified the main constituents of the samples and 
the relevant chemical formula from the PXRD analysis, a 
quantification method based on what explained above were 
applied, using the elemental analyses provided from the 
XRF data to estimate the mineral abundances.

The average percentages of each individual phase and 
each of the clay minerals are given in Tables 2 and 3, 
respectively.

(3)

�_3 A + b_3 � +⋯ + �_3 Z = 100k_3

⋮

�_i A + b_i � +⋯ + �_i Z = 100k_i

Table 1   XRF results of the Shurijeh core samples

Code MgO (%) Al2O3 (%) SiO2 (%) SO3 (%) K2O (%) CaO (%) Fe2O3 (%) Na2O (%) LOI (%) Total (%)

GP-1 1.20 11.28 74.21 0.65 2.50 3.76 0.72 3.26 2.42 100
GP-2 0.59 8.20 68.59 7.70 2.00 8.19 1.23 1.47 2.03 100
GP-3 1.99 12.24 64.84 4.29 3.53 5.47 3.14 1.38 3.12 100
GP-4 4.43 9.51 65.26 0.00 2.92 5.71 2.99 0.82 8.36 100
GP-5 1.68 5.92 69.20 6.00 2.04 8.04 0.71 1.20 5.21 100
NP-1 3.41 10.24 66.14 1.18 2.33 5.93 1.35 2.66 6.76 100
NP-2 1.60 13.41 66.16 1.71 3.27 5.70 3.08 1.59 3.48 100
NP-3 2.61 11.34 57.59 6.29 3.04 9.09 2.17 1.24 6.63 100
NP-4 3.90 13.06 53.22 4.35 3.00 9.79 2.61 1.60 8.47 100
NP-5 3.61 12.80 50.83 7.00 2.92 10.05 4.42 1.09 7.28 100

Table 2   Mineral content of the Shurijeh core samples

Code Quartz (%) Plagioclase (%) K-feldspar (%) Anhydrite (%) Carbonate (%) Hematite (%) Clays (%) Total (%)

GP-1 65.5 17.1 4.6 1.1 4.0 0.0 7.7 100
GP-2 61.5 12.1 4.0 13.1 3.0 0.0 6.3 100
GP-3 53.0 12.5 6.1 7.3 3.7 0.8 16.6 100
GP-4 56.1 9.7 4.1 0.0 15.3 1.1 13.7 100
GP-5 64.4 6.6 3.0 10.2 8.3 0.0 7.5 100
NP-1 47.7 24.5 6.0 2.0 13.0 0.0 6.8 100
NP-2 54.7 15.7 4.9 2.9 5.5 1.1 15.2 100
NP-3 46.2 12.6 3.7 10.7 11.2 1.1 14.5 100
NP-4 39.9 18.2 3.2 7.4 15.4 1.5 14.4 100
NP-5 39.3 13.2 2.0 11.9 11.9 2.9 18.8 100
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The scanning electron microscopy (SEM) analysis

The scanning electron microscopy technique (SEM) was 
engaged to characterize the morphology, geometry, and dis-
tribution patterns of clay minerals in some of the selected 
samples. The selection procedure was accomplished based 
on the clay content of each sample determined by the XRD 
method. The selected samples (i.e., GP-3, GP-4, NP-2, and 
NP-3) were fully coated with thin layers of gold–palladium 
for 60 s. The SEM analyses were then conducted using a 
JEOL model JSM-840.

The results

The data in Table 1 show the chemical composition of ten 
mentioned core samples in both wells, obtained from the 
XRF test.

According to the whole-rock powder diffractometry, 
the main constituents of the samples from both wells are 
quartz, and plagioclase with the secondary minerals such 
as clays, anhydrite, carbonates (dolomite and calcite), and 
K-feldspar (Fig. 3a). Hematite was observed in some few 
samples. These XRD results were found extremely useful in 
the designing of the subsequent non-clay mineral removal 
steps (Fig. 3b). The identified clay minerals were kaolin-
ite, illite, glauconite, chlorite, smectite, and mixed layers of 
illite–smectite, and chlorite–smectite types.

The obtained SEM images are shown in Fig. 4. It is 
clear from Fig. 4 that the most common pore filling clay 
minerals included kaolinite with platy morphology and 
illite as microfibers. In all of the studied samples, kaolinite 
were mainly found as several stacking of successive layers 
(e.g., Fig. 4a), and fully filled the pores. The fine illite fib-
ers (Fig. 4b) were widely spread in the open pore space, 
changing the macro-porosities to micro-porosities. The 
assemblages of mixed-layer clays such as illite–smectite 

are show in Fig. 4c. Figure 4d shows chlorite intercalated 
with kaolinite found as grain coatings. The restricted pore 
geometry characterized by the SEM test showed very 
fine confined polygons with maximum 1.5 micro-meter 
diameter.

Table 3   Clay contents of the 
Shurijeh core samples, obtained 
from the XRD test

Code Kaolinite (%) Chlorite (%) Illite (%) Glauconite (%) Smectite (%) Mixed-
layer Clays 
(%)

Total (%)

GP-1 1.6 1.3 2.8 2.0 0.0 0.0 7.7
GP-2 1.1 1.8 1.7 1.7 0.0 0.0 6.3
GP-3 4.7 5.7 6.2 0.0 0.0 0.0 16.6
GP-4 1.8 4.6 6.5 0.0 0.8 0.0 13.7
GP-5 1.0 1.1 2.7 2.7 0.0 0.0 7.5
NP-1 2.0 3.0 0.5 1.3 0.0 0.0 6.8
NP-2 2.5 3.4 3.1 6.2 0.0 0.0 15.2
NP-3 2.4 2.6 6.0 0.0 0.0 3.5 14.5
NP-4 2.4 2.7 8.1 0.0 0.0 1.2 14.4
NP-5 4.1 3.7 9.5 0.0 0.0 1.5 18.8

Fig. 3   a Whole-rock powder X-ray diffraction pattern of the sam-
ples under study (Sample code: NP-5); b The XRD diffraction pat-
tern of the same sample. Chl = Chlorite, Chl–Smectite = Chlorite–
smectite Ill = Illite, Kao = Kaolinite, Qtz = Quartz, Pl = Plagioclase, 
Hem = Hematite, Anh = Anhydrite, Dol = Dolomite
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Figure 5 shows the infrared absorption spectra of the 
Shurijeh core samples. The splitting bands in the region 
of 800–400 cm−1 including 780, 693, 588, 533, 464, and 
428 cm−1 as well as one band at 1034 cm−1 indicate the 
feldspar presence (Farmer 2000). According to the reports 
of some researches (Ji et al. 2009), the IR transmission 
spectra of carbonates include some distinctive features at 
3050–2850  cm−1, 2650–2500  cm−1, 1790–1820  cm−1, 
1400–1500 cm−1, 877 cm−1, 730 cm−1, and 710 cm−1. How-
ever, the peak at 877 cm−1 was only observed in the Shurijeh 
samples containing more than 10% carbonate (e.g., GP-4, 
NP-1, NP-3, NP-4, and NP-5). Dolomite, in comparison with 
calcite, shows three characteristic absorptions at 3020, 2626, 
and 730 cm−1 (Ji et al. 2009). Since these FTIR bands are all 
present in the samples whose codes were mentioned above, 
the dolomite was identified as one of the components of 
the samples. The sulfates are demonstrated to have strong 
absorption bands near 980 cm–1, 450 cm–1, 1150–1100 cm–1, 
and 675–590 cm–1 for SO4 different vibrations (Uusitalo 
et al. 2020). The vibrations observed at 650 cm–1, 525 cm−1, 
440–400 cm–1, and 300 cm–1 indicate the possible presence 
of hematite (Ji et al. 2009). It is commonly believed that the 
Si–O stretching vibrations are observed at 800–1200 cm–1, 
and its relative bending bands are found in the 400–600 cm–1 
in the FTIR spectra of minerals (Matteson & Herron 1993).

Although the samples were heated and dried before the 
analysis, the clear band in the area 1640–1600 cm−1 could be 
assigned to the deformation vibrations of OH-adsorbed water 
(Kuligiewicz & Derkowski 2017) or it can be related to the 
magnesium-rich chlorite. The strong bands between 3400 
and 3750 cm–1 were assigned to the hydroxyl linkage (O–H) 
(Balan et al. 2001). However, the broad characteristic bands 

at 3450 and 3622 cm–1 suggest the possibility of hydration or 
layer hydrogen bonding in the samples (Kasprzhitskii et al. 
2018). The well-resolved bands at 1120–1000 cm−1 region 
belong to the Si–O stretching vibration of kaolinite (Made-
jová & Komadel 2001). Kaolinite (1:1 layer) always shows 
a narrow, weak absorption at 3620 cm−1 due to the inner 
OH hydroxyls. Other hydroxyls give bands at higher cm−1, 
while illite (2:1 layer) and smectite show wide absorption in 
the region of 3650–2600 cm−1 with a shoulder peak (Balan 
et al. 2001). Most of the relatively strong O–H vibration 
in smectite is from the water in the interlayer space of the 
silica tetrahedral sheet, which results in a wide absorption 
in the region of 3650–2600 cm−1 followed by the stronger 
absorption in about 1600 cm−1 (Changwen et al. 2007). The 
corresponding values for each vibration bands are given in 
Table 4.

The observed bands for each Shurijeh core sample 
in the range of 4000–400  cm–1 have been tentatively 
assigned (Fig. 5 and Table 5). The presences of bands 
at about 1086 cm−1, 798 cm−1, 778 cm−1, 695 cm−1, and 
468 cm−1 indicated that all of the samples were quartz-
rich. The absorption bands at 3696, 3622, 3450, 1033, 
914, 790, 693, 538, and 468 cm−1 distinctly indicated that 
kaolinite was present in all of the samples. The observed 
absorption bands of kaolinite were in the agreement with 
findings of Yousefi et al. (2020). The clear signs of bands 
at 3696, 3622, 3450, 2369, 1633, 1033 and 790 cm–1 indi-
cated that illite was also present in all of the core samples, 
and similar results were reported by previous research-
ers (Pineau et al. 2020). To differentiate kaolinite from 
illite, one should consider that the 1:1 layer clays (i.e., 
kaolinite) always show a narrow and weak absorption in 

Fig. 4   SEM images of the 
samples understudy: a GP-3 at 
7000X magnification, 15 kV, 
and WD = 23 mm; b GP-4 at 
25500X magnification, 30 kV, 
and WD = 23 mm; c NP-2 at 
4000X magnification, 15 kV, 
and WD = 24 mm; and d NP-3 
at 2500X magnification, 15 kV, 
and WD = 24 mm. Kao: kao-
linite, Ill: Illite, Ill/Sm: Illite–
smectite, Chl: chlorite
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Fig. 5   FTIR spectra of core samples taken from the Shurijeh formation
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3600 cm−1, while 2:1 layer clays (i.e., illite) display wide 
absorption in the 2600 ~ 3650  cm−1 accompanied by a 
shoulder peak. The band at 914 cm–1 was only observed 
in samples containing more than 6% illite (e.g., GP-3, 
GP-4, NP-3, NP-4, and NP-5). The absorption bands at 
3560 cm−1, 3542–3534 cm−1, 1076 cm−1, 995 cm−1, and 
463 cm−1 were interpreted as being due to the presence of 
glauconite. Peaks near 3574 cm−1, 3420 cm−1, 1630 cm−1, 
1090  cm−1, 995  cm−1, 740–700  cm−1, 661–650  cm−1, 
and 522  cm−1 were assigned to magnesium-rich chlo-
rite. Characteristic features at 3621  cm−1, 3420  cm−1, 
1039 cm−1, 914 cm−1, and 468 cm−1 were considered for 
the smectite presence. Whereas 1111  cm–1,1102  cm–1, 
1094 cm–1,1015 cm−1, 610 cm−1, 659 cm−1, and 591 cm−1 
were indicative of anhydrite, 3020  cm–1, 2922  cm–1, 
2874 cm–1, 2626 cm–1, 1798 cm–1, 1426 cm–1, 876 cm–1, 
and 730 cm–1 showed the possibility of the carbonate pres-
ence. Core samples containing mixed-layer clay minerals 
showed overlapped absorptions of both clay types which 
were interlayered together. For instance, the overlap of 
illite absorption band at 3630 cm−1 with smectite at 3635 
and 3406 cm−1 (due to the occurrence of absorption of 
interlayer water) were observed in the samples containing 
mixed-layer illite–smectite.

Peak assignments were mostly consistent with those 
in the previous literature (Repacholi 1994; Madejová & 
Komadel 2001; Madejová, 2003; Vaculíková & Plevová, 
2005; Changwen et al. 2007; Nayak & Singh 2007; Ji et al. 
2009; Liu et al. 2009; Papakosta et al. 2020; Pineau et al. 
2020; Yousefi et al. 2020).

Discussion

From Fig. 5, it was obvious that the clay minerals were 
present in all samples; thus, it was decided to check the 
accuracy of FTIR prediction with XRD, and XRF methods 
to demonstrate the clay minerals existence in the samples.

It is clear from the results of the WDXRF test (Table 1) 
that the silicon was present in the major quantities in both 
wells, while the aluminum oxide was moderate and the 
other elements such as sulfur, calcium, potassium, sodium, 
magnesium, and iron were present in only minor amounts. 
Considering the mineralogy of the Shurijeh, the obtained 
results are meaningful.

The combined bulk powder X-ray diffractometry, X-ray 
fluorescence, and scanning electron microscopy (SEM) 
analyses of core samples showed that the main mineral 
constituents were quartz and plagioclase, with some quan-
tities of other minerals such as the clay minerals, anhy-
drite, carbonates (calcite/dolomite), alkali feldspars, and 
hematite. The most important advantage of quantification 
using the XRF data is to allow for the quantitative cal-
culations without the presence of any standard sample. 
The vast majority of clay minerals in the studied wells 
were illite, chlorite, and kaolinite. The most abundant clay 
mineral was illite in the both wells, but in few samples, 
there were signs of glauconite, smectite and mixed-layer 
clay minerals including I/S (illite–smectite) and chlo-
rite–smectite. Among these rarely occurred clay miner-
als, glauconite was more common, while the smectite and 

Table 4   Important mineral 
IR bands with their possible 
assignments (Farmer 2000; 
Balan et al. 2001; Nayak & 
Singh 2007)

Band (cm−1) Assignment

3703 Surface hydroxyls
3695 In-phase symmetric stretching vibration; internal surface OH groups
3669 Out-of-plane OH stretching vibrations
3653 Vibrations of two surface hydroxyls
3620 Inner OH groups, lying between the sheets of tetrahedral and octahedral units
3430 Adsorbed water vibrations (H–O–H)
1633 H–O–H stretching
1111 Stretch vibration modes of SO4 tetrahedra
1102 Stretch vibration modes of SO4 tetrahedra
1033 Si–O–Si, Si–O stretching
1094 Stretch vibration modes of SO4 tetrahedra
938 Deformation bands of kaolinite
914 Al2OH bending bands of kaolinite AL–O–H vibrations
844 AlMgOH
790 Si–O stretching, Si–O–Al stretching, (Al, Mg)–-O–H, Si–O–(Mg, Al) stretching
693 Si–O stretching, Si–O–Al stretching
538 Si–O bending, Si–O–Al stretching
468 Si–O bending, Si–O–Fe stretching
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mixed-layer clays were only found in one or two samples 
of the non-producing well. The detailed quantitative XRD 
analysis yielded average clay mineral amounts which var-
ied from 6.3 weight percent in the gas-producing well to 
the 18.8 weight percent in the non-producing well.

The wide variation in the percentage of clay minerals in 
the Shurijeh formation was due to the different depth of core 
samples. As a matter of fact, diagenetic changes occurred 
with an increase in the depth of burial which resulted in 
the generation of clay minerals. Apparently, the alteration 
of K-feldspar and plagioclase resulted in high amounts of 
illite. The existence of mixed-layer clay minerals proved that 
the smectite into illite transformation, a global phenomenon 

(Blanc et al. 2021; Hucheng et al. 2021) was occurred in the 
Shurijeh formation with increasing depth too. Considering 
the impacts of clay mineralogy in a clastic reservoir (Ashraf 
et al. 2020, 2021), the illite, chlorite, and kaolinite could 
greatly affect on the reservoir parameters such as porosity 
and permeability.

The exact amount of each clay mineral in the both 
wells was determined by PXRD results which were com-
bined by WDXRF data, and the XRD results played an 
important role on the evaluation of reservoir quality of 
the Shurijeh formation. Having known the volume of clay 
minerals, the reservoir parameters such as water satura-
tion, porosity and permeability were estimated with more 

Table 5   Shurijeh formation FTIR bands with mineral assignments

Code Mineral assignments (Band)

GP-1 Quartz (1877, 1172, 1084, 779, 693, 518, and 463 cm−1), feldspar (1036, splitting bands in the region 800–400 cm−1 including 779, 693, 
585, and 463 cm−1), traces of carbonates (2926, 2530, 1791, 1426, and 731 cm−1), traces of anhydrite (995 and 585 cm−1), illite (3621, 
3439, 1036, and 518 cm−1), magnesium-rich chlorite (3575, 3423, 1618, 1084, 995,693, 649, and 518 cm−1), kaolinite (3717, 3621, 
3439, 1036, 693, and 463 cm−1), and glauconite (3575, 1084, 995, and 463 cm−1)

GP-2 Quartz (1878, 1172, 1088, 779, 687, 515, and 463 cm−1), feldspar (1034, splitting bands in the region 800–400 cm−1 including 779, 687, 
595, and 463 cm−1), anhydrite (990 and 595 cm−1), traces of carbonates (2926, 2524, 1784, 1426, and 731 cm−1), illite (3621, 3432, 
1034, and 515 cm−1), magnesium-rich chlorite (3567, 3432, 1613, 1088, 990, 687, 651, and 515 cm−1), kaolinite (3700, 3621, 3432, 
1034, 687, and 463 cm−1), and glauconite (3567, 1088, 990, and 463 cm−1)

GP-3 Quartz (1881, 1172, 1084, 780, 687, 522, and 467 cm−1), feldspar (1032, splitting bands in the region 800–400 cm−1 including 780, 687, 
585, and 467 cm−1), traces of carbonates (2927, 1791, and 1426 cm−1), traces of anhydrite (995 and 585 cm−1), traces of hematite (649 
and 522 cm−1), illite (3612, 3431, 1032, 914, and 522 cm−1), magnesium-rich chlorite (3578, 3431, 1629, 1084, 995, 687, 649, and 
522 cm−1), and kaolinite (3712, 3612, 3431, 1032, 687, and 467 cm−1)

GP-4 Quartz (1875, 1172, 1081, 784, 690, 523, and 468 cm−1), feldspar (1032, splitting bands in the region 800–400 cm−1 including 784, 
690, 585, and 468 cm−1), carbonates (2926, 2529, 1791, 1443, 889, and 731 cm−1), traces of hematite (652 and 523 cm−1), illite (3612, 
3435, 1032, 914, and 523 cm−1), magnesium-rich chlorite (3578, 3435, 1625, 1081, 995, 690, 652, and 523 cm−1), kaolinite (3714, 
3612, 3435, 1032, 690, and 468 cm−1), and smectite (3612, 3420, 1032, 914, and 468 cm−1)

GP-5 Quartz (1878, 1172, 1087, 782, 686, 514, and 463 cm−1), feldspar (1036, splitting bands in the region 800–400 cm−1 including 782, 686, 
592, and 463 cm−1), anhydrite (998 and 592 cm−1), traces of carbonates (2925, 2527, 1792, 1436, and 730 cm−1), illite (3621, 3436, 
1036, and 514 cm−1), magnesium-rich chlorite (3572, 3436, 1613, 1087, 998, 686, 649, and 514 cm−1), kaolinite (3712, 3621, 3436, 
1036, 686, and 463 cm−1), and glauconite (3572, 1087, 998, and 463 cm−1)

NP-1 Quartz (1875, 1172, 1083, 781, 692, 520, and 464 cm−1), feldspar (1029, splitting bands in the region 800–400 cm−1 including 781, 692, 
587, and 464 cm−1), carbonates (3018, 2528, 1792, 1441, 886, and 731 cm−1), traces of anhydrite (998 and 587 cm−1), illite (3612, 
3436, 1029, and 520 cm−1), magnesium-rich chlorite (3564, 3436, 1611, 1083, 998, 692, 654, and 520 cm−1), kaolinite (3718, 3436, 
1029, 692, and 464 cm−1), and glauconite (3564, 1083, 998, 464 cm−1)

NP-2 Quartz (1877, 1172, 1083, 779, 692, 519, and 468 cm−1), feldspar (1028, splitting bands in the region 800–400 cm−1 including 779, 692, 
588, and 468 cm−1), traces of carbonates (2923, 2527, 1791, 1433, and 731 cm−1), traces of anhydrite (995 and 588 cm−1), traces of 
hematite (650 and 519 cm−1), illite (3609, 3432, 1028, and 519 cm−1), magnesium-rich chlorite (3572, 3423, 1617, 1083, 995, 692, 
650, and 519 cm−1), and kaolinite (3716, 3609, 3432, 1028, 692, and 468 cm−1), and glauconite (3572, 1083, 995, and 468 cm−1)

NP-3 Quartz (1876, 1172, 1086, 782, 681, 522, and 467 cm−1), feldspar (1030, splitting bands in the region 800–400 cm−1 including 782, 681, 
593, and 467 cm−1), carbonates (2927, 2529, 1791, 1442, 888, and 731 cm−1), anhydrite (998 and 593 cm−1), traces of hematite (650 
and 522 cm−1), illite (3610, 3429, 1030, 914, and 522 cm−1), magnesium-rich chlorite (3575, 3429, 1616, 1086, 998, 681, 650, and 
522 cm−1), and kaolinite (3713, 3610, 3429, 1030, 681, and 467 cm−1)

NP-4 Quartz (1874, 1171, 1087, 782, 690, 524, and 467 cm−1), feldspar (1030, splitting bands in the region 800–400 cm−1 including 782, 
690, 583, and 467 cm−1), carbonates (2927, 2529, 1791, 1444, 884, and 731 cm−1), traces of anhydrite (998 and 583 cm−1), traces of 
hematite (650 and 524 cm−1), illite (3613, 3427, 1030, 912, and 524 cm−1), magnesium-rich chlorite (3578, 3427, 1614, 1087, 998, 
690, 650, and 524 cm−1), and kaolinite (3713, 3613, 3427, 1030, 690, and 467 cm−1)

NP-5 Quartz (1877, 1171, 1084, 782, 678, 523, and 466 cm−1), feldspar (1030, splitting bands in the region 800–400 cm−1 including 782, 678, 
594, and 466 cm−1), carbonates (2926, 2528, 1791, 1439, 888, and 731 cm−1), anhydrite (987 and 594 cm−1), traces of hematite (650 
and 523 cm−1), illite (3604, 3430, 1030, 911, and 523 cm−1), magnesium-rich chlorite (3575, 3430, 1628, 1084, 987, 678, 650, and 
523 cm−1), and kaolinite (3713, 3604, 3430, 1030, 678, and 466 cm−1)
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accuracy (Jozanikohan 2017). It is known that an over/
under-estimation of this parameter (Vcl) minerals can 
result in a wrong estimation of water saturations that are 
too low/high, therefore making the reservoir look produc-
tive or resulting in the bypassing of a productive zone. It 
can also effect on the calculation of effective porosities 
which are used to determine both the effective water satu-
rations and the net pay (Causey 1991).

As a matter of fact, the FTIR pattern of a natural 
sample which includes a mixture of minerals is hard 
to interpret than for tests conducted on monomineral-
ogical samples. Individual minerals in complex sam-
ples can be easily distinguished from each other, if 
enough attention is given. The O–H and Si–O groups 
of clay minerals make different absorption bands in the 
FTIR spectra over the range 4000–400 cm−1, making 
it easy to differentiate each group of clay minerals. It 
is known that the most important region of the spec-
trum for the identification of aluminous minerals is the 
stretching vibrations of OH groups at 3800–3300 cm−1 
(Pineau et al. 2020). However, this can be often hin-
dered by absorbed water. The other main absorption 
region in transmittance spectra of clay minerals is 
1200–400 cm−1 (Si–O stretching and bending absorp-
tions, and OH bending region). The stretching modes 
of Al-O are found in the 1200–700 cm−1 range, while 
the bending modes dominate the 1500–600 cm−1 range 
(Madejová 2003). Any metal-O–H bending modes 
appear in the 600–950 cm−1 region (Farmer 2000). The 
absorption near 3620 cm−1 is typical for aluminum-rich 
clay minerals. The absorption bands for dioctahedral 
clay mineral are located in the 950–800 cm−1, while the 
absorption are shifted to lower regions in the range of 
700–600 cm−1 in trioctahedral clay minerals (Madejová 
2003). A slight change in the peak position of each 
sample was observed due to the substitutions in crystal-
line structure of minerals.

The recognition of hematite in some samples is sig-
nificant, because hematite can cement the clay minerals 
together and make it difficult to be recognized with other 
analytical methods.

The result of infrared analysis evidently supported the 
mineral identification by PXRD method, and thus could 
be reliably used in fast clarifying the nature of the min-
eral constituents in formations with complex lithology. 
However, overlaps of some absorption, i.e., the splitting 
bands in OH region 4000–3000 cm−1, due to the pres-
ence of different mineral species, might make it difficult 
to distinguish different minerals from each other at the 
first sight.

Since the first stage in the shale gas and shale oil explo-
ration or in the mineralogical characterization of reservoirs 
needs to screen a lot of samples in an optimal manner in 

terms of time and cost, the application of FTIR method 
as an easy and fast data providing method with less costs 
can be considered.

Conclusions

In particular, transmission Fourier transform infrared spectros-
copy (FTIR) showed merits as an inexpensive, easy, and fast 
method in differentiating several types of clay minerals in the 
formations with complex lithology such as Shurijeh formation. 
The FTIR is also able to provide fundamental information on 
the clay minerals. All in one, the ease of use and the speed of 
the method have made the FTIR a suitable initial analysis for 
the purpose of clay minerals studies in reservoir characteriza-
tion stages. The results obtained from this research can be a 
benefit to the geoscientists in upstream petroleum industry to 
screen the samples very fast before conducting more sophisti-
cated and time-consuming analysis methods with the purpose 
of chemical and mineralogical characterizations, because the 
FTIR is able to do the both tasks, with more convenience and 
less costs. This method can be applied on the clastic reservoirs 
or on the shale oil and shale gas targets to be quickly assessed 
in terms of their potential. A series of Shurijeh core samples 
have been used to illustrate the usefulness of the technique in 
this study.
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