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Abstract
To obtain the high-quality crude oil from the surface processing plants, oil and gas separation plants parameters need to be 
optimized, by minimizing the intermediate components, flash from the crude oil during primary and secondary separation 
processes. The aim of this paper is to present an accurate methodology for predicting optimized separation parameters in 
the multistage crude oil production unit. The new proposed methodology determines the optimum pressures of separators in 
different stages of separation and consequently optimizes the operating conditions. A dynamic simulator is used to generate 
the data set for a designed production facility. Then, an optimization algorithm is used to build an optimum artificial neural 
network model to predict the optimum operating conditions that will maximize the liquid recovery. The ultimate objective 
of this work is to have an advisory system for optimizing liquid recovery from the production facilities.

Keywords Stage separation · Optimum pressure · Optimum temperature · White box artificial neural network · Advisory 
system

Abbreviations
API  American Institute of Petroleum 

Gravity
ANN  Artificial neural network
GOR  Gas oil ratio
Bob  Formation volume factor
N  Number of stages
ANN  Artificial neural networks
FN  Functional network
SVM  Support vector machines
Dt  Decision tree
FL  Fuzzy logic

AAPE  Average absolute percentage error
PC  Pseudo-component
b  bias
w  weight
X  Input value to neural network
°R  Rankine temperature degree

List of symbols
P  Pressure
T  Temperature
ω  Acentric factor
K  Equilibrium constant
y  Gas mole fraction
x  Liquid mole fraction
n  Total mole fraction in the flow 

stream
z  Component mole fraction
i-  Isomer
n-  Normal
c1, cdisp  Fitting parameters
σ  Interfacial tension
μ  Viscosity
ρ  Density
D  Phase droplet size
k, a, c, F, d  Two-phase equilibrium constants
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a1, a2, a3, a4, a5, a6, a7  Fitting parameters from the non-
linear regression

R2  Coefficient of determination

Subscripts
ri  Reduced
ci  Critical
i  Component
wh  Wellhead
atm  Atmospheric
p  Pressure
Disp  Displacement
tr  Triple point temperature
opt  Optimum
norm  Normalized
min  Minimum
max  Maximum
u  Min range value of droplet size
v  Max range value of droplet size

Introduction

The produced oil composition changes along its journey 
from the reservoir to surface facilities due to the change 
in pressure and temperature. Crude oil at downhole condi-
tions (high pressure and temperature) may have dissolved 
gas that maintains the oil light components in equilibrium 
with the heavier components. When the pressure is reduced, 
the gas flashes from the oil changing oil composition and 
properties drastically. Oil and gas separation plants should 
be optimized to maintain high-quality oil by reducing the 
intermediate components flashing from the oil during the 
stage separation period. This can be achieved by optimizing 
the following parameters: number of stage separations, pres-
sure, and temperature of each stage (Bahadori et al. 2008).

Downhole oil has high gas oil ratio (GOR) compared to 
the one at the surface (Abdel-Aal et al. 2003). The pressure 
losses due to potential and friction in the production tub-
ing reduce the pressure of the oil stream that goes to the 
GOSP (Gas Oil Separation Plant). Separator pressure can 
be controlled and optimized using the backpressure control 
valve to maximize the amount of dissolved gas in solution 
to maximize the liquid recovery. Crude oil consists mainly 
of light components such as methane, ethane; intermediate 
components such as propane, butane, pentane, hexane; and 
heavy components that have C7+ components. The main 
objective of surface facilities is to separate the methane and 
ethane gas from the crude oil and maintain the intermediate 
components to maximize the liquid recovery. Maintaining 
the intermediate components in oil enhances the oil quality 
(higher API) leading to the higher oil price. Several separa-
tion methods can be used to separate the gas from oil such as 

differential and flash separation tests. In differential separa-
tion methods, gas is removed from the oil as the pressure is 
reduced. Previous research showed that differential separa-
tion maximized the recovery of the intermediate and heavier 
components from the oil and higher stock tank oil amount 
could be obtained (Clark 1969). Ahmed (2001) stated that 
in the differential separation methods, the separation of gas 
from oil at high pressures will help maintain to the inter-
mediate and heavy components in the oil. However, the dif-
ferential separation method is very expensive compared to 
the flash separation method as the former is difficult to be 
implemented in the field operations (Abdel-Aal et al. 2003).

Table 1 summarizes the previous work done on GOSP 
optimization along with the equations or AI models used. 
Also Table 1 lists the modeling approach that was used and 
pros and cons of each model.

This paper is organized as follow: first section will 
explain the current empirical correlations to estimate GOSP 
parameters, second section will show the proposed artificial 
intelligence technique, third section will demonstrate and 
discuss the results.

Empirical correlations

The optimum number of separation stages is a function of 
the oil composition, well head pressure; therefore, it may 
differ from field to another (Gunnerud et al. 2012). Dur-
ing GOSP design, well head pressure declination with time 
should be considered as it impacts the separator entry pres-
sure (Arnold and Stewart 1999).

Table 2 shows the steps to determine the optimum sepa-
ration conditions of pressure and temperature using two-
phase flash calculations. The optimum separator pressure 
that yields the maximum liquid recovery can be determined 
from the flash calculations using the vapor/liquid equilib-
rium method. As listed in the table, the first step is to deter-
mine the reduced properties of the gas, reduced pressure 
and reduced temperature. The two-phase flash calculations 
depend highly on the equilibrium constants between the 
liquid and gas phases (k). The two-phase equilibrium con-
stant can be determined as shown in Table 2 (Abhvani and 
Beaumont 1987) using the gas mole fraction (yi) and liquid 
model fraction (xi). The second step is the material balance 
calculations in which the optimization will be done on the 
separator pressure and temperature that maximize the liquid 
recovery. Table 3 shows the critical properties Pci and Tci 
and Ttr listed in the previous equations that can be used to 
calculate the k-values at a given pressure and temperature to 
optimize the number of separation stages and the pressure 
and temperature of each separator.
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Artificial intelligence

The modern trend in data analytics and mining is integrat-
ing multi-dimensional and multi-modal data for value-
added decision making in petroleum engineering appli-
cations. Over the years, various AI techniques have been 
implemented and attracted attention in various areas of 
geosciences and petroleum engineering applications (Pas-
sos et al. 2014). Many successful implementations of AI 
techniques in real oil and gas cases have attracted consider-
able interest in applying these techniques to predict chal-
lenging parameters in the petroleum industry. Some of the 
domains of the petroleum engineering in which AI tech-
niques brought new values includes, porosity–permeabil-
ity predictions (Abdulraheem et al. 2007; Nooruddin et al. 

2013; Helmy et al. 2013; Anifowose et al. 2013), hydraulic 
flow unit identification (Shujath Ali et al. 2013), geome-
chanics parameters estimation (Yang and Rosenbaum 2002; 
Sonmez et al. 2004; Abdulraheem et al. 2009; Cevik et al. 
2011; Tariq et al. 2016a, 2017a, b), geophysical well logs 
estimation (Tariq et al. 2016b; Elkatatny et al. 2018), well 
test parameters estimation (Artun 2017; Bazargan and Adibi-
fard 2017), asphaltene prediction (Fattahi et al. 2015; Ali-
mohammadi et al. 2017), water saturation prediction (Ade-
bayo et al. 2015; Baziar et al. 2016) and many other oil 
and gas applications (Ahmadi 2011, 2012, 2015a, b, 2016; 
Ahmadi and Shadizadeh 2012; Ahmadi et al. 2014a, b, cd, 
e, f, 2015a, b, c, 2017; Ahmadi and Ebadi 2014; Ahmadi and 
Bahadori 2015; Ahmadi and Mahmoudi 2016; Ali Ahmadi 
and Ahmadi 2016). A common traditional AI technique 
which applied in petroleum engineering applications are: 
artificial neural networks (ANN), functional network (FN), 
support vector regressions (SVR’s), decision trees (Dt’s), 
and fuzzy logic (FL).

Elmabrouk et  al. (2014) used regression analysis to 
develop a new correlation to predict the oil formation vol-
ume factor and bubble point pressure of the oil without the 
need for the full PVT data set. They only used gas–oil ratio, 
separator pressure, stock tank oil gravity, and reservoir tem-
perature. They obtained accurate results compared to the 
actual measured values. Elshafei and Awady (2013) used 
the neural network technique to predict the performance of 
the GOSP multistage separation facility. They developed a 
technique that can be used to plan and operate the oil and gas 
separation facilities at the surface. They predicted parame-
ters such as gas/oil ratio (GOR) in different stage separation. 
Ghaedi et al. (2014) used genetic algorithms to optimize the 

Table 2  Steps of two-phase 
flash calculations

Step Description Equations

1 Determine the reduced pressure (Pri) 
and reduced temperature (Tri)

Pri =
P

Pci

Tri =
T

Tci

2 Determine equilibrium constant
Two methods can be used ki =

1

Pri

e
5.37(1+�i)

(

1−
1

Tri

)

ki =
(

1

p

)(

10(a+cFi)
)

a = 1.2 + 4.5
(

10−4
)

p − 3.5
(

10−8
)

p2

c = 0.89 − 1.7
(

10−4
)

p − 3.5
(

10−8
)

p2

Fi = di

(

1

Tb
−

1

T

)

di =
log10

Pci

14.7
(

1

Ttr
−

1

Tci

)

3 Two-phase flash calculations ki =
yi

xi

Material balance
nl + ng = 1,

n
∑

i=1

xi =
n
∑

i=1

yi = 1

xinl + ying = zi

xi =
zi

1+ng(ki−1)

yi =
kizi

1+ng(ki−1)

Table 3  Properties of different components

Component Pc, psi Tc, °R Tb, °R

CO2 1071 547.91 350.743
N2 493.1 227.49 139.549
H2S 1300 672.45 383.503
C1 666.4 343.33 201.27
C2 706.5 549.92 332.51
C3 616 666.06 416.25
i-C4 527.9 734.46 470.78
n-C4 550.6 765.62 491.08
i-C5 490.4 829.1 542.12
n-C5 488.6 845.8 556.92
C6 436.9 913.6 615.72
C7+ 396.8 972.7 669.16
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separator pressure in multistage separation. They showed the 
use of genetic-based approach enhanced the oil separation 
process and it increased the separated oil API.

This study explores the comparative performance of state-
of-the-art and conventional AI techniques in the prediction 
of optimum separator pressure and the optimum number of 
stage separation of the GOSP that yields the maximum liq-
uid recovery. The outcome of this study serves to assist users 
of AI techniques to make informed choices on the appropri-
ate state-of-the-art techniques in petroleum production for 
improved predictions and better decision making especially 

when faced with limited and sparse integrated data. White 
box ANN was used to predict the optimum separation pres-
sure and temperature based on the fluid composition of the 
flow stream.

Several authors including Elmabrouk et al. (2014) and 
Elshafei and Awady (2013) proposed a black box type of 
AI models. In all these papers, authors only mentioned the 
approach they have used to train their models. Readers of 
their papers cannot use them to make a prediction on a new 
dataset. In this study, the ANN model is translated into a 
simple mathematical model by extracting optimized weights 

Fig. 1  Workflow of the pro-
posed research study to model 
optimum GOSP parameters
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and biases. This will allow readers to use ANN-based math-
ematical model to predict optimum separator pressure and 
temperature conditions by simply plug in the required input 
parameters without the need of using AI software to train 
ANN first and then make a prediction using trained model.

Optimum separator pressure prediction

Figure 1 shows the workflow that was followed to optimize 
the GOSP parameters of pressure and temperature.

To estimate the optimal value of optimum separator pres-
sure, the following procedure is used:

Step 1 Normalize input parameters between − 1 and 1. 
Input parameters are denoted here by ‘Input’. The general 
equation for normalization is given by Eq. 1.

(1)

Xnorm =

(

Inputmax − Inputmin

)(

X − Xmin

)

Xmax − Xmin

+ Inputmin

Inputmin = −1

Inputmax = 1

Fig. 2  Effect of water cut on 
oil recovery from the first-stage 
separation

Fig. 3  Effect of the number of 
stage separation on the extra oil 
recovery
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X is the input parameter, Xmin is the minimum value of 
trained input parameter and Xmax is the maximum value 
of the trained input parameter. Xmin and Xmax.
Step 2 Use the Empirical correlation shown in Eq. 8 
(Appendix 1) to find the optimal value of the pressure.
Step 3 Equation 8 gives optimum separator pressure in 
normalized form (Pnorm) which is in the range of [− 1 
to 1]. So, optimum separator pressure should be de-nor-
malized and transform into real value form by applying 
Eqs. 4 and 5.

Optimum separator temperature prediction

To estimate the optimal value of optimum separator tem-
perature, the following procedure is used:

Step 1 Normalize input temperature between [− 1, 1] as 
shown in Eq. 1.
Step 2 Use the Empirical correlation shown in Eq. 9 
(Appendix 1) to find the optimal value of the pressure.
Step 3 De-normalize optimum separator temperature into 
real value form by applying Eqs. 6 and 7.

Results and discussion

Prediction of the optimum GOSP parameters using 
analytical techniques

In this part, the number of stage separation that yields the 
maximum liquid recovery will be predicted as well as the 
effect of water cut. The optimum pressure and temperature 

of each stage separation will be determined also based on 
the maximum liquid recovery. Table 2 equation list was used 
in this prediction for the oil stream composition listed in 
Table 3. The following stream properties and conditions are 
used: oil flow rate = 66,000 BPD, oil viscosity = 0.55 cP, 
GOR = 910 MSCF/bbl, first-stage separation pressure = 640 
psi.

Effect of water cut on the liquid recovery (oil)

The effect of water cut on the liquid recovery from the first-
stage separation is shown in Fig. 2. The water cut highly 
affected the liquid recovery from the first-stage separation as 
shown in the figure. The liquid recovery dropped from 68.6% 
at zero water cut to 48% at 30% water cut of the flow stream. 
Assuming that the majority of the water will be separated 
from the first-stage separation and the oil entering the other 
stages is water free, the liquid recovery is no longer function 
of the well stream water cut. Water cut does not affect the 
number of stage separations, but it only affects the first-stage 
efficiency because it affects the amount of liquid to the gas 
molar ratio in the first-stage separation which, in turn, affects 
the equilibrium constant calculations. This example shows 
that precaution should be taken when higher water cuts are 
encountered during the separation process because the water 
will highly impact the process of oil separation. The major-
ity of oil fields starts producing with very low water cuts 
(some of them start with zero water cut). Due to water influx 
at later stages, the water production will increase dramati-
cally, and water cut may reach 95% or more in some fields. 
During the GOSP design phase, water cut change along the 
field life should be considered.

Fig. 4  Optimum pressure for 
the first-stage separation
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Effect of number of stage separation on the extra oil 
recovery

Figure 3 shows the effect of the number of stage separation 
on the liquid recovery from the GOSP. The extra recovery 
tested in this example is defined as the difference between 
the recovery between the two successive stages. Three stage 
separations did not yield in incremental oil recovery for the 
flow stream given in the tested example. The four-stage sepa-
ration was the optimum number that yields the maximum 
incremental oil recovery of about 3.5% excess recovery 
compared to 0.67% of the five-stage separation. Based on 

the field practice, if the incremental liquid recovery between 
the stage separations is less than 1%, the extra stage should 
not be considered because it will not be feasible from the 
economic point of view. Increasing the number of separation 
stages from three to four minimized the gas flash from the oil 
by keeping the gas in contact with the oil which maximized 
the oil recovery. Increasing the number of GOSP separa-
tions will allow for the small decrement in the separator 
pressures for the successive stages. As the liquid recovery is 
a strong function of the separator pressure, the flow stream 
coming from the wellhead or from the manifold should be 
adjusted based on the optimum separator pressure to yield 

Fig. 5  Optimum temperature for 
the first-stage separation

Fig. 6  Optimum pressure and 
temperature for the three stages



2987Journal of Petroleum Exploration and Production Technology (2019) 9:2979–2995 

1 3

Fig. 7  GOSP model
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the maximum liquid recovery. The flow stream pressure is 
a strong function of the wellhead pressure and the distance 
from the wellhead to the GOSP location. Pressure losses in 
the pipelines will reduce the pressure at the GOSP. Wellhead 
pressure depends on the flow mode. In the case of natural 
flowing well, it ranges from 100 to 500 psi. In artificially 
lifted wells, the wellhead pressure could be higher than 500 
psi.

Optimum pressure and temperature of the separation 
stage

The optimum separator pressure and temperature were cal-
culated based on the flash calculations considering the well 
stream of constant composition. Composition variation dur-
ing field life can be adjusted by providing the new stream 
composition.

Table 4  Data statistics

Parameters Statistics

Min Max Range Mean SD

H2S 0.005 0.009 0.004 0.007 0.001
N2 0.000 0.000 0.000 0.000 0.000
CO2 0.001 0.002 0.001 0.001 0.000
C1 0.000 0.001 0.001 0.001 0.000
C2 0.003 0.006 0.003 0.005 0.001
C3 0.010 0.018 0.007 0.015 0.002
i-C4 0.003 0.004 0.001 0.004 0.000
n-C4 0.015 0.019 0.004 0.017 0.001
i-C5 0.008 0.009 0.001 0.008 0.000
n-C5 0.015 0.016 0.001 0.016 0.000
n-C6 0.019 0.019 0.000 0.019 0.000
C30+ 0.050 0.052 0.002 0.051 0.000
H2O 0.627 0.649 0.022 0.636 0.005
PC1 0.004 0.004 0.000 0.004 0.000
PC2 0.002 0.002 0.000 0.002 0.000
PC3 0.058 0.062 0.004 0.061 0.001
PC4 0.017 0.017 0.000 0.017 0.000
PC5 0.051 0.053 0.002 0.052 0.000
PC6 0.083 0.086 0.003 0.084 0.001
Optimum pressure 208.88 257.35 48.46 232.23 11.26
Optimum temperature 63.200 65.982 2.782 64.871 0.900

Table 5  Error analysis

Performance 
measure

Optimum separator pres-
sure

Optimum separator 
temperature

Training Testing Training Testing

R2 0.98 0.99 0.99 0.995
AAPE 1.6 1.4 1.1 0.65

Table 6  Neural network architecture

Neural network parameters Ranges

Number of inputs 9
Number of outputs 1
Number of neurons 10
Number of hidden layer(s) 1
Training algorithm Levenberg–Marquardt
Learning rate, α 0.12
Hidden layer transfer function Tan-sigmoidal
Outer layer transfer function Pure linear
Training ratio 0.7
Testing ratio 0.15
Validation ratio 0.15

Fig. 8  Training of ANN model to predict the optimum separator pres-
sure

Fig. 9  Testing of ANN model to predict the optimum separator pres-
sure
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The maximum liquid recovery was calculated based on 
the list of equations and steps in Table 2 at different separa-
tor pressures and temperatures and the equilibrium constant 
was calculated at these conditions. This method is very sim-
ple and accurate compared to the optimization of separa-
tion conditions based on wellhead pressure and stock tank 
atmospheric pressure.

Ling et al. (2013) provided an approximation to deter-
mine the optimum separator pressure based on the wellhead 
pressure. Applying their method for the tested example, 
where we have four-stage separation:

The wellhead pressure, in this case, was 300 psi, and the 
stock tank pressure is atmospheric pressure; N is the number 
of stage separation − 1. Then, the primary separator pressure 
can be determined as follows:

Comparing this pressure to the one obtained based on the 
flash calculations which is 655 psi, there is a big difference 
between the two methods. The method suggested by Ling 
et al. (2013) does not consider the changes in wellhead pres-
sure. In addition, Ling et al. (2013) method is not applicable 
for wells with very low wellhead pressures. On the other 
hand, our method does not depend on the wellhead pressure, 
the flow stream composition is needed, and the optimization 
process will be done independently.

(2)Ratiop =

[

pwh

patm

]
1

N

=

[

300

14.7

]

1

3

= 2.73

(3)pprimary =
pwh

Ratiop
=

300

2.73
= 110 psi

Figures 4, 5 and 6 show the optimum separator pressure 
and temperature for the different stage separations. The 
optimum pressure in the first-stage separation is 655 psi, 
which is usually higher compared to the wellhead pressure. 
Also, we should consider the pressure losses due to potential 
energy loss and friction in the pipelines as well as restric-
tions, orifices, and valves. This means the well stream should 
be pumped to increase the inlet pressure of the separator 
to achieve the required optimum value. The GOSP design 
should consider these optimum pressures to maximize the 
liquid recovery from the separation process. Based on the 
flow rate of the well stream, the temperature at the surface 
could be very close to the one required at the separator to 
maximize the liquid recovery. The effect of temperature in 
other stages is negligible compared to the pressure effect. 
The optimum separator conditions should be performed 
based on the maximum liquid recovery, and then other prop-
erties such as API and GOR can be calculated. However, if 
optimization was done based on the maximum API and the 
lowest GOR, the results should be close to one based on 
maximum liquid recovery. Bahadori et al. (2008) determined 
the optimum separator conditions based on flash equilibrium 
during the summer and winter for a specific oil type. They 
have done their optimization based on the maximum oil 
API and the minimum GOR, and they obtained an optimum 
separator pressure of 600 psi during the summer and 100 
psi during the winter time due to the change in temperature.

Prediction of the optimum GOSP parameters using 
artificial intelligence techniques

Artificial neural network technique was used to train and test 
the input data to extract the empirical correlation that can 

Fig. 10  Training of ANN model to predict the optimum separator 
temperature

Fig. 11  Testing of ANN model to predict the optimum separator tem-
perature
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be used to predict both pressure and temperature that yield 
the maximum liquid recovery from the GOSP. We created 
a GOSP model using industrial dynamic process simulator 
called “OmegaLand” to generate the data as shown in Fig. 7. 
The optimization was done for the first-stage separation in 
this study. Table 4 shows the statistics of the input data in 
which 70% was used for training and 30% used for testing. 
Figures 8 and 9 show the training and testing of the ANN 
model to predict the separator pressure. Figures 10 and 11 
show the training and testing of the ANN model to predict 
the separator temperature.

Optimum separator pressure estimation

An empirical expression based on weights and biases of the 
trained ANN model is developed to model and predict the 
optimum separator pressure. These weights (w1 and w2) and 
biases (b1 and b2) for optimum separator pressure prediction 
model are given in Table 7. The proposed optimum separa-
tor pressure ANN equation is given by Eq. 8 (Appendix 1). 
As mentioned before, the estimated optimum pressure value 
using Eq. 8 is normalized and it should be de-normalized 
and transformed into real form as shown below:

Mathematical model for optimum separator temperature

An empirical expression based on weights and biases of the 
trained ANN model is developed to model predict optimum 
separator temperature. These weights (w1 and w2) and biases 
(b1 and b2) for optimum separator temperature prediction 
model are given in Table 8. The proposed optimum separator 
temperature ANN equation is given by Eq. 9 (Appendix 1). 
As mentioned before, the estimated optimum pressure value 
using Eq. 9 is normalized and it should be de-normalized 
and transformed into real form as shown below:

(4)Popt =
(257.345 − 208.887)

(

Pnorm + 1
)

2
+ 208.887

(5)Popt = 24.229 ∗ Pnorm + 233.116

Table 5 shows the error analysis for both separator pres-
sure and temperature predictions. The coefficient of deter-
mination (R2) and the average absolute percentage error 
(AAPE) indicate that the empirical correlation extracted 
from the ANN model is accurate enough to predict the sepa-
rator pressure and temperature in both testing and training 
phases. The architecture of the trained ANN model is given 
in Table 6.

Conclusions

In this study, the optimum GOSP pressure and temperature 
based on the fluid composition was determined based on 
analytical and AI techniques. The separator pressure was 
found to have a significant effect on the oil recovery from the 
individual separation stage. Artificial neural network (ANN) 
was used to predict the optimum pressure and temperature 
with high accuracy. This means with the fluid composition 
as inputs, the separator pressure and temperature can be pre-
dicted using the developed AI model.
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Appendix 1: Empirical correlations

See Tables 7 and 8.

(6)Topt =
(65.982 − 63.2)

(

Tn + 1
)

2
+ 63.2

(7)Topt = 1.391 ∗ Tn + 64.591
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Table 7  Weights and biases of trained ANN model to predict optimum separator pressure

Neurons Weights between input and hidden layer, w1

H2S N2 CO2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5

1 1.886 0.615 1.386 0.440 1.067 1.613 1.475 1.357 0.580 0.439
2 − 5.297 5.076 − 3.424 1.086 − 3.384 − 3.865 − 1.481 − 1.056 1.815 0.928
3 1.838 − 4.314 − 1.134 − 2.842 3.488 1.230 1.695 1.088 0.030 − 0.490
4 − 2.249 1.713 0.911 0.490 − 0.079 − 2.970 − 0.926 − 0.567 − 0.580 0.544
5 − 2.912 − 4.539 0.495 − 3.002 10.091 − 1.639 8.651 − 4.492 − 14.72 − 0.771
6 − 0.817 − 2.181 1.424 2.320 1.177 − 2.893 − 1.280 1.348 3.220 0.834
7 2.361 0.453 − 0.066 1.068 2.622 0.571 − 0.965 0.305 1.385 − 0.355
8 0.940 − 4.334 1.212 − 1.087 2.605 − 0.605 − 1.312 − 1.547 − 1.448 − 1.511
9 5.430 − 3.047 0.023 − 0.700 − 1.365 1.836 − 4.429 1.947 7.984 − 2.856
10 3.434 − 1.678 1.878 − 3.103 − 0.906 0.031 − 7.559 1.733 10.191 0.606

Neurons Weights between input and hidden layer, w1

n-C6 C30+ H2O PC1 PC2 PC3 PC4 PC5 PC6

1 0.724 2.408 − 2.774 0.297 0.368 − 0.457 4.828 2.504 2.308
2 − 1.435 1.049 3.093 3.154 2.520 3.085 − 6.070 − 2.834 0.183
3 − 2.879 0.839 − 1.791 1.561 2.097 0.910 2.006 2.241 1.882
4 0.689 − 3.768 2.510 − 0.420 − 0.133 − 0.522 1.117 − 0.300 − 2.751
5 − 3.266 − 3.687 − 0.671 6.156 6.278 4.579 1.187 3.894 0.347
6 − 2.360 1.911 − 0.394 1.674 1.382 0.504 − 0.046 1.135 1.114
7 0.026 1.516 − 0.873 − 1.430 − 0.573 − 0.924 3.174 1.039 0.396
8 1.608 − 4.269 1.680 − 1.182 − 1.990 − 0.629 1.735 − 1.975 − 3.789
9 0.997 2.686 − 1.637 − 3.268 − 2.579 − 2.307 0.663 − 3.563 − 0.162
10 0.068 2.163 − 0.688 − 3.008 − 2.643 − 1.848 − 1.125 − 2.394 − 1.399

Neurons Weights between hidden and output layer, w2 Hidden layer bias, B1 Output layer bias, B2

1 0.287 − 3.248 − 9.491
2 − 2.586 − 3.325
3 − 3.177 − 3.188
4 − 2.911 − 0.508
5 − 22.750 − 0.465
6 5.002 − 0.637
7 4.534 1.382
8 − 1.763 − 3.093
9 17.802 0.109
10 13.406 − 0.785
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Table 8  Weights and biases of ANN model to predict optimum separator temperature

Neurons Weights between input and hidden layer, w1

H2S N2 CO2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5

1 − 0.080 − 2.924 3.067 0.530 0.683 0.512 − 0.159 − 0.372 0.546 − 0.139
2 0.578 1.805 0.610 1.196 0.644 0.331 − 0.531 − 0.753 − 0.242 − 0.807
3 1.317 0.770 − 1.708 0.633 2.799 − 1.993 − 2.113 − 1.746 − 0.982 − 0.230
4 − 0.951 0.089 1.342 − 0.677 − 0.723 − 0.706 − 1.022 − 0.921 − 0.564 0.205
5 − 1.702 1.429 4.134 0.114 − 5.266 1.362 0.058 0.176 − 0.904 1.943
6 − 0.653 − 0.729 0.442 − 0.019 − 0.596 0.035 0.302 0.193 − 0.302 0.547
7 3.079 0.356 − 6.760 2.126 3.752 − 3.030 0.307 0.495 1.525 1.062
8 − 0.395 − 4.289 7.586 − 1.825 − 3.082 1.262 0.550 1.867 − 0.611 2.364
9 2.535 − 1.475 − 1.906 − 0.037 2.899 − 3.103 0.598 0.722 − 0.118 1.430
10 0.486 − 0.414 0.314 0.491 1.098 − 1.032 − 1.205 − 0.555 − 1.423 − 0.732

Neurons Weights between input and hidden layer, w1

n-C6 C30+ H2O PC1 PC2 PC3 PC4 PC5 PC6

1 − 0.729 2.264 − 1.323 0.943 0.935 0.348 − 0.188 0.413 1.188
2 − 1.880 1.221 0.208 − 0.434 − 1.028 − 0.780 − 0.818 − 0.209 1.054
3 0.227 − 3.914 1.566 − 0.023 0.292 − 0.251 0.848 − 0.470 − 1.913
4 3.100 − 1.948 1.426 − 0.718 − 0.595 − 0.258 0.446 − 0.788 − 1.815
5 − 0.109 3.257 − 0.717 0.048 − 0.224 0.742 − 0.129 − 0.347 1.207
6 − 0.164 − 0.135 0.077 0.433 − 0.084 − 0.105 − 1.427 − 0.494 − 0.815
7 − 2.984 − 1.094 − 0.124 1.395 2.546 − 0.148 0.967 3.602 0.944
8 − 0.201 − 0.331 0.019 − 1.495 − 2.447 − 0.196 0.454 − 1.170 − 1.179
9 − 0.764 − 1.245 − 0.488 0.073 0.853 − 0.648 1.293 1.309 0.481
10 1.406 − 3.616 0.907 − 1.572 − 1.232 − 0.415 1.368 − 1.474 − 2.587

Neurons Weights between hidden and output layer, w2 Hidden layer bias, B1 Output layer bias, B2

1 − 3.542 − 0.893 − 5.723
2 − 0.114 − 0.396
3 2.605 0.054
4 − 1.166 0.118
5 − 10.259 − 0.738
6 − 1.872 0.310
7 11.173 0.681
8 − 6.947 0.585
9 9.923 0.086
10 6.139 − 0.884
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Appendix 2: Error metrics

Average absolute percentage error (AAPE) is defined as 
follows

Root-mean-square error (RMSE) is defined as follows

where Xmeasured is the measured value and Xpredicted is the 
estimated value from the models. k is the total number of 
data points.

Pearson correlation coefficient CC is defined as follows

where x and y are two variables.
Coefficient of determination R2 is defined as follows
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