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Abstract
Rock mechanical properties play a crucial role in fracturing design, wellbore stability and in situ stresses estimation. Con-
ventionally, there are two ways to estimate Young’s modulus, either by conducting compressional tests on core plug samples 
or by calculating it from well log parameters. The first method is costly, time-consuming and does not provide a continuous 
profile. In contrast, the second method provides a continuous profile, however, it requires the availability of acoustic velocities 
and usually gives estimations that differ from the experimental ones. In this paper, a different approach is proposed based 
on the drilling operational data such as weight on bit and penetration rate. To investigate this approach, two machine learn-
ing techniques were used, artificial neural network (ANN) and support vector machine (SVM). A total of 2288 data points 
were employed to develop the model, while another 1667 hidden data points were used later to validate the built models. 
These data cover different types of formations carbonate, sandstone and shale. The two methods used yielded a good match 
between the measured and predicted Young’s modulus with correlation coefficients above 0.90, and average absolute per-
centage errors were less than 15%. For instance, the correlation coefficients for ANN ranged between 0.92 and 0.97 for the 
training and testing data, respectively. A new empirical correlation was developed based on the optimized ANN model that 
can be used with different datasets. According to these results, the estimation of elastic moduli from drilling parameters is 
promising and this approach could be investigated for other rock mechanical parameters.

Keywords Static Young’s modulus · Drilling parameters · Machine learning · Support vector machine · Artificial neural 
network

Introduction

The ability of a matter to revert from strain induced by exter-
nal stresses is known as elasticity, and rock elastic charac-
teristics such as Young’s modulus and Poisson’s ratio are 
geomechanical parameters that characterize the stress–strain 
relationship (Fjar et al. 2008). Young’s modulus (E) is an 
indicator of stiffness and stands for the strain ( � ) to stress 
( � ) ratio as in Hook’s law (Eq. 1):

where E and � are in the same unit.
The design of hydraulic fracturing, wellbore stability 

and the estimation of the in situ stresses are all influenced 
by rock elastic characteristics (Hammah et al. 2006; Kumar 
1976; Labudovic 1984; Nes et al. 2005). Young’s modulus 
could be determined from experimental tests on rock sam-
ples (static) or indirectly derived from well logs (dynamic) 
using shear and compressional wave velocities using Eq. 2 
(Barree et al. 2009).

where Edyn is the dynamic Young’s modulus (in GPa), 
the compressional and shear wave velocities (in km/s) are 
donated by Vp and Vs, respectively, while the bulk density 
(in g/cm3) is donated by ρ.
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A continuous profile can be presented using dynamic 
properties, however, the measurements of static and 
dynamic parameters differ considerably. Many publica-
tions presented empirical models to estimate static elastic 
values from dynamic parameters because core tests are 
costly and cannot produce a continuous profile. The mod-
els that correlate the static with the dynamic properties 
are presented in Table A1 in the Appendix A Part of the 
equations presented in Table A1 were derived with rela-
tively small numbers of samples or for a certain type of 
rock. They also require the knowledge of dynamic elastic 
properties which is not always guaranteed.

Artificial intelligence (AI) approaches are increas-
ingly being used to create models in various sectors of 
petroleum engineering. Different correlations for res-
ervoir fluid properties have been developed using AI 
tools, namely PVT fluid properties (Khaksar Manshad 
et  al. 2016), petrophysical properties (Moussa et  al. 
2018), drilling fluid properties (Abdelgawad et al. 2019), 
enhanced oil recovery (Van and Chon 2018) and geome-
chanical properties (Elkatatny 2018). Young’s modulus 
was not an exception, various correlations were created 
using AI, as shown in Table 1. Different techniques were 
used to develop the presented models such as functional 
network (FN), adaptive neuro-fuzzy inference system 
(ANFIS), alternating conditional expectation (ACE) and 
fuzzy logic (FL).

These models in Table 1 need the acoustic log data, 
which may not always be available. In contrast, drilling 
data are easier and earlier to be available. In addition, the 
drilling data have been reported to be successfully uti-
lized to generate synthetic logs for acoustic wave velocity 
and bulk density (Gowida et al. 2020; Gowida and Elka-
tatny 2020). Moreover, the use of drilling parameters in 
abnormal pressure zones detection and formation pressure 
estimation is an old technique (Jorden and Shirley 1966; 
Rehm and McClendon 1971). In this paper, a complete 
workflow to obtain a continuous static Young’s modulus 
profile using drilling operational parameters is presented 
using different AI techniques.

Methodology

Workflow

In this study, the following steps have been followed to uti-
lize the drilling data to build a continuous profile of static 
Young’s modulus. Information from two wells including 
drilling operational records, static and dynamic Young’s 
modulus has been collected. Correlation between static and 
dynamic Young’s modulus has been built using machine 
learning methods and presented in a previous publication 
(Elkatatny et al. 2019). Then, this correlation has been used 
to fill the gap between the static values, and a continuous 
profile of static Young’s modulus is obtained. Afterward, 
this continuous profile, together with the corresponding 
drilling parameters for the first well, has been employed 
to construct the model applying two AI techniques. The 
machine learning algorithms were blinded to the dataset of 
the second well, which was then utilized to validate the cre-
ated model.

Data description

Data from two vertical wells drilled have been used in this 
study. The lithology of these two wells contains sandstone, 
shale and limestone. Well-1 has over 2280 data points that 
were utilized for models’ construction, with 70% of this 
dataset being used for training and the remaining for testing. 
The machine learning algorithms were blinded to 1667 data 
points from Well-2, which were then utilized to evaluate the 
created model. Any data point consists of six drilling records 
that are used as inputs, in addition to Young’s modulus that 
is set as the intended output. The following drilling param-
eters were gathered from field data and used in the creation 
of this model:

–  Drilling rate of penetration ROP
– Weight on bit WOB
– Drill pipe pressure SPP
– Torque
– Drilling fluid pumping rate

Table 1  Summary of AI-based Young’s modulus models

Ref Input parameters Data points formation R2 Used methods

(Abdulraheem et al. 2009) Vp, Vs, ρ 77 NA 0.593–0.792 ANN, FL, FN
(Al-anazi et al. 2011) Vp, Vs, Depth, Ø, in situ-

stresses, pore pressure, ρ
602 NA 0.974 ACE

(Tariq et al. 2017) Vp, Vs 550 Limestone 0.92 ANN
(Elkatatny et al. 2019) Vp, Vs, ρ Over 600 Various 0.87–0.92 ANN, ANFIS, SVM
(Mahmoud et al. 2019) Vp, Vs, ρ 592 Sandstone 0.998 ANN
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– Rotary speed RPM

Data analysis

Using MATLAB code, the datasets were cleansed of noise 
and outliers before being fed into the machine learning meth-
ods. Data points that contain any value that is away from the 
mean of the data with three times the standard deviation 
were considered as an outlier using a built-in keyword in 
MATLAB. The outliers detection criteria are described in 
Fig. 1, out of 4307 data points, 352 points were considered 
as outliers.

Table 2 shows the quantitative analysis of the training 
dataset used to create the models. As shown by the histogram 

in Fig. 2, Young’s modulus has a distributed range of values 
between 0.5 and 7.15 Mpsi.

Machine learning algorithms

In this work, two AI algorithms were used, artificial neu-
ral network (ANN) and support vector machine (SVM). 
ANN is a popular machine learning method that mimics the 
brain’s neurons that could be utilized in clustering, classi-
fication or regression (Aggarwal and Agarwal 2014; Chen 
et al. 2019). ANN contains various parameters such as neu-
rons, activation functions, layers and learning functions 
(Abdulraheem et al. 2009). Many successful implementa-
tions of ANN in the oil sector have been reported (Elkatatny 

Fig. 1  Outliers’ detection

Table 2  Statistical information of total dataset

WOB (klbf) Torque (kft.lbf) SPP (psi) RPM (1/min) ROP (ft/h) Flow rate (gpm) Estatic (Mpsi)

CC with E 0.022 0.103 0.171 − 0.169 0.077 − 0.08 1
Minimum 1.54 4.29 2140 77.94 25.8 627 0.50
Maximum 27.32 11.01 3076 162.53 119.6 854 7.15
Mean 12.04 7.47 2607 128.79 66.3 728 2.77
Median 11.16 7.10 2610 134.72 69.4 701 2.47
Skewness 0.26 0.19 − 0.11 − 0.57 0.24 0.50 0.59
Standard deviation 7.26 1.81 199.9 15.65 18.18 74.59 1.48
Coefficient of variation 0.60 0.24 0.08 0.12 0.27 0.10 0.53
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et al. 2017, 2016; Field et al. 2019; Shokooh Saljooghi and 
Hezarkhani 2015; Tariq et al. 2016).

SVM was introduced in the 1960s as a linear classifier 
and modified in the 1990s for nonlinear problems by using 
kernel function (Boser et al. 1992; Cortes and Vapnik 1995). 
Kernel function was proposed by Aizerman et al. (Aizerman 
et al. 1964), and there are different kernels such as homog-
enous and inhomogeneous polynomial, Gaussian and hyper-
bolic tangent. SVM was applied successfully in petroleum-
related problems for regression problems (Abdelgawad et al. 
2019; Elkatatny et al. 2016; Elkatatny and Mahmoud 2018; 
Mahmoud et al. 2020) and classification problems (Aibing 
et al. 2012; Heinze and Al-Baiyat 2012; Li et al. 2004; Ola-
tunji and Micheal 2017; Zhao et al. 2005).

Evaluation criterion

The models were built using SVM and ANN. These methods 
use 70% of Well-1 data points to develop the models, and 
the remaining to test internally, for numerous rounds before 
selecting the best fit, while Well-2 data were employed as 
additional validation for the optimized models.

To establish the appropriate tuning parameters inside the 
algorithms, different runs were performed in each technique. 
In SVM models, two kernel functions, different values for 
kernel options, epsilon and regularization were tested. In 
ANN models, neurons quantity, training and transfer func-
tions were optimized.

Two statistical measures, the correlation coefficient (R) 
and the average absolute percentage error (AAPE), were uti-
lized to evaluate all of these models’ trials. Equations 3 and 
4 are used to determine R and AAPE, respectively:
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�
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where N is the size of dataset, Egiven and EPredicted are, respec-
tively, the measured and the AI-predicted Young’s modulus 
values.

Results and discussion

Using dataset from Well-1, different machine learning meth-
ods were employed to train and test the models. Dataset from 
Well-2 was utilized for model validation after it had been 
constructed. This section presents the results obtained using 
each method and the comparison between them. Additionally, 
a model that could be used for different datasets is presented 
as a white box.

Artificial neural network

Several numbers of neurons, training and activation functions 
have been tested to assure the optimum outcomes from ANN. 
Using this technique, good results have been obtained. The 
correlation coefficients for training and testing were 0.97 and 
0.92, respectively, while the AAPE values were between 10 
and 15%. The given and ANN-predicted Young’s modulus are 
compared in Fig. 3.

Support vector machine

Different trials have been applied using SVM with changing 
some tuning parameters inside the algorithm, such as kernel 
function and regularization. The best results were achieved 
using the Gaussian kernel function. It’s noticeable that this 
method outperformed the ANN in training, however, its per-
formance in testing was lower. The R values for training and 
testing were 0.996 and 0.891, respectively, while the AAPE 
values were 1% and 15% in the same sequence. Figure 4 pre-
sents a comparison between the actual and the SVM-predicted 
Young’s modulus.

Models’ validation

The dataset of Well-2 was completely hidden during the mod-
el’s construction phase. After the best model has been achieved 
in each method in terms of R and AAPE of training and test-
ing, the models have been tested with this dataset. Figure 5 

(4)AAPE =

∑N

i=1

Egiven i−EPredicted i

Egiven i

× 100%

N

Fig. 2  Young’s modulus histogram
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shows the actual and predicted profiles for Young’s modulus 
in Well-2.

Models’ comparison

In comparison between the models built by ANN and SVM, 
it could be noticed that while SVM has better results in the 
training, ANN has better accuracy in the other datasets, 

Fig. 3  ANN-predicted and 
actual Young’s modulus cross-
plots for a training b and testing

(a) (b)

0

1

2

3

4

5

6

7

8

0 2 4 6 8

suludo
Ms'gnuoY

detciderP
Actual Young's Modulus

R= 0.97
AAPE = 10%

0

1

2

3

4

5

6

7

8

0 2 4 6 8

Pr
ed

ic
te

d 
Yo

un
g'

s M
od

ul
us

Actual Young's Modulus

R= 0.92
AAPE = 15%

Fig. 4  SVM-predicted and 
actual Young’s modulus cross-
plots for a training and b testing
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which indicates a better-generalized model. Table 3 shows 
a comparison of the results obtained by the two machine 
learning methods in terms of coefficient of determination 
(R2), average absolute relative error and root-mean-square 
error (RMSE).

Different parameters’ combinations have been tested to 
ensure optimum fit. Table 4 displays ANN and SVM param-
eters that yielded the best matches between the predictions 
and actual values.

New empirical equation for Young’s modulus

When considering all datasets, ANN provided the best 
fit as presented in the previous section. Equation 5 rep-
resents the ANN-based model, whereas Table A2 in the 
Appendix A gives the weights and biases of the model. 
This model has been obtained using the tangent sigmoid 
transfer function.

Conclusions

In this paper, building a continuous static Young’s modulus 
profile in a real time from the drilling parameters has been 
investigated by utilizing two machine learning tools. In light 
of the workflow and tests that have been provided, this study 
could be concluded with the following statements:

(5)Est =

[

N
∑

i=1

W2,i

(

2

1 + e
−2(W11,i∗WOB+W12,i∗Torque+W13,i∗SPP+W14,i∗RPM+W15,i∗ROP+W16,i∗pump rate+b1,i)

− 1

)

]

+ b2
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Two methods were investigated and resulted in good 
predictions for Young’s modulus with correlation coef-
ficients all above 0.9.

 ANN yielded results with correlation coefficients range 
between 0.92 and 0.97 for training, testing and validation, 
while SVM outperformed the ANN in training but with 
lower performance in testing and validation.

Fig. 5  Trend comparison of the 
actual Young’s modulus against 
the prediction of a ANN b SVM 
for validation dataset (Well-2)
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Table 3  Machine learning’s 
parameters with the best 
performance

ANN SVM

Training Testing Validation Training Testing Validation

R 0.94 0.85 0.87 0.99 0.79 0.81
AARE 0.10 0.15 0.15 0.01 0.15 0.14
RMSE 0.378 0.512 0.492 0.127 0.632 0.615
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 New empirical correlation for Young’s modulus was 
developed based on the optimized ANN model. This cor-
relation has been tested with the validation dataset and 
yielded a 0.93 correlation coefficient.

Based on the findings of this work, which demonstrate 
the possibility to construct a continuous static Young’s 
modulus profile from operational drilling parameters, it is 
recommended that the same approach be investigated for the 
prediction of other geomechanical characteristics.

Appendix A

See (Tables 5 and 6).

Table 4  Machine learning’s parameters with the best performance

ANN- Parameters
      Number of neurons 35
Types of network function newff
Types of training function Bayesian regularization 

backpropagation
Types of transfer function tangent sigmoid transfer 

function
Maximum number of iterations 1000
Learning rate 0.12
Momentum constant 0.6
Minimum performance gradient 1.00E-06
Maximum value for mu 1.00E + 100
SVM- Parameters
Kernel function Gaussian standard deviation
Kernel option 5
Lagrangian multipliers (C) 100
Lambda 1e-5
Epsilon .0001

Table 5  Different empirical correlations for static Young’s modulus

Ref Correlation R2 Samples Rock type/s

(Brotons et al. 2016) Est = 3.97E6�−2.09E1.287
dyn

�−0.116 0.994 57 Igneous, sedimentary and metamorphic rocks
(Mahmoud et al. 2016) lnE

st
= 14.846 − 0.613 ln

(

Δt
c

)

−2.179 ln
(

Δt
s

)

+ 1.418 ln (�)

0.992 Over 300 Mostly limestone

(Sharifi et al. 2017) Est = 0.1098E1.2514
dyn

0.6016 13 Carbonate
(King 1983) Est = 1.263Edyn − 29.5 0.82 174 Low porosity igneous and metamorphic rock
(Heerden 1987) Est = aEb

dyn

a and b vary with rock type
0.959–0.985 14 Different sandstones, quartzites, norite and 

magnetite
(Eissa and Kazi 1988) log(Est) = 0.77 log(Edyn) + 0.02 0.92 76 NA
(Christaras et al. 1994) Est = 1.05Edyn − 3.16 0.988 8 Limestone, Gypsum, Basalts, Granite, Phonolite, 

Andesite
(Lacy 1997) Est = aE2

dyn
+ bEdyn

a and b vary with rock type
0.547–0.857 250 Sandstone, Shale, Limestone dolomite

(Horsrud 2001) Est = 0.076V3.23
P

0.99 14 Shale
(Martínez-Martínez et al. 2012) Est =

1.263Edyn

3.8�−0.68
s

�s ultrasonic spatial attenuation

NA 60 Carbonate rocks

(Brotons et al. 2014) Est = 0.867Edyn − 2.085 0.96 24 Calcarenite stone
(Najibi et al. 2015) Est = 0.014E1.96

dyn

Est = 0.169V3.324
P

0.87–0.9 45 Limestone

(Canady 2011)
Est =

ln (Edyn+1)∗(Edyn−2)
4.5

NA NA NA

(Bradford et al. 1998) Est = 0.0018E2.7
dyn

NA 10 Sandstones and shales
(Lashkaripour 2002) E = 0.103 ∗ �

1.086
c

0.807 NA Mudstone
(Karagianni et al. 2017) E = a ∗ �c

a varies with rock type
0.5–0.73 Over 200 Limestone, sandstones, schist, conglomerates, 

peridotites and granites
(Ohen 2003) Est = 0.0158E2.7399

dyn
0.8473 NA Sandstone

(Ameen et al. 2009) Est = 0.541Edyn + 12.852 0.6 400 Carbonate
(Ghafoori et al. 2018) Est = 0.022E1.774

dyn
0.912 60 Limestone rocks

(Asef and Farrokhrouz 2017) Est = Edyn

(

1 − �
)

− 3 ln � 0.92 Over 100 Limestone, sandstone, shale, and tuff
(Feng et al. 2019) Est = 0.81Edyn − 13.88 0.70–0.92 18 Tight sandstone, siltstone
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