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Abstract
Thermal maturity, organic richness and kerogen typing are very important parameters to be evaluated for source rock charac-
terization. Due to the difficulties of high cost geochemical analyses and the unavailability of rock samples, it was necessary 
to examine and test many different method and techniques to help in the prediction of TOC values as well as other maturity 
indicators in case of missing or absence of geochemical data. Integrated study of machine learning techniques and well-log 
data has been applied on Cretaceous–Paleocene formations in the Taranaki Basin, New Zealand. A novel approach of maturity 
prediction using Tmax and vitrinite reflectance (VR%) is the first and preliminary objective of this research. Moreover, the 
organic richness or the total organic carbon (TOC) content has been predicted as well. Geochemical and well-log data col-
lected from the Cretaceous Rakopi and North Cape formations and Paleocene Mangahewa Formation have been processed 
and prepared to apply the machine learning techniques. Five machine learning techniques, namely Bayesian regularization 
for feed-forward neural networks (BRNNs), random forest (RF), support vector machine (SVM) for regression, linear regres-
sion (LR) and Gaussian process regression (GPR), were employed for prediction of TOC, Tmax and VR, and their results 
have been compared. For TOC prediction, the best model achieved the coefficient of determination (R2) value of 0.964 using 
RF model. For Tmax prediction, BRNN with one hidden layer achieved the R2 value of 0.828. BRNN with two hidden lay-
ers produced the best model for VR prediction achieving R2 = 0.636. A comparison of five ML techniques showed that all 
of these techniques performed exceedingly well for TOC prediction with a value of R2 > 0.96. In contrast, BRNN with one 
hidden layer was the only ML technique able to achieve R2 > 0.8 for Tmax and BRNN with two hidden layers was the only 
ML technique able to achieve R2 > 0.6 for VR prediction. Therefore, this research provides a strong empirical evidence that 
ML techniques can capture the nonlinear relationship between the well-log data and TOC as well as the maturity indicators 
which may not be fully understood by existing linear models.

Keywords  Machine learning · Neural networks · Random forest · Support vector machine · Linear regression · Well-
logging · Geochemical analysis · Taranaki Basin · New Zealand

Introduction

Conventional well-logging data have been used in the anal-
yses of source rocks, particularly in case if geochemical 
data are missing or absent. Laboratory work and experts 
required to generate geochemical data are expensive and 
take time. Rock samples required for analyses are not 
easily available. Thus, it becomes necessary to examine 
and test many different method and techniques to help in 
the prediction of TOC values as well as other maturity 
indicators in case of missing or absence of geochemical 
data. Their application can be done in two ways: via 1) 
mathematical models and/or 2) data mining framework 
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or machine learning intelligent systems. Both techniques 
have proven to provide accuracy and hence can become a 
reliable alternative solution in total organic carbon (TOC) 
content quantification (Liu et al. 2012; Jumat et al. 2017; 
Bolandi et al. 2015, 2017; Shi et al. 2016; Shalaby et al. 
2019a). Mathematical models developed by Passey et al. 
(1990), Zhao et al. (2016) and many others have been 
used to not only evaluate the quantity of carbon, but also 
identify and discriminate producible source zones within 
a well-cored interval or formation. Jumat et al. (2017) uti-
lized the use of conventional well-logging data via math-
ematical models, to evaluate the source rock potential of 
the major source rocks of the Taranaki Basin using eight 
selected wells distributed across the basin. Comparisons 
between their results and the measured core geochemical 
data have proven that the models can be applied with great 
confidence in the area if geochemical data are not avail-
able. Shalaby et al. (2019a) published the integrated study 
using well-log data in combination with machine learning 
techniques for the prediction of organic matter richness in 
Jurassic source rock in Shams Field NW Desert, Egypt. It 
has been concluded that both machine learning and well-
log data can predict the TOC values with very high accu-
racy and have good correlation with the measured TOC 
values from the geochemistry dataset.

The study area of Taranaki Basin covers a total area of 
100,000 km2 and is located predominantly offshore on the 
west coast of the North Island between latitudes 38°00′ 41° 
00′ S and longitudes 172°00′–175° 00′ E (Fig. 1). Ever since 
its maiden discovery in 1959, Taranaki Basin has remained 
as the overwhelmingly principal producer for petroleum 
in New Zealand, with over 1.8 billion barrels of BOE dis-
covered (Webster et al. 2011). The basin contains all 20 of 
New Zealand’s presently producing fields, with over 400 
wells drilled (New Zealand Ministry of Business 2014). 
Thus, studies pertaining to the basin, including its source 
rocks, are of great significance. In Taranaki Basin, the petro-
leum source originated from the deeply buried hydrogen-
rich coals and terrigenous carbonaceous mudstones of the 
upper Cretaceous Pakawau Group and the Paleogene Kapuni 
Group (Johnston et al. 1989; King and Thrasher 1996). The 
Rakopi and North Cape formations from the Pakawau Group 
and the Mangahewa Formation from the Kapuni Group have 
been used to represent the source rocks in the study area. 
The great hydrocarbon potential of the source rocks from 
these three formations has been documented in more recent 
studies by Qadri et al. (2016) and Jumat et al. (2018). Many 
research works have been conducted in Taranaki Basin and 
Great South Basin in New Zealand, as well as some others 
all over the world to study the source rock characteristics, 

Fig. 1   Map of study area and selected wells (Compiled from Jumat et al. 2017)
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its thermal maturity and hydrocarbon generation modeling. 
Notable studies include Kalaitzidis et al. (2010), Kara-Gul-
bay et al. (2010), Shalaby et al. (2011, 2012a, b, c, 2019b), 
Hosseiny et al. (2016), Jumat et al. (2018) and Osli et al. 
(2018, 2019).

The main objective of this research is to use the data min-
ing framework or machine learning techniques to predict 
source rock characteristics in terms of TOC quantity and 
quality. Although mathematical models used by Jumat et al. 
(2017) have proven to be applicable in the study area, there 
is no similar guarantee that the machine learning method 
will produce the same favorable outcome. Additionally, 
while many machine learning techniques have been applied 
for TOC prediction in source rock characterization (Bolandi 
et al. 2015, 2017; Tan et al. 2015; Yu et al. 2017), only a 
few studies were found to have applied it for source rock 
maturity (Hussein and Abdula 2018). Therefore, this study 
aims to use the machine learning techniques to evaluate the 
accuracy in the prediction of source rock thermal maturity 
on the basis of maturity parameters Tmax and %VR, in addi-
tion to predicting organic matter richness represented by 
TOC. Therefore, this study will, thus, prove to be beneficial 
in the current array of source rock studies not only limited 
to Taranaki Basin and can be used as a reference for other 
future studies.

Geological setting

The geological evolution of Taranaki Basin has been studied 
by numerous researchers, most notably by Thrasher (1992), 
King and Thrasher (1996), Palmer and Geoff (1988), Palmer 
(1985), and Pilaar and Wakefield (1978). The general con-
sensus describes the formation of Taranaki Basin as being 
initiated when Australia and Zealandia split, following the 
breakup of the ancient supercontinent Gondwana. Taranaki 
Basin originated as one of the numerous extensional basins 
on the New Zealand subcontinent created alongside the 
subsequent formation of the Tasman Sea, aptly named the 
Taranaki Rift. This rift would later develop into the Taranaki 
Basin during the Late Cretaceous.

The Taranaki Basin was characterized by failed rift, sub-
sidence and marine transgression in the Late Cretaceous, and 
intraplate to back-arc subsidence during the Neogene period 
(New Zealand Ministry of Business 2014). Due to its history 
and geographical extent, the basin has complex geological 
configurations, but the basin is generally classified into two 
structural blocks: (1) the Western Stable Platform and (2) the 
Eastern Mobile Belt (Fig. 1). The Western Stable Platform 
experienced extension during the late Cretaceous to Eocene 
but has remained relatively stable throughout the rest of the 
Tertiary (Pilaar and Wakefield 1978). The Eastern Mobile 

Belt, on the other hand, contains multiple extensional and 
compressional features that are still active to the present day.

Taranaki Basin is made up of terrigenous and marine sed-
imentary and volcanic rocks from the Cretaceous to Ceno-
zoic age (Fig. 2). Its stratigraphy has been classified into four 
mega-sequences (King and Thrasher 1996):

a)	 Upper Cretaceous syn-rift sequence (Pakawau Group)
b)	 Paleocene–Eocene late-rift and post-rift transgressive 

sequence (Kapuni and Moa groups)
c)	 Oligocene–Miocene foredeep and distal sediment 

starved shelf and slope sequence (Ngatoro Group) and 
Miocene regressive sequence (Wai-iti Group)

d)	 Plio-Pleistocene regressive sequence (Rotokare Group)

As previously mentioned, the source rocks of Taranaki 
Basin consist of hydrogen-rich coals and terrigenous carbo-
naceous mudstones of the upper Cretaceous Pakawau Group 
and the Paleogene Kapuni Group (Johnston et al. 1989; King 
and Thrasher 1996). The source rocks of the Pakawau Group 
are from the Rakopi and North Cape formations. Rakopi 
Formation comprises almost entirely of terrestrial coal 
measures, predominantly sandstone, cyclically interbed-
ded with carbonaceous siltstone and mudstone, thin coal 
seams and rare conglomerate. The North Cape Formation 
is primarily distinguished from the Rakopi Formation by its 
marine depositional influence and consists of transgressive 
sandstones, with siltstone, mudstone and coal lithologies. 
The Kapuni Group source rocks studied in this paper are rep-
resented by the Mangahewa Formation which predominantly 
consists of sandstone, siltstone, mudstone and bituminous 
coal (Palmer 1985).

Materials and methods

Complete dataset and rock samples have been provided 
by the Ministry of Business, Innovation and Employment 
(MBIE) of New Zealand. Re-evaluation and publication of 
the dataset have been approved and authorized by the Min-
istry of Business, Innovation and Employment (MBIE) of 
New Zealand.

Eight wells scattered across the basin (Fig. 1) have been 
selected to examine the source rock characteristics: Tane-1 
and Cape Farewell-1 wells for Rakopi Formation, Fresne-1, 
North Tasman-1 and Tane-1 wells for North Cape Forma-
tion, and Cardiff-1, Inglewood-1, Maui-3 and Maui-4 wells 
for Mangahewa Formation. Well names, formation thick-
ness and drilled depths in all studied wells are presented in 
Table 1. The locations of these wells are mapped in Fig. 1.

To ensure the applicability of the intelligent systems in 
the prediction of source rock characteristics, the results from 
this study are compared to the core geochemical data. The 



2178	 Journal of Petroleum Exploration and Production Technology (2020) 10:2175–2193

1 3

core data include the total organic carbon (TOC) content, 
Rock–Eval pyrolysis yields (S1, S2 and Tmax), vitrinite reflec-
tance VR% and well-logging data from the aforementioned 

selected wells. Machine learning utilizes these data to pro-
duce a holistic source rock characterization, which is not 
limited to the organic matter quantity but also its maturity.

Relationships between TOC content and responses of 
well-logging tools have been studied by several notable 
scholars, such as Carpentier et al. (1989), Fertle (1988), 
Fertle and Rieke (1980), Herron (1988), Meyer and Ned-
erlof (1984), Passey et al. (1990) and Schmocker (1979, 
1981), Schmocker and Hester (1983) and Zhao et  al. 
(2016). Well-logging data, accordingly, have been taken as 
the input parameters for evaluating TOC content values for 
the rock samples selected in this study. The well-log data 
used include the conventional well-log tools of Gamma ray 
(GR), sonic (DTC), neutron (NPHI), density (RHOB) and 
true resistivity (RT). The typical well-log responses to the 
presence of source rocks can be described as follows:

1.	 Gamma ray log: It measures the radioactivity of a for-
mation (Serra 1984). Organic matter is associated with 

Fig. 2   Simplified lithostratigraphic succession of the Taranaki Basin (Compiled from Jumat et al. 2017)

Table 1   Well-log data information in this study

Well name Formation Top (m) Bottom (m) Thickness (m)

Cardiff-1 Mangahewa 4065 5065 1002
Inglewood-1 Mangahewa 3651.5 5059.7 1408.2
Maui-3 Mangahewa 2030 2265.5 235.5
Maui-4 Mangahewa 2713.5 2734.1 300.8
Fresne-1 North Cape 1030 1300 270
North Tas-

man-1
North Cape 2240 2260 420

Tane-1 North Cape 3400 4000 600
Rakopi 4000 4474 474

Cape Fare-
well-1

Rakopi 1570 2700 1130
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Uranium content, and hence, its presence leads to an 
increase in GR readings.

2.	 True resistivity log: It measures the conductivity of a 
fluid within a formation. In mature source rocks, the 
resistivity increases due to the presence of generated 
hydrocarbons (Passey et al. 1990). The RT readings in 
mature source rocks increase significantly by a factor of 
10 or more (Meyer and Nederlof 1984).

3.	 Sonic log: It measures the travel time of an elastic wave 
through a formation and inversely can be used to derive 
its velocity through the same formation. Immature 
source rocks travel faster than mature source rocks.

4.	 Density log: It measures the bulk density of a forma-
tion, which is influenced by fluids and matrix constituent 
mineral density (Asquith 1982; Schlumberger 1989). As 
organic matter has a low density (~ 1 g/cm3), the bulk 
density of source rocks is typically low.

5.	 Neutron log: It measures the response of hydrogen atoms 
concentration in a formation (Serra 1984). The hydro-
gen atoms and porosity within a formation have a direct 
relationship with the organic matter content. This means 
that the values for neutron porosity increase where there 
are high H Index, organic-rich intervals.

In terms of source rock maturity, the Rock–Eval pyrol-
ysis yield Tmax and vitrinite reflectance (%VR) are the 
two indicators used in this research to assess whether the 
source rocks studied have attained enough maturity. Tmax 
is the temperature at which the maximum rate of hydro-
carbon generation occurs in a kerogen sample during 
pyrolysis analysis. %VR is a technique is used in organic 
petrography, and it measures the amount of light reflected 
by vitrinite present in the rock’s organic component. Fol-
lowing classification made by Peters and Cassa (1994), 
the onset of maturity or “oil window” for the studied sock 
rocks is at 430 °C Tmax and 0.5%VR.

Jumat et al. (2017) applied three renowned mathemati-
cal models namely Schmocker and Hester (1983), Pas-
sey et al. (1990) and Zhao et al. (2016) for organic rich-
ness evaluation on the same eight wells from Taranaki 
Basin as studied in this paper. The models are applied 
on the source rock intervals, and the results were cali-
brated with geochemical TOC values. An exemplary figure 
is included in Fig. 3 to show that good correlation was 
observed between the TOC values from the models and 
geochemical set. Therefore, and for better accuracy, this 
paper will pay more intention to focus on the prediction of 
maturity indicators Tmax and % VR to explore how much 
guarantee that ML techniques can be used in the absence 
of geochemical dataset.

Figure 4 shows the work flow of the data analysis per-
formed in this study, while all steps will be explained as 
follows:

Pre‑processing of datasets

The collected data were divided into four data sets. For 
TOC prediction, the studied dataset consisted of 68 sam-
ples: 15 from Mangahewa, 12 from North Cape and 38 
from Rakopi formations. Conventional well-log data (GR, 
RHOB, DTC, and RT) as well as lithology have been used 
to perform the TOC prediction. Parameter NPHI was, how-
ever, excluded due to high unavailability of complete data. 
For Tmax prediction, two datasets were experimented: one 
containing instances with coal lithology (86 samples) and 
one without coal lithology (52 samples). The well-logging 
and geochemical parameters (depth, GR, RHOB, DTC and 
RT) were used for the prediction of Tmax. For the predic-
tion of vitrinite reflectance %VR, same input parameters 
were used. However, actual VR values are not available for 
samples with coal lithology, and thus, only samples with 
mudstone and shaly coal lithology are used (52 samples). 
Samples of well-log attributes with the same depth to the 
nearest meter were averaged, and then the averaged well-
log data were matched with the corresponding geochemi-
cal data of the same depth.

For the predictive modeling of each parameter TOC, 
Tmax and VR, the attributes selected for training were based 
on common domain knowledge that these are highly rel-
evant attributes associated with parameters of interest to be 
predicted.

Table 2 shows no correlation between well-log param-
eters GR, RHOB, DTC, RT and geochemical parameter 
TOC. Table 3 shows there is weak correlation (less than 
0.7) between Tmax and other well-log parameters. Weak cor-
relation is also found between VR and other well-log param-
eters in Table 4. As the correlations found are weak, we 
can proceed to apply machine learning to solve our research 
problem.

Preparation of data sets for training/testing

The well-logging data, together with relevant parameters 
from geochemical analysis, were scaled and centered. All 
data were numeric except for lithology parameter which had 
nominal values. To perform regression or numeric prediction 
with nominal data, the lithology values were represented 
using dummy variables (one hot encoding). The data sets 
were split into train and test subgroups, containing 75% and 
25% of the samples, respectively. Repeated tenfold cross-
validation was used during training, and the best model 
(with the lowest root-mean-squared error) was chosen (after 
performing parameter tuning) to be evaluated on the testing 
set. The experiment was repeated 50 times to study the sta-
bility of the algorithms’ average performance, based on the 
coefficient of determination (R2).
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TOC, Tmax and %VR prediction using machine 
learning techniques

Initially, various machine learning techniques were applied 
on all data sets. After preliminary experimentation, five 
best machine learning algorithms from various categories/
classes were chosen, applied and compared to predict the 

TOC, Tmax and %VR values for the selected formations in 
the Taranaki Basin. A complete set of well-log data collected 
from Mangahewa, North Cape and Rakopi formations in the 
Taranaki basin, New Zealand, was used for this purpose. The 
algorithms Bayesian regularization for feed-forward neural 
networks (BRNN) and random forest (RF) were explored, 
and the results were compared with other algorithms such 

Fig. 3   Correlation of TOC results between well-log models and geochemical dataset for the source interval in selected well (Taken from Jumat 
et al. 2017)



2181Journal of Petroleum Exploration and Production Technology (2020) 10:2175–2193	

1 3

as support vector machine (SVM) for regression with linear 
kernel, linear regression (LR) and Gaussian process with 
radial basis function kernel (GPR). The BRNN and RF 
algorithms which generated the best results are explained in 
greater detail, while the others are briefly described below. 
They are all implemented using MATLAB 2018. Out of 
these five algorithms, the results with the best performing 
models are presented in full detail.

Bayesian regularization for feed‑forward neural networks 
(BRNN)

Artificial neural network is widely used in TOC predic-
tion (Bolandi et al. 2015). To avoid the overfitting prob-
lem with artificial neural networks (Schittenkopfab et al. 
1997) and simplifying the parameter setting, we explored 

a different type of neural networks, Bayesian regularized 
neural networks (BRNN), which has never been used 
before for this purpose.

Pérez-Rodríguez et al. (2013) introduced a single hid-
den layer feed-forward neural network model for approxi-
mating nonlinear function. The model focused on both 
additive and dominance effects using empirical Bayes 
approach to calculate all parameter estimates and penal-
izes network parameters which are nonzero. The neural 
network is made up of network connections of nodes for 
learning the mapping between input patterns and output 
nodes. It contains three layers: the input layer, hidden layer 
and output layer. The mapping is learned via optimizing 
the weights of connections by adjusting them at each itera-
tion. The algorithm proposed by Pérez-Rodríguez et al. 
(2013) is briefly described as follows:

Fig. 4   Steps for performing the 
predictive data analysis using 
machine learning techniques TOC

Data SetTmax Data Set VR Data Set

Preprocessing of Data
Data Cleaning, Standardization and One-Hot Encoding

Preparing the Data for Training/Testing
Splitting Data into Training and Testing sub-groups, 10-fold Cross Validation

Testing and Comparing the Performance of the Models
Computing various performance metrics and comparing the results

Generating Machine Learning Models
Training, Validation and Fine-tuning the Hyper-parameters of each model

Random 
Forest

Neural 
Network

Gaussian 
Process

Support 
Vector

Linear 
Regression

Storing and Reporting the Best Models
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To fit a NN model that includes additive and dominance 
effects jointly described below, the algorithm below is 
followed:

(1)

yi = � +

Sa∑

k=1

wa
k
g

(
ba
k
+
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j=1

xij�
a[k]

j
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Sd∑
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wd
k
g

(
bd
k
+

p∑

j=1

�
d[k]

j

)
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where (w1,… ,ws) are network weights; (b1,… , bs) are 
biases; (�[1]

1
,… , �[1]

p
;… ;�

[s]

1
,… , �[s]

p
)� are connection 

strengths where �[k]
j

 denotes a parameter for input j in neuron 
k = 1,… , s, and gk(⋅) is the activation function, which maps 
inputs to bounded (−1, 1). sa and sd are numbers of neurons 
for the additive and dominance components, respectively, in 
the hidden layers. Parameter � is eliminated by centering 
observations for simplicity.

Table 2   Correlation between 
well-log parameters and TOC

*Correlation is significant at the 0.05 level (1-tailed)

Correlations GR RHOB DTC RT TOC

GR Pearson correlation 1 0.140 −0.009 −0.041 −0.147
Sig. (1-tailed) 0.129 0.470 0.371 0.117
N 67 67 67 67 67

RHOB Pearson correlation 0.140 1 −0.057 −0.090 −0.149
Sig. (1-tailed) 0.129 0.323 0.234 0.115
N 67 67 67 67 67

DTC Pearson Correlation −0.009 −0.057 1 −0.055 −0.270*

Sig. (1-tailed) 0.470 0.323 0.328 0.013
N 67 67 67 67 67

RT Pearson correlation −0.041 −0.090 −0.055 1 −0.043
Sig. (1-tailed) 0.371 0.234 0.328 0.366
N 67 67 67 67 67

TOC Pearson correlation −0.147 −0.149 −0.270* −0.043 1
Sig. (1-tailed) 0.117 0.115 0.013 0.366
N 67 67 67 67 67

Table 3   Correlation between 
well-log parameters and Tmax

*Correlation is significant at the 0.05 level (1-tailed)
**Correlation is significant at the 0.01 level (1-tailed)

Correlations DEPTH GR RHOB DTC RT T_MAX

DEPTH Pearson correlation 1 −0.151* 0.190* 0.622** 0.260** 0.435**

Sig. (1-tailed) 0.038 0.013 0.000 0.001 0.000
N 138 138 138 138 138 138

GR Pearson correlation −0.151* 1 0.131 −0.030 −0.028 0.176*

Sig. (1-tailed) 0.038 0.062 0.364 0.374 0.020
N 138 138 138 138 138 138

RHOB Pearson correlation 0.190* 0.131 1 −0.116 −0.152* 0.318**

Sig. (1-tailed) 0.013 0.062 0.088 0.038 0.000
N 138 138 138 138 138 138

DTC Pearson correlation 0.622** −0.030 −0.116 1 −0.060 0.302**

Sig. (1-tailed) 0.000 0.364 0.088 0.243 0.000
N 138 138 138 138 138 138

RT Pearson correlation 0.260** −0.028 −0.152* −0.060 1 0.284**

Sig. (1-tailed) 0.001 0.374 0.038 0.243 0.000
N 138 138 138 138 138 138

T_MAX Pearson correlation 0.435** 0.176* 0.318** 0.302** 0.284** 1
Sig. (1-tailed) 0.000 0.020 0.000 0.000 0.000
N 138 138 138 138 138 138
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Step 1: Initialize �, �, � and the weights using the Nguyen 
and Widrow (1990) algorithm.

Step 2: Take one step of the Levenberg–Marquardt algo-
rithm to minimize the objective

function Q(�) given in (2).

Where � denotes a vector of dimension t × 1 including all 
connection strengths and coefficients for additive and domi-
nance effects, including weights and biases, n is the number 
of observations, ei is the prediction error, �a denotes the vec-
tor of dimension m × 1 with strengths for additive effects and 
�d denotes the vector of dimension q × 1 with strengths for 
dominance effects. Note m + q ⋅ � =

1

2�2
e

 , � =
1

2�2
a

 and � =
1

2�2
d

 
where �2

e
 is the residual variance, �2

a
 and �2

d
 are variances of 

connection strengths and weights for additive and domi-
nance effects, respectively.

Step 3: Update �, �, � by maximizing (3) using the Nelder 
and Mead (1965) algorithm. 
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where c is a constant, � =
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i
+ �∇2��
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�a − �∇2��

d
�d and � is the Hessian 

matrix.
Step 4: Iterate Steps 2 and 3 until convergence.
The full derivation for BRNN can be found in Pérez-

Rodríguez et al. (2013).

Random forest (RF)

Random forest (Breiman 2001) is an ensemble technique 
based on building many decision trees to determine the 
classes or make prediction of each of the trees, for regres-
sion, classification and other learning tasks. Random trees 
with different attributes at the splits are built using ran-
domly generated training sets (bagging) and their learning 
performance evaluated to find the best performing tree. 
Using bagging helps alleviate problems of overfitting and 
reduce variance. This makes it a suitable algorithm for this 
study, seeing overfitting as occurred in most of the neural 
network-based approaches.

When building a decision tree, the selection of attrib-
utes at each step to best split observations can be based 
on a chosen metric such as the Gini impurity. The Gini 
impurity measures the likelihood of a wrong classification 
of a new observation of a feature, if the observation was 
classified randomly based on class labels distribution from 
the dataset. It is calculated as follows:

Table 4   Correlation between 
well-log parameters and VR

*Correlation is significant at the 0.05 level (1-tailed)
**Correlation is significant at the 0.01 level (1-tailed)

Correlations DEPTH GR RHOB DTC RT VR

DEPTH Pearson correlation 1 −0.135 0.280* 0.675** 0.250* 0.460**

Sig. (1-tailed) 0.171 0.022 0.000 0.037 0.000
N 52 52 52 52 52 52

GR Pearson correlation −0.135 1 0.076 −0.092 −0.023 0.167
Sig. (1-tailed) 0.171 0.295 0.259 0.435 0.118
N 52 52 52 52 52 52

RHOB Pearson correlation 0.280* 0.076 1 −0.213 −0.218 0.225
Sig. (1-tailed) 0.022 0.295 0.065 0.060 0.055
N 52 52 52 52 52 52

DTC Pearson correlation 0.675** −0.092 −0.213 1 −0.068 0.247*

Sig. (1-tailed) 0.000 0.259 0.065 0.317 0.039
N 52 52 52 52 52 52

RT Pearson correlation 0.250* −0.023 −0.218 −0.068 1 0.278*

Sig. (1-tailed) 0.037 0.435 0.060 0.317 0.023
N 52 52 52 52 52 52

VR Pearson correlation 0.460** 0.167 0.225 0.247* 0.278* 1
Sig. (1-tailed) 0.000 0.118 0.055 0.039 0.023
N 52 52 52 52 52 52
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where C is the number of classes and p(i) is the probability 
of randomly picking an observation of class i.

The Gini impurity before and after the split is calculated, 
and the best split is chosen by the maximum Gini gain, 
obtained from a weighted subtraction from the impurity 
before splitting.

To the best of our knowledge, random forests have so 
far not been applied on well-logging data for TOC predic-
tion. Motivated by its good performance (Breiman 2001) 
and application in existing studies such as for soil organic 
carbon (Zhang et al. 2017; Were et al. 2015), this algorithm 
has been explored.

Support vector machine for regression (SVM)

Tan et al. (2015) has applied SVM, experimenting with 
Epsilon-SVM, Nu-SVM and SVM with Sequential Mini-
mal Optimization (SMOSVM) as novel approaches for 
TOC prediction. The motivation for applying SVM was its 
ability to solve nonlinear problems in small sample with 
high dimensions. One main challenge of SVR is the setting 
of parameters: penalty coefficient, the Gaussian spread or 
gamma and insensitive loss factor (ε), all of which greatly 
affect prediction performance.

Linear regression (LR)

Linear regression is the simplest technique for performing 
numeric prediction, such as to predict TOC, VR or Tmax val-
ues by finding the relationship between a dependent vari-
able and one or more independent variables. The exploration 
using LR was motivated by a study using linear regression 
techniques where it was found to perform well in predicting 
soil organic carbon (Zhang et al. 2017). Hussein and Abdula 
2018 had applied multiple linear regression for %VR estima-
tion using well logs.

Gaussian process with radial basis function kernel (GPR)

Gaussian process is a nonparametric regression technique 
which uses a Bayesian approach to capture different relations 
between inputs and outputs (Schulz et al. 2018). Yu et al. 
(2017) successfully applied Gaussian process regression for 
TOC estimation using well logs in shale gas reservoirs.

Performance evaluation metrics

The following three performance evaluation metrics were 
computed for each model and the results were compared.

(4)G =

C∑

i=1

p(i) ∗ (1 − p(i))

	 I.	 Root-mean-square error (RMSE): It is the root of 
average squared difference between actual outputs 
(Yi) and the predicted output (Ŷi) . The model with 
lower value of RMSE is considered better as com-
pared to a model having higher value of it.

	 II.	 Coefficient of Determination (R2): It is the propor-
tion of variability in output variable explained by the 
machine learning model. The value of R2 is reported 
between 0 and 1, and a model with higher value of 
coefficient of determination is considered more accu-
rate.

	 III.	 Mean absolute error (MAE): It is the average of 
the absolute difference between actual outputs (Yi) 
and the predicted output (Ŷi) . This metric avoids the 
unnecessary effect of outliers which may be present 
in the first two evaluation measures.

Predictor importance estimation

•	 Predictor importance estimation has been performed 
using the input perturbation-based neural network sen-
sitivity analysis. The sensitivity analysis finds that vary-
ing certain input parameters from their minimum to their 
maximum will have a greater/less effect on the result-
ing network (Montaño and Palmer 2003; Gedeon 1997). 
Using this approach, the relative degree of influence of 
the input parameters toward the prediction of the TOC, 
Tmax and VR parameters was determined based on the 
best trained model.

Results and discussion

Different machine learning techniques have been applied to 
predict source rock quantity represented by TOC. Moreo-
ver, the maturity parameters represented by the maximum 
pyrolysis temperature Tmax and vitrinite reflectance have also 
been examined. The best models found for TOC, Tmax and 
%VR prediction are presented in Table 5.

TOC prediction

Comparison of ML techniques performance

The training and testing results of selected ML techniques 
for TOC prediction are shown in Fig. 5a, b, respectively. In 
Fig. 5a, RF is observed to produce the best results in terms 
of accuracy (R2 value), with the highest testing accuracy of 
0.964. Its MAE value of 3.33 is lower than SVM and GPR. 
Performing competitively is BRNN which produced testing 
accuracy of 0.963 and MAE values of 3.25. SVM, GPR and 
linear regression (LR) demonstrated good performance with 
testing accuracy of near 0.950 and above and MAE values 
between 3.31 and 3.35. In general, the five ML techniques 
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performed exceedingly well with near or above 0.950 testing 
accuracy (R2) for TOC prediction. No overfitting is observed 
in the prediction as shown in both graphs (Fig. 5a, b) of test-
ing and testing accuracies.

The plots of actual and predicted TOC using the selected 
ML as found as follows: RF in Fig. 6a, BRNN in Fig. 6b, LR 
in Fig. 6c, SVM (Linear) in Fig. 6d and GPR in Fig. 6e. Most 
of the predicted results generated from these techniques were 
found to be close to the actual results except for a few TOC 
values predicted by BRNN, LR, SVM and GPR. Interest-
ingly, most TOC predicted values tend to plateau in the LR, 
SVM and GPR models.

The inclusion of lithology in our modeling has separated 
the TOC into three intervals, each of which represent sam-
ples from the respective lithology, thus contributed greatly to 
TOC prediction, as shown in the testing results of RF’s pre-
dicted TOC plotted with actual TOC in Fig. 6a. This trend is 
reflected in the testing results of BRNN, LR, SVM (linear) 
and GPR in Fig. 6b–e, respectively.

Random forest in TOC prediction

The best results of TOC prediction are found using the ran-
dom forest algorithm. Figure 7a shows that the results start 
to converge when the number of trees used are more than 25. 
The fluctuations in R2 across the number of trees are below 
0.005, which can be considered negligible, thus demonstrat-
ing the stability of the results across the number of trees.

The optimized hyperparameters are minLS = 1 and 
numPTS = 7, where the estimated objective function values 
over various combinations of minLS and numPTS are dis-
played in Fig. 7b. numPTS denotes the number of predic-
tors to consider at each node when growing the trees, while 
minLS denotes the depth of the tree.

Figure 8a shows the minimum objective value against the 
number of function evaluations where the algorithm is able 
to find good models using as little as 11 function evalua-
tions, demonstrating the computational requirements of RF 
for TOC prediction. The minimum value of the objective 
function was found around 0.0064 as shown in Fig. 8a.

Generally, from the lithological point of view, the organic 
matter tends to be concentrated in sediments with specific 
sedimentological and depositional history. Coal and coaly 
sediments are characterized by higher TOC content which 
may reach to more than 70% in many cases. On the other 
hand, clastic sediments like shale, shaly materials and 

Table 5   Best models and performance metrics values

Pre-
dicted 
quantity

Model Parameters Training R2 Training RMSE Training MAE Testing R2 Testing RMSE Testing MAE

TOC Random forest 40 Trees 0.9939 1.8510 1.3100 0.9637 4.1600 3.3290
Tmax BRNN 1 hidden layer, 19 

neurons
0.8336 1.8795 1.3519 0.8283 1.8520 1.3512

VR BRNN 2 hidden layers, 3 and 5 
neurons

0.6482 0.0425 0.0317 0.6357 0.0401 0.0326

Fig. 5   Results for TOC prediction a testing, b Training
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Fig. 6   Plot of actual TOC versus predicted TOC using a RF, b BRNN, c LR, d SVM and e GPR
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mudstones normally have lower TOC content if compared 
with coaly sediments (up to 30–40%).

Therefore, it has been observed that for RF, the lithology 
types have the greatest importance in TOC prediction due to 
the impacts of lithology in the total organic matter content 
(TOC). Increasing of TOC values particularly in coal with the 
highest TOC values above 70% has showed the higher degree 
of predictors’ importance (Fig. 8b). The next highest predictor 
estimates have been followed by other lithology materials like 
mudstones and shaly coal with lower TOC values between 15 
to 45%. The prediction of the TOC content has been affected 
by other well-log data such as Gamma Ray and resistivity 
logs (Fig. 8b). This is consistent with Fig. 6a where coal has 
highest TOC interval values followed by shaly coal and mud-
stones. RF regarded DTC to have least importance with a 
negative predictor importance score for TOC prediction.

BRNN in TOC prediction

The performance of BRNN was quite similar to the random 
forest algorithm in predicting the TOC values. The BRNN 

algorithm starts to converge during training at 5 neurons 
(Fig. 9). Note that while the fluctuations look drastic on the 
plot, these fluctuations are in fact small with highest differ-
ence values of about 0.005, demonstrating the stability of 
BRNN results.

This study shows that RF-based ML model is quite suit-
able for the prediction of TOC as compared to previous 
studies where mostly SVM and ANN regression models 
have been applied for prediction of TOC (Ge et al. 2015; 
Mahmoud et al. 2017; Negara et al. 2016; Bolandi et al. 
2017; Elkatatny 2018). The results of RF-based model are 
well comparable with the previous studies having high R2 
values and low values of training and testing MAE values 
(Ge et al. 2015; Mahmoud et al. 2017; Negara et al. 2016; 
Bolandi et al. 2017). Moreover, the reported importance of 
different predictors for developing the model also provides 
an insight about nature of data and dependency of TOC on 
different factors for this data set.

Fig. 7   a RF performance in terms of accuracy and RMSE versus no. 
of trees, b objective function model for RF

Fig. 8   a Min objective versus number of function evaluations of RF 
in TOC prediction, b predictors’ importance estimates using RF in 
TOC prediction
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Tmax prediction

Comparison of ML techniques performance

The performance of selected ML algorithms was found to 
be poor for predicting the values of Tmax except for BRNN 
with one hidden layer, producing 0.834 and 0.828 R2 values 
for training and testing, respectively (Table 5). Figure 10a 
and b shows that the best testing and training results, respec-
tively, in terms of accuracies (R2) and MAE, are produced by 
BRNN with two hidden layer, achieving values of above 0.8 
accuracy and less than 1.5 MAE. Apart from one-hidden-
layer BRNN, all other ML techniques achieved R2 values 
of less than 0.7. The training results presented in Fig. 10b 
showed no evidence of over fitting for BRNN.

BRNN in Tmax prediction

Using one hidden layer in BRNN, coefficients of determi-
nation (R2) of above 0.8 can be achieved in Tmax predic-
tion with 19 neurons in the one hidden layer, as shown in 
Fig. 11a. Those with first and second layers with less than 
3 and 14 neurons, respectively, were found to have 0.6 or 
less testing accuracy. These results were not found to be 
overfitting as training accuracy was also found to achieve 
above 0.8 with 19 neurons. The best testing results were 
found with 5 and 19 neurons for first and second hidden 
layers, respectively. Figure 11b shows how close BRNN 
predicted Tmax values are to the actual values, demonstrat-
ing good performance from BRNN. The importance of 
depth in the maturity of source rock is well known due to 
increasing of temperature and pressure. Therefore, it has 
been noticed that the depth factor is the top most impor-
tant predictor for Tmax prediction (Fig. 11c). Moreover, 
resistivity and density logs are other important well-log 

parameters to be involved in the Tmax prediction (Fig. 11c). 
This is because the maturity of source rock and the expul-
sion of hydrocarbon have great impact on the resistivity 
and other logs measured in the borehole.

%VR prediction

Comparison of ML techniques performance

BRNN with two hidden layers produced the best result 
as compared to the other five ML techniques (Fig. 12a). 
Achieving testing accuracy (R2) and MAE values of 0.636 
and 0.033, respectively, has been observed (Table  5), 
with no evidence of overfitting in the training accuracy 

Fig. 9   BRNN performance in terms of accuracy and RMSE versus 
no. of neurons in TOC prediction

Fig. 10   Results for Tmax prediction a testing, b training
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(Table 5, Fig. 12b). The other ML techniques produced 
results with less than 0.5 R2 values.

BRNN in VR prediction

BRNN with 2 to 5 neurons in the first hidden layer and 
with 5 or 15 to 20 neurons in the second hidden layer can 
achieve a testing accuracy of above 0.6 (Fig. 13a). It has 
been observed that slightly better accuracy during training 
in the region of low neurons – 2 to 5 neurons in both layers 
(Fig. 13b), which demonstrates the prediction is not overfit-
ting in the chosen model. The best testing results were found 
with 4 and 20 neurons for first and second hidden layers, 

respectively. The comparison between the actual VR and 
predicted VR observations is found to be close to actual 
ones (Fig. 14a). These results demonstrate that a two-layer 
BRNN produced a good predictive model for VR predic-
tion. The vitrinite reflectance, VR, as maturity indicator has 
a good relationship with depth increment. For great depth 
zones, normally VR values reflect more mature and then 
the measured resistivity logs are also increased. Figure 14b 
is in good agreement that depth and resistivity are the most 
important predictors for VR prediction, which are followed 
by RHOB and GR.

The source rock maturity prediction using machine 
learning techniques has not been much explored previously 

Fig. 11   a BRNN performance in terms of accuracy and RMSE versus no. of neurons in Tmax prediction, b plot of actual Tmax versus BRNN pre-
dicted Tmax, c Predictors’ importance estimates using BRNN in Tmax prediction
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(Hussein and Abdula 2018). The use of BRNN has shown 
very promising results for prediction of Tmax and %VR as 
maturity indicators (Table 5). However, it can be noticed 
that the other ML techniques including BRNN with one hid-
den layer were unable to capture the relationship between 
the predictors and the Tmax/%VR values. This suggests that 
the relationship between well-log data and rock maturity 
indicators is more complex which requires a high level of 
nonlinear modeling of the data that has been performed with 
multiple hidden layers of BRNN with different number of 
neurons in each layer.

The deep neural networks take longer time for training 
due to large number of parameters to be learnt. Hence, we 
experimented with a maximum of three hidden layers with 

various number of neurons in each hidden layer. The best 
results were found with two hidden layers and increasing 
the hidden layer did not help in improving the performance.

Currently, three different models were developed to 
predict TOC, Tmax and VR separately. Unlike RF, BRNN 
is capable of predicting more than one target simulta-
neously. But it did not perform as well as RF in TOC 
prediction. Furthermore, the three predictions require 
different set of attributes. For instance, TOC required 
lithology information and not depth while VR does not 
require lithology information but requires depth. As it is 
common knowledge that depth is not a predictor of TOC 
prediction, it would create an unnatural model when depth 
is used in developing model for TOC prediction, even if 
it achieves high accuracy. It is important to choose good 

Fig. 12   Testing results for VR prediction a testing, b training

Fig. 13   BRNN performance in terms of coefficient of determination 
(R2) versus no. of neurons in each hidden layer in VR prediction a 
testing, b training
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and relevant features that reflect the real world, for train-
ing the models.

Conclusion

This research has been conducted to demonstrate that 
ML techniques can be used for predicting TOC, Tmax and 
%VR values in the absence or missing of geochemical 
data. Geochemical and well-log data have been collected 
from three different formations from the Cretaceous–Pale-
ocene source rocks, Taranaki Basin, New Zealand. For 
TOC prediction, the best model achieved testing R2 of 
0.964 using RF with 40 trees. For Tmax prediction, one-
layer BRNN with 19 neurons in the hidden layers, respec-
tively, achieved testing R2 of 0.8283. A 2-layer BRNN 

with 3 and 5 neurons in the first and second hidden lay-
ers, respectively, achieved a testing R2 of 0.6357 for VR 
prediction. No evidence of overfitting was found in all the 
best models used. Moreover, all five techniques performed 
exceedingly well for TOC prediction with R2 above 0.96, 
BRNN with one hidden layer was the only ML technique 
able to achieve R2 above 0.8 for Tmax and BRNN with two 
hidden layers was the only ML technique able to achieve 
R2 above 0.6 for %VR prediction.

Therefore, this research has provided very good empiri-
cal evidence that ML techniques such as RF and BRNN 
can produce good models for predicting with high accu-
racy not only organic matter richness TOC but also the 
maturity indicators Tmax and %VR.

Geochemical data are few in availability due to the cost 
involved in conducting the necessary laboratory work as 
compared to the abundant well-log data. The challenge 
with using ML is the adequate availability of geochemical 
data to build a good model that can achieve prediction with 
high accuracy and confidence. When a good model has been 
obtained for prediction, it is possible to perform real-time 
TOC, Tmax and VR prediction with high accuracy, directly 
from the same wells used for model training without deriv-
ing these values from geochemical laboratory work.
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