
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2020) 10:829–845 
https://doi.org/10.1007/s13202-019-00805-3

ORIGINAL PAPER - EXPLORATION GEOPHYSICS

Use of maximum likelihood sparse spike inversion and probabilistic 
neural network for reservoir characterization: a study from F‑3 block, 
the Netherlands

Prabodh Kumar Kushwaha1 · S. P. Maurya2 · N. P. Singh2 · Piyush Rai1

Received: 18 July 2019 / Accepted: 16 November 2019 / Published online: 25 November 2019 
© The Author(s) 2019

Abstract
Maximum likelihood sparse spike inversion (MLSSI) method is commonly used in the seismic industry to estimate petro-
physical parameters in inter-well region. In present study, maximum likelihood sparse spike inversion technique is applied 
to the processed 3D post-stack seismic data from the F-3 block, the Netherlands, for estimation of acoustic impedance in the 
region between the wells. The analysis shows that the impedance varies from 2500 to 6200 m/s/*g/cc in the region which 
is relatively low and indicates the presence of loose formation in the area. The correlation between synthetic seismic trace 
and original seismic trace is found to be 0.93 and the synthetic relative error as 0.369, which indicate good performance 
of the algorithm. The analysis also shows low-impedance anomaly in between 600 and 700 ms time interval which may be 
due to the presence of sand formation. Thereafter, the probabilistic neural network analysis is performed to predict porosity 
along with multi-attribute transform analysis to estimate P-wave velocity and porosity in inter-well region. These param-
eters strengthen the seismic data interpretation which is very crucial step of any exploration and production project. The 
method is first applied to the composite traces near to well locations, and results are compared with well log data. After 
getting reasonable results, the whole seismic section is inverted for the P-wave velocity and porosity volume. The analysis 
shows anomaly in between 600 and 700 ms time interval which corroborates well with the low-impedance zone which 
may correspond to the reservoir. This is preliminarily interpretation; however to confirm a reservoir, there is need for more 
petrophysical parameters to be studied.

Keywords  Maximum likelihood sparse spike inversion (MLSSI) · Multi-attribute linear regression · Probabilistic neural 
network (PNN)

Abbreviations
MLSSI	� Maximum likelihood sparse spike inversion
PNN	� Probabilistic neural network
HRS	� Hampson Russell software
MLD	� Maximum likelihood deconvolution
CC	� Correlation coefficient
RMS	� Root mean square
MLFN	� Multilayer feed forward neural network
BLI	� Band-limited inversion
CI	� Colored inversion

LPSSI	� Linear programming sparse spike inversion
MBI	� Model-based inversion
RL	� Reinforcement learning

Introduction

The process of combining seismic and well log data has been 
a routine goal of researchers from last few years because of 
the movement from exploration to growth of existing fields 
containing several wells in the field. There are two types 
of integration, the forward modeling and inverse synthetic 
seismic data modeling which is known as seismic inversion 
and has been explained by several authors (Lindseth 1979; 
Oldenburg et al. 1983; Chi et al. 1984; Cooke and Schneider 
1983; Maurya et al. 2018). This study is related to the seis-
mic inversion methods which are classified as pre-stack and 
post-stack inversion methods. This study focuses post-stack 
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seismic inversion methods. The post-stack inversion meth-
ods were developed with the design of wavelet amplitude 
and phase spectra extraction algorithms (Lindseth 1979; 
Yilmaz 2001; Maurya and Singh 2015). These methods 
produced extraordinary resolution images of the subsurface, 
which enhanced the seismic interpretation and has signifi-
cantly reduced the drilling risk. The P-impedance and the 
density parameters are derived from these inversions.

P-impedance provides information about the properties of 
rock constituting the reservoir (Buxton et al. 2000; Maurya 
and Singh 2017; Anderson 1996). Though, there are several 
post-stack inversion methods like model-based inversion 
(MBI), band-limited inversion (BLI), linear programming 
sparse spike inversion (LPSSI), colored inversion (CI) and 
maximum likelihood sparse spike inversion (MLSSI) avail-
able, but in this study we have adopted maximum likelihood 
sparse spike inversion method because this is fast and gives 
better results than other inversion methods (Russell 1988; 
Russell and Hampson1991; Helgesen et al. 2000; Wang 
et al. 2006; Dossal and Mallat 2005; Maurya and Sarkar 
2016; Maurya and Singh 2018). The maximum likelihood 
sparse spike post-stack inversion method is dependent on 
the model and is based on the assumption that the reflectiv-
ity is made up of a sequence of major spikes merged on the 
background of minor spikes (Wang et al. 2006). The inver-
sion method simulates a synthetic seismic trace from the 

simplest possible reflectivity model that matches with the 
input seismic trace.

The sparse spike inversion methods use simple subsurface 
reflectivity model derived from the well log data, and convo-
lution theory to generate synthetic traces. The error between 
synthetic trace and seismic trace is minimized by introduc-
ing more and more spikes in the reflectivity series (Debeye 
and Riel 1990). Depending on minimization of error, the 
sparse spike inversion methods are divided into two groups. 
The first method is called linear programming sparse spike 
inversion (LPSSI) methods that use l1 norm solution for its 
implementation, and the second is called maximum likeli-
hood sparse spike inversion (MLSSI) methods that use l2 
norm solution for its implementation (Russell 1988; Sacchi 
and Ulrich 1995; Zhang and Castagna 2011). The aim of the 
sparse spike inversions is to estimate acoustic impedance in 
inter-well region by integrating well log and seismic data. 
The inverted impedance reveals a time-domain blocky sub-
surface structure which is directly related to the subsurface 
lithology (Goutsias and Mendel 1986; Wang 2010).

Further, the present study utilizes geostatistical meth-
ods to predict various petrophysical parameters (P-wave 
velocity and porosity) in inter-well region. The geostatisti-
cal methods use inverted impedance as input and predict 
petrophysical parameters away from the boreholes. These 
geostatistical approaches are further divided into four parts 

Fig. 1   Flowchart of the method-
ology used in the present study
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as single-attribute analysis, multi-attribute regression, 
probabilistic neural network (PNN) and multilayer feed 
forward neural network (MLFN). Of all these methods, 
multi-attribute regression and probabilistic neural network 
method are most appropriate and fast to perform (Russell 
et al. 1997; Maurya et al. 2019). The multi-attribute regres-
sion analyses more than one attributes at a time and develop 
a liner statistical relationship between well log property and 
attributes. These statistical relationships are then used to 
predict petrophysical parameters. On the other hand, the 
probabilistic neural network derives nonlinear relationship 
rather liner relationship as in multi-attribute case and predict 
petrophysical parameters. The probabilistic neural network 
(PNN) is a system of mathematical interpolation used to 
implement structure of a neural network (Soubotcheva and 
Stewart 2004; Hampson et al. 2001; Pramanik et al. 2004). 
The flowchart of the study is presented in Fig. 1. The present 
study is performed using Hampson Russell software (HRS) 
(ver 10.2), a CGG veritas software suit.

The study area

The present study makes use of offshore 3D seismic data 
from the F3 block, North Sea, the Netherlands, which is a 
gas-producing country. The survey was carried out in 1987 
in an area of 384 square km. The initial F3 dataset was noisy, 
and therefore, to eliminate the noises, a dip-steered median 
filter with a limit of two traces was applied to the data. There 
are four vertical wells within the survey area and all the 
wells had sonic and gamma ray logs. The depth of well log 
was about 1700 ms (Aminzadeh and De Groot 2006). The 
well location of F02-1 is 362 inline and 336 crossline, F03-2 
is 722 inline and 848 crossline, F03-4 is 442 inline and 1007 
crossline and F06-1 is 244 inline and 387 crossline. The seis-
mic survey area ranges from inline 100 to 750 and crossline 
300 to 1200. The essential data needed for the inversion 
procedure are P-wave sonic, density, S-wave sonic and check 
shot logs. Both seismic and well data are provided by an 
open source seismic repository portal (dGB Earth Sciences).

This survey was carried out for exploring oil and gas 
in the layer of Upper-Jurassic to Lower Cretaceous gener-
ally found below the certain interval. The upper part up to 
1200 ms is made up of reflectors belonging to the Miocene, 
Pliocene, and Pleistocene (De Bruin and Bouanga 2007; 
Wolak et al. 2013). The deltaic bundle is comprised of sand 
and shale, which has very high porosity (20–42%).

Maximum likelihood inversion

The maximum likelihood inversion is executed in two 
steps. In the first step, maximum likelihood deconvolution 
is applied to estimate the seismic reflectivity series. Then 
in the second step, reflectivity series is transformed into the 
acoustic impedance which is more important to infer data 
about the subsurface layer (Hampson and Russell 1985).

The maximum likelihood deconvolution is based on the 
notion that the Earth’s sequence of reflectivity consists of 
significant spikes surrounded in the background by minor 
spikes. The technique also assumes that only large spikes 
are essential because they show a deposition gap in the 
subsurface, and hence the goal of the maximum likelihood 
deconvolution (MLD) is to identify these large spikes from 
the seismic data. The seismic trace is expressed as follows.

where S(t) is time-dependent seismic trace, r(t) is reflectivity 
of earth dependent on time, W(t) is source wavelet dependent 
on time and n(t) is time-dependent noise component. Equa-
tion (1) can be written as follows:

Using the subsurface model assumptions, one can reduce 
the target function for the best solution, i.e., earth’s reflectiv-
ity series. The target function E can be written as follows:

where r(j) is reflection coefficient at jth sample, R is square 
root of reflectivity variance, m is number of reflections, t is 
total number of samples, N is square root of noise variance, 
n(j) is noise at jth sample, and λ is the likelihood that a given 
sample has a reflection (Zhang and Castagna 2011; Russell 
1988). By minimizing error as given by Eq. (3), one can 
obtain the earth’s seismic data reflectivity series. Thereafter, 
this reflectivity series is converted into acoustic impedance. 
If the reflectivity is given by r(i), then the resulting imped-
ance Z(i) can be given as follows.

Inappropriately, the use of Eq. (4) to estimate the reflec-
tivity from MLD produces unacceptable results, specifically 
in cases of more noise. Although the MLD algorithm extrap-
olates outside the wavelet band width to provide a broadband 
reflectivity estimate, at the bottom of the spectrum the relia-
bility is degraded by noise. Therefore, the impedance’s brief 

(1)S(t) = r(t) ∗ W(t) + n(t)

(2)S(t) =

t∑
j=1

r(j)W(t − j) + n(t), t = 1, 2,… ,N

(3)

E =

t∑
J=1

r2(j)

R2
+

t∑
J=1

n2(j)

N2
− 2m ln (�) − 2(t − 3) ln (1 − �)

(4)Z(i) = Z(i − 1)

[
1 + r(i)

1 − r(i)

]
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wavelength characteristics can be reassembled properly, but 
the general trend is poorly resolved. This is similar to the 
fact that the spike’s times on the reflectivity approximation 
are well determined than their amplitudes.

The independent understanding of the impedance trend 
can be used as a constraint to stabilize the reflectivity esti-
mate. Since r(i) < 1 , the equation between acoustic imped-
ance and reflectivity provided by r(i) < 1 can be derived as 
follows:

where Z(i) is the recognized trend in impedance, n(i) is an 
input trend error, and H(i) can be written as follows:

The maximum likelihood sparse spike inversion is a 
method that extracts broadband seismic reflectivity approxi-
mation and enables us to invert into an acoustic impedance 
segment by introducing linear limitations that maintains the 
main geological characteristics of borehole log information.

Multi‑attribute linear regression

Using seismic and well log information, the multi-attribute 
linear regression is used to predict the well log property in 
inter-well region. The method estimates and utilizes a range 
of seismic attributes from the seismic information to assess 
the connection between the attributes and characteristics of 
the well log. Then, in the inter-well region, this connec-
tion is used to assess petrophysical parameters. It is well 
known that the crossplot between the two is the easiest way 

(5)ln Z(i) = 2H(i) ∗ r(i) + n(i)

H(i) =

{
1, i < 0

0, i > 0

to derive the required connection between target information 
and seismic attribute for a particular attribute of the seismic 
data. Assuming that the attribute has a real connection with 
the target log, a straight line can be fitted as follows:

In this equation, the coefficients a and b are obtained by 
reducing the error of mean-square prediction as follows:

The calculated prediction error (E) is a metric of fitness 
for the regression line defined by Eq. (6). Further, the nor-
malized correlation coefficient can be defined as follows:

where

(6)y = a + bx

(7)E2 =
1

N

N∑
i=1

(
yi − a − bxi

)2

(8)� =
�xy

�x�y

(9)�xy =
1

N

N∑
i=1

(xi − mx)(yi − my)

(10)�x =
1

N

N∑
i=1

(xi − mx)
2

(11)�y =
1

N

N∑
i=1

(yi − my)
2

Table 1   List of attributes 
generated using single-attribute 
analysis for P-wave velocity

Sr. no. Target Attribute Error (m/s) Correlation (fraction)

1. Sqrt(P-wave) (inverted_main_Zp)**2 128.469345 0.859274
2. Log(P-wave) (inverted_main_Zp)**2 128.590775 0.855414
3. P-wave (inverted_main_Zp)**2 130.768112 0.857451
4. 1/(P-wave) inverted_main_Zp 132.664215 − 0.831746
5. Log(P-wave) inverted_main_Zp) 139.001083 0.834213
6. (P-wave)**2 (inverted_main_Zp)**2 142.085083 0.834825
7. 1/(P-wave) Sqrt(inverted_main_Zp) 142.686768 − 0.819614
8. Sqrt(P-wave) Inverted Zp 142.717499 0.827788
9. P-wave Inverted Zp 147.126892 0.815373
10. Log(P-wave) Sqrt(Inverted Zp) 149.441696 0.813780
11. Sqrt(P-wave) Sqrt(Inverted Zp) 152.914734 0.803001
12. 1/(P-wave) Log(Inverted Zp) 154.870148 − 0.802565
13. P-wave Sqrt(Inverted Zp) 157.036591 0.786233
14. Log(P-wave) Log(Inverted Zp) 160.289566 0.789352
15. 1/(P-wave) (Inverted Zp)**2 160.564713 − 0.834188
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and

(12)mx =
1

N

N∑
i=1

xi

(13)my =
1

N

N∑
i=1

yi

It should be noted that the linear requirement can be 
relaxed to some extent by implementing a nonlinear trans-
formation into either target data or attribute data or both.

The discussion till this point of time is linear where single 
attribute is utilized at a time. For multiple attributes to be 
used at the moment of the relationship estimation between 
target log and seismic attributes, the analysis would be as 
follows:

Table 2   List of attributes 
generated using multi-attribute 
regression for P-wave velocity

Sr. no. Target Final attribute Training error (m/s) Validation error (m/s)

1. Sqrt(P-wave) (Inverted Zp)**2 120.779972 137.834616
2. Sqrt(P-wave) Amplitude weighted phase 115.095175 134.815238
3. Sqrt(P-wave) Average frequency 111.342122 141.358826
4. Sqrt(P-wave) Apparent polarity 108.567997 141.454136
5. Sqrt(P-wave) Integrated absolute amplitude 106.380417 140.759496
6. Sqrt(P-wave) X-coordinate 104.720408 140.784787
7. Sqrt(P-wave) Instantaneous frequency 103.119352 139.656875
8. Sqrt(P-wave) Quadrature trace 101.830385 141.567930

Fig. 2   The Gamma log, density log, P-wave (blue) and S-wave (red) logs and comparison between original porosity (blue) and predicted poros-
ity (red) of well F06-1
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Assume that there are three attributes A1, A2 and A3 . The 
object log is modeled on the linear equation at each sample.

where in Eq. (14), the weight scan be derived by reducing 
the predicted mean-square error given by

The solution generates the standard normal equations for 
the four weights:

(14)L(t) = �0 + �1A1(t) + �2A2(t) + �3A3(t)

(15)E2 =
1

N

N∑
i=1

(Li − �0 − �1A1i − �2A2i − �3A3i)
2

(16)

⎡⎢⎢⎢⎣

�
0

�
1

�
2

�
3

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

N∑
A
1i∑

A
2i∑

A
3i

∑
A
1i∑

A
2

1i∑
A
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A
2i∑
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A
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∑
A
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A
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2
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A
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∑
A
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A
1i
A
3i∑

A
2i
A
3i∑

A
2

3i

⎤⎥⎥⎥⎦

−1

×

⎡⎢⎢⎢⎣

∑
L
i∑

A
1i
L
i∑

A
2i
L
i∑

A
3i
L
i

⎤⎥⎥⎥⎦

The mean-square error [Eq.  (15)] is calculated using 
derived weights, which is a goodness-of-fit metric for 
the transformation as does the standardized correlation 
described by Eq. (8), in the case of a single attribute, where 
the predicted log value is the x-coordinate and the actual log 
value is the y-coordinate.

Probabilistic neural network

The probabilistic neural network (PNN) is a method of 
mathematical interpolation that makes use of architecture 
of the neural network. The information used by PNN is a 
sequence of training data for every seismic sample in the 
examination windows for all the wells.
{
A11, A21, A31, L1

}
{
A12, A22, A32, L2

}
{
A13, A23, A33, L3

}
⋮{

A1n, A2n, A3n, Ln
}
,

Fig. 3   Crossplot between 
original porosity and predicted 
porosity of all four wells
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There are three attributes and n training examples. For 
each example, the Li values are the calculated target log val-
ues. For a given training data, the PNN assumes that all new 
output log values can be written as an undeviating combina-
tion of the log values in the training data. For an innovative 
instance of measured information with values of attributes.

The innovative measured log value is estimated by

where

x =
{
A1j,A2j,A3j

}
,

(17)L̂(x) =

∑N

i=1
Li exp

�
−D

�
x, xi

��
∑N

i=1
exp

�
−D

�
x, xi

��

(18)D
(
x, xi

)
=

3∑
j=1

((
xj − xij

)
�j

)2

D (x, xi) reflects the distance between the point of entry 
and each point of training, xi, in multi-dimensional space 
covered by the attributes. The value D (x, xi) is differentiated 
and scaled by an amount that can vary for each attribute.

Equations (17) and (18) define the use of the PNN net-
work. The network training consists of the ideal set of 
parameters for smoothing �j . The standard for these param-
eters is that the calculated network should have the lowest 
validation error.

The authentication outcome for the mth target example 
is given by

This is the mth target example estimated value when the 
example is excluded from the training data. As this exam-
ple’s value is known, the prediction error can be calculated 
for that example. By repeating this process for each of the 

(19)L̂m
�
xm
�
=

∑
i≠m Li exp

�
−D

�
xm, xi

��
∑n

i≠m
exp

�
−D

�
xm, xi

��

Fig. 4   Maximum likelihood 
sparse spike inversion analysis 
which is showing very good 
correlation (0.93) with very less 
error 0.369
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training examples, we can calculate the complete prediction 
error for training data. (20)EV

(
𝜎1, 𝜎2, 𝜎3

)
=

N∑
i=1

(Li − L̂i)
2

Fig. 5   A single crossline from the input 3-D volumes. The upper plot 
shows the post-stack seismic data. The lower plot shows the seismic 
inversion result, which is an attribute for this analysis and inversion 

result of well F02-1 showing low impedance and matching of well to 
seismic P-impedance results. The color scale is acoustic impedance
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The error of prediction is based on selecting the param-
eters, �j . This value is minimized using a nonlinear conju-
gate gradient algorithm described in Masters (1994, 1995). 
The network calculated is the minimum validation error. The 
greatest issue with PNN is that it carries all its training infor-
mation and compares each output sample with each training 
sample (Specht 1990, 1991).

In short, PNN is a feed forward neural network with a 
complex structure. It consists of an input layer, a layer of 
pattern, a layer of summation, and an output layer. PNN has 
only one training parameter despite its complexity. This is a 
smoothing parameter of probability density functions (PDFs) 
used in the pattern layer to activate the neurons. Therefore, 
the PNN training process needs only one input–output signal 
transfer to determine the response of the network. Neverthe-
less, in terms of generalization efficiency, only the optimal 
value of the smoothing parameter gives the possibility of 
the correctness of the model’s response. The value of �j has 
to be estimated depending on the performance of the PNN, 
which is normally done iteratively. Two issues need to be 
addressed in the smoothing parameter estimation process. 
The first relates to the PNN pattern layer neurons choice 
of �j in probability density function (PDF). There are four 
possible approaches, i.e., one parameter for the entire model, 
one parameter for each class (Adeli and Panakkat 2009), 
one parameter for each data attribute, and one parameter 
for each attribute and one class. The second issue related to 
the estimation of the smoothing parameter for PNN is the 
calculation of the �j value foe which different procedures are 

available. For the probability density functions in the pat-
tern layer, the authors use the particle swarm optimization 
algorithm to estimate the matrix of smoothing parameters 
(Zhong et al. 2007) where the smoothing parameter adapta-
tion gap-based approach is used. Based on the gap calculated 
between the two nearest points of the data set, the authors 
have provide the formula for �j . The choice of smoothing 
parameter plays a crucial role in the probabilistic neural 
network training process. This fact is particularly impor-
tant when PNN has different parameters for each class, each 
attribute, each class and each attribute. The job of choosing 
smoothing parameters can then be considered as a problem 
of high-dimensional function optimization. The reinforce-
ment learning (RL) algorithm is an effective method to solve 
these problems.

Training and validation of PNN

In this section, we examine the problem of how to determine 
the correct number of attributes to be used. One can show 
that a multi-attribute transform with N + 1 attributes must 
always have a training error less than or equal to the trans-
form with N attributes. As more attributes are added, one 
can expect an asymptotically decreasing prediction error. Of 
course, while the added attributes continuously improve the 
fit to the training data, they may be unusable or worse when 
applied to new data not in the training set. This is occa-
sionally called overtraining and is described by Kalkomey 

Fig. 6   P-impedance (origi-
nal log) versus P-impedance 
(inverted log) crossplot
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Fig. 7   Training data for both wells. The curve on the left is the target P-wave log from the well. The center curve is the composite seismic trace 
from the 3-D volume at the well location. The right curve is the composite acoustic impedance from the seismic inversion

Fig. 8   Average error (m/s) of all 
the attributes from multi-attrib-
ute list for predicting P-wave
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(1997). Efficiently, using higher numbers of attributes is 
analogous to fitting a crossplot with progressively higher-
order polynomials. A number of statistical methods have 
been derived to measure the reliability of the higher-order 
attribute fits (e.g., Draper and Smith 1966). Inappropriately, 
most of these methods apply to linear regression and are 
not immediately applicable to nonlinear prediction using 
neural networks. For this reason, we have selected cross-
validation, which can be applied to any type of prediction. 
Cross-validation consists of dividing the full training data 
set into two subsets: the training data set and the validation 
data set. The training data set is used to derive the trans-
form, while the validation data set is used to quantity its final 
prediction error. The hypothesis is that overtraining on the 
training data set will result in a poorer fit to the validation 

data set. In our analysis, the natural subdivision of data is by 
well. In other words, the training data set comprises training 
samples from all wells, except some specified hidden well. 
The validation data set comprises samples from that hidden 
well. In the procedure of cross-validation, the analysis is 
repeated as many times as there are wells, each time leaving 
out a different well. The total validation error is the RMS 
average of the individual errors:

where EV is the total validation error, eVi is ith well valida-
tion error, and N is the number of wells in the analysis.

In this study, different types of errors are calculated and 
they are as follows:

Error Error is a statistical value associated with the target 
attribute pair. The pair with the best correlation (and lowest 
error) is listed at the top, followed by pairs with decreasing 
correlation (and increasing error). It is associated with the 
only single-attribute analysis as shown in Tables 1 and 3.

Training error Training error is the prediction error obtained 
by applying the model to the same data from which it is 
trained. In other words, training error is the error that one 
gets when he runs the trained model back on the training 
data. Training error is always less than the validation error 
(Tables 2 and 4).

Validation error The average predictive error of all the hid-
den wells is referred to as validation error. The validation 
error is the error associated with applying the PNN to the 
entire seismic data volume. The total validation error is the 
RMS average of individual errors. If validation error is low, 
slightly higher than the training error, then it shows good fit. 
All these errors are mean-square error.

Results and discussion

The study is performed in four steps: First, porosity log is 
predicted at one well location by using other well logs of 
the region. Thereafter, in the second step, ML sparse spike 
inversion is performed to estimate P-impedance. Further, 
multi-attribute regression is adopted to predict P-wave 
velocity and porosity away from the boreholes. In the last 
step, PNN is applied to the data and P-wave velocity and 
porosity is estimated. The output of each steps is explained 
in the following sections.

(21)E2
V
=

1

N

N∑
i=1

e2
Vi

Fig. 9   Probabilistic neural network analysis for P-wave prediction 
with a good correlation 0.93
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Fig. 10   Crossplot between 
actual P-wave versus predicted 
P-wave obtained from PNN

Fig. 11   P-wave prediction result at well F02-1 with indication of low-velocity zone and good matching of well to seismic velocity



841Journal of Petroleum Exploration and Production Technology (2020) 10:829–845	

1 3

Predicting porosity log from other porosity 
logs

A porosity log is predicted at a particular well location using 
other well log information in the area. This is performed to 
monitor capacity of some of the geostatistical methods. For 
this purpose, porosity log is predicted at well F06-1 location 
using information of wells F02-1, F03-2, and F03-4. This 
prediction is performed using single-attribute analysis and 
multi-attribute regression technique. Further, the predicted 
well log curve is plotted with actual well log porosity from 
well F06-1 for comparison between them and displayed in 
Fig. 2. The gamma log, density log, and P-wave and S-wave 
velocity logs are also plotted in Fig. 2. The crossplot between 
original porosity versus predicted porosity is shown in Fig. 3 
which shows a very good correlation of 0.99.

Maximum likelihood sparse spike inversion

In the inversion process, we have used only 200–400 inline 
and 300–399 crossline in which only two well F02-1 and 
F06-1 are present. The reason behind this is to reduce com-
putation time and cost. The maximum likelihood sparse spike 
inversion is applied to the post-stack seismic data from the 
F-3 block, the Netherlands. The analysis shows that the area 
impedance varies from 2500 to 6200 m/s*g/cc. The imped-
ance is relatively low which indicates the presence of loose 
formation in the region. The correlation coefficient is esti-
mated to be 0.93, and error is 0.370. The comparison of single 
trace inversion near to well location is presented in Fig. 4. The 
cross section of inverted impedance is shown in Fig. 5. The 
top figure shows post-stack seismic section at inline 362, and 
their inverted section is presented at the bottom of Fig. 5. A 
low-P-impedance zone near to 680 ms time highlighted by 
arrow can be seen from the inverted impedance section. This 
low-impedance zone may be due to the presence of reservoir 
zone, but this is initial interpretation and one cannot be sure 

Table 3   List of attributes 
generated using single-attribute 
analysis for porosity

Sr. no. Target Attribute Error (fraction) Correlation (fraction)

1. Sqrt(Porosity) (Inverted Zp)**2 0.033641 − 0.821203
2. Porosity Inverted Zp 0.034101 − 0.792100
3. Porosity (Inverted Zp)**2 0.034184 − 0.790955
4. Log(Porosity) (Inverted Zp)**2 0.034243 − 0.834654
5. (Porosity)**2 Log(Inverted Zp) 0.034653 − 0.720651
6. Sqrt(Porosity) Inverted Zp 0.034804 − 0.807313
7. Porosity Sqrt(Inverted Zp) 0.034809 − 0.782169
8. Sqrt(Porosity) Sqrt(Inverted Zp) 0.035818 − 0.790769
9. Porosity Log(Inverted Zp) 0.035835 − 0.767183
10. Log(Porosity) Inverted Zp 0.036549 − 0.802635
11. (Porosity)**2 Sqrt(Inverted Zp) 0.036893 − 0.727120
12. Sqrt(Porosity) Log(Inverted Zp) 0.036990 − 0.769988
13. (Porosity)**2 1/(Inverted Zp) 0.037066 0.694954
14. Sqrt(Porosity) Sqrt(Inverted Zp) 0.037860 − 0.778457
15. Porosity 1/(Inverted Zp) 0.038349 0.727210

Table 4   List of attributes 
generated using multiple-
attribute regression for porosity

Sr. no. Target Final attribute Training error 
(fraction)

Validation 
error (frac-
tion)

1. Sqrt(Porosity) (Inverted Zp)**2 0.032599 0.035539
2. Sqrt(Porosity) Apparent polarity 0.030744 0.035017
3. Sqrt(Porosity) Dominant frequency 0.029196 0.097361
4. Sqrt(Porosity) Amplitude weighted phase 0.027764 0.078778
5. Sqrt(Porosity) Filter 0.026970 0.064589
6. Sqrt(Porosity) Amplitude weighted frequency 0.026501 0.053721
7. Sqrt(Porosity) X-coordinate 0.026092 0.054028
8. Sqrt(Porosity) Instantaneous phase 0.025680 0.054048
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about the reservoir as more parameters are needed to char-
acterize it. Figure 6 shows crossplot between P-impedance 
(original log) versus P-impedance (inverted log). The r-square 
value in the crossplot is 0.84 which indicates good inversion 
result. The r square indicates the proportion of the variance 
in the dependent variable that is predictable from the inde-
pendent variable. The distribution of the scatter points in the 
crossplot indicates good performance of the ML inversion 
algorithm. Now, this inverted impedance is used as input to 
predict P-wave velocity and porosity away from the boreholes.

Prediction of P‑wave velocity with the help 
of inverted P‑impedance

P-wave velocity and porosity is predicted using geostatis-
tical methods. These parameters help to get more confi-
dence about the interpretation of subsurface features. The 

prediction is performed using inverted P-impedance as one 
attributes. First, P-wave velocity is predicted and then poros-
ity prediction is performed.

For P-wave prediction, we have used single-attribute anal-
ysis and multi-attribute regression method simultaneously. 
Firstly, we start training by inputting P-wave log of F02-1 
and F06-1 wells and post-stack seismic data as an internal 
attribute and inverted P-impedance as an external attribute. 
The training results are presented in Fig. 7. For the analysis 
purpose, a list of single-attribute analyses is generated and 
displayed in Table 1.

Thereafter, the multi-attribute regression analysis is 
applied to the data in which we have taken 8 attributes and 
8 operator lengths as threshold to predict P-wave velocity. 
The average error plot of all the multi-attributes is shown 
in Fig. 8. The list of all attributes with training error and 
validation error is shown in Table 2. We can take only two 
attributes from top of the multi-attribute list for the better 
result because we use only those attributes which follow a 
decreasing trend in the validation error curve (Fig. 8). Fig-
ure 9 shows a very good correlation (0.93) after applying 
probabilistic neural network.

The crossplot obtained from PNN between actual P-wave 
and predicted P-wave is shown in Fig. 10. The scatter points 
show valuable prediction results. The cross section of pre-
dicted P-wave velocity at inline 362 is shown in Fig. 11. The 
analysis shows that the area has P-wave velocity variation 
ranging from 1500 to 2600 m/s. This is again relatively low 
and indicates the presence of loose formation. A low-veloc-
ity zone is observed and marked at 680 ms time which may 
be due to the presence of reservoir in this zone. The P-wave 
velocity from well F02-1 is also plotted over the predicted 
section, and a good match is observed between them.

Porosity prediction with the help of inverted 
P‑impedance

Porosity prediction is also performed using probabilistic 
neural networks (PNN) method. The entire process is same 
as discussed earlier in section for the P-wave velocity predic-
tion. The list of single attributes with error and correlation 
is given in Table 3.

Further, the multi-attribute regression analysis is applied 
with 8 attributes and 8 operator lengths. The list of all attrib-
utes is shown in Table 4. Similar to P-wave prediction, we 
use 8 attributes for training the data and 2 attributes for vali-
dation because only 2 attributes follow a decreasing trend in 
the validation error curve.

Then probabilistic neural network is built for predicting 
the porosity by selecting two attributes together from top of 
multi-attribute list results because the validation curve is 
always decreasing with the well error curve. Comparison of 

Fig. 12   Correlation is 0.91 obtained from PNN analysis for predicting 
porosity
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predicted porosity with actual porosity is given in Fig. 12. 
The correlation coefficient is estimated to be 0.91 which 
shows a good correlation. The crossplot between actual 
porosity versus predicted porosity is shown in Fig. 13. The 
crossplot shows that the predicted porosity is following the 
trend of original porosity, sample by sample. This indicates 
good prediction results, and now, one can move to the pre-
diction of porosity volume. The cross section of predicted 
porosity is displayed in Fig. 14. The analysis shows that that 
area has porosity variation ranging from 20 to 42% which is 
comparatively large. This again shows the presence of loose 
formation. A high-porosity zone is observed and marked at 
680 ms time which corroborated well with low-impedance 
and low-P-wave-velocity zone. This anomalous zone may 
indicate the presence of reservoir, but for confirmation, one 
needs more petrophysical parameters to be studied.

Conclusions

In the present study, a variety of petrophysical parameters, 
i.e., impedance, porosity, velocity, are estimated from inver-
sion of processed 3D post-stack seismic data of F-3 block, 
the Netherlands, using maximum likelihood sparse spike 
inversion which is relatively fast and gives better results than 
other inversion methods. The analysis shows a correlation 
coefficient of 0.93 which indicates good performance of the 
algorithm. Further, the inversion of entire seismic section 
for impedance shows a relatively low impedance varying 
from 2500 to 6200 m/s*g/cc in the region which indicates 
the presence of loose formation in the area. The analysis 
suggests a low-P-impedance zone at 680 ms time which may 
be due to the presence of a reservoir.

Fig. 13   Crossplot between 
actual porosity versus predicted 
porosity obtained from PNN
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Thereafter, P-wave velocity and porosity prediction are 
performed using probabilistic neural network technique. 
The analysis shows a correlation coefficient of 0.89 and 0.93 
for P-wave velocity and porosity, respectively. The results 
show that the area has P-wave velocity varying from 1500 
to 2600 m/s and the porosity varying from 20 to 42%. The 
relatively low P-wave velocity and high porosity in the area 
indicate the presence of loose formation which is well cor-
related with low-impedance regime in the area. Further, the 
PNN analysis also shows an anomalous zone near to 680 ms 
time which may be due to the presence of reservoir zone and 
confirms the finding of ML inversion results. This is prelim 
interpretation based on a small volume of the data, so it 
cannot be denied that the other part of the region has some 
other characteristics.
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