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Abstract
Lithofacies are very influential in the transmission of fluids within the reservoir. The objective of this study is to use geosta-
tistical techniques of sequential indicator simulation (SISIM) a variogram-based algorithm (VBA), single normal equation 
simulation (SNESIM) and filter-based simulation (FILTERSIM) of multiple-point geostatistics (MPG) in developing realistic 
facies model. A reservoir sand package “Reservoir-E” was correlated across five wells in the field. Synthetic seismogram of 
well HT-1 was generated, and Horizon E picked on seismic section to produce time and depth surfaces of the reservoir. The 
conditional if statement to generate lithofacies was applied on the extracted volume of shale data within “Reservoir-E,” and 
the data were inputted in Stanford Geostatistics Modeling Software for facies modeling. The first realization from SISIM was 
converted to a training image used for MPG. Visually, the MPG algorithm of SNESIM and FILTERSIM produced realization 
that is substantially better and more realistic than the VBA of SISIM. The magnitude of correlation coefficients of algorithms 
was carried out using the mean and variance of realizations, the results revealed mean and variance magnitude of correla-
tion coefficients between SISIM and SNESIM with 0.8933 and 0.9637, SISIM and FILTERSIM with 0.8639 and 0.5097 
and SNESIM and FILTERSIM with 0.9717 and 0.8603. The results revealed a very good mean and variance magnitude 
of correlation coefficients between SISIM and SNESIM; good between SISIM and FILTERSIM; and very good mean and 
variance correlation coefficient between SNESIM and FILTERSIM. The qualitative interpretation of the model built with 
SNESIM and FILTERSIM clearly detects lithofacies in the field which makes them a better algorithm in facies modeling.
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Introduction

Facies model is an important part in reservoir characteri-
zation (Aliakbar et al. 2016). The connectivity of facies is 
very influential in the flow of fluids. As the quest for pro-
ducing reliable facies models in reservoir characterization 
increases, several facies models have been developed by 
different authors in reservoir characterization, yet only a 
few have explicitly characterized these reservoirs in terms 
of their heterogeneity. Over the past years, different geo-
statistical approaches have been invented to achieve this 
goal. Matheron (1973) introduced the basis on an algorithm 
that is known today as Gaussian simulation. It was after the 
mid-1980 that several efforts started on the algorithm that 

became the foundation of geostatistical modeling, indicator 
simulation (Journel and Alabert 1989), object-based mod-
eling (Haldorsen and Damsleth 1990). Despite having some 
shortcomings, variogram-based and object-based algorithms 
became popular in facies modeling over the years after their 
inventions (Hashemi et al. 2014). The popular variogram-
based methods are called two-point statistics (Liu et al. 
2004; Zhang 2008b) or traditional two-point geostatistics 
(Deutsch and Journel 1998).

Since reservoir properties are tied to facies and since 
facies are tied to fluid flow, it will be more appropriate 
to develop a facies model for the middle Miocene Reser-
voir-E in the Hatch Field before distributing properties; 
it is based on this note that the researcher is applying 
sequential indicator simulation (SISIM), single normal 
equation simulation (SNESIM) and filter-based simula-
tion (FILTERSIM) methods of two-point statistics and 
multiple-point geostatistics (MPG) in the Hatch Field off-
shore Niger Delta. The essence of the study is to produce 
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a realistic facies model of the field that will be condition 
to reservoir property distribution. Since variogram only 
measures linear continuity, variogram algorithms such 
as SISIM cannot capture curvilinear structures (Hashemi 
et al. 2014). This is the most critical setback associated 
with variogram-based algorithm. It is based on this limi-
tation of variogram-based algorithms that the SNESIM 
and FILTERSIM algorithm methods of MPG will be 
incorporated in the work to actually capture these cur-
vilinear structures. The MPG algorithms determine geo-
logical uncertainty, template scanning and nonstationar-
ity (Eskandaridalvand and Srinivasan 2010) in geological 
scenarios.

Geology of the study area

The Hatch Field is an oilfield in Nigeria. It was located in 
License block OPL XXX offshore Niger Delta (Fig. 1). The 
field covers approximately 154.24 km2 in an average water 
depth of 1000 m. The field was discovered in 1996, with 
government approval for its development given in 2002. The 
Niger Delta clastic wedge is believed to be formed along a 
failed arm of the triple junction that originally evolved dur-
ing the breakup of South American and African plates in the 
late Jurassic ((Burke et al. 1972) and (Whiteman 1982)). The 
Niger Delta is a wave and tidal dominated delta (Weber and 
Daukoru 1975; Doust and Omatsola 1990). The Niger Delta 
is divided into three formations, namely Benin, Agbada 
and Akata Formations (Fig. 2), representing prograding 

Fig. 1   Map showing location of Hatch Field offshore Niger Delta
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depositional facies that are distinguished by most authors 
on the basis of sand/shale ratios. The type sections of these 
formations are described in (Short and Stauble 1967), and 
the summary is given in numerous papers (Avbovbo 1978; 
Doust and Omatsola 1990; Kulke 1995).

Method of study

The data used for this study were constrained to well log data 
for five wells (5) with their log suits, deviation data, check shot, 
core data and seismic data. The seismic cube is rectangular with 
inline range of 2650–3809 and crossline range of 2520–3370. 
A reservoir package named Reservoir-E was delineated and 
correlated across all the wells in the field. A seismic-to-well 
tie was performed on the seismic section, and the Reservoir-E 
top Horizon picked to show the reservoir package on a seismic 
section. The volume of shale was calculated across all the wells, 
and conditional if statement was used to calculate the facies 
in all the wells. In the formulation of the facies model since 
the plot of brine permeability versus core porosity classified 

the environment of deposition into sand and shale the lithofa-
cies were also classified into sand and shale. The conditional 
if statement used is Facie is equal to if volume of shale is less 
than 0.05, 0.3, 0.1, 0.4 and 0.2 assign sand else shale for HT-1, 
HT-2, HT-4ST1, HT-3ST1 and HT-5. A simulation grid of 
dimension 100*100*10 was designed to meet the required reso-
lution need of simulation. The first realization of SISIM was 
converted to a training image that was used for SNESIM and 
FILTERSIM using Stanford Geostatistical Modeling Software. 
Facies models were developed from the computed volume of 
shale using Eqs. 1 and 2 (Asquith and Krygowski 2004).

where IGR = gamma ray index; GRlog = gamma ray reading 
from log; GRmin = minimum gamma ray; GRmax = maximum 
gamma ray; and Vsh = volume of shale.
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Fig. 2   Stratigraphic column 
showing formations in the Niger 
Delta (Modified from Owoyemi 
2004)
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The magnitude of correlation coefficient (Zayed 2017) 
between realization of two different algorithms A and E is 
given by

where Ā = mean 2(A), and Ē = mean 2(E).

Sequential indicator simulation (SISIM)

The work flow for SISIM involves picking a pixel where a 
lithology type is unknown, identifies a neighboring pixel 
with known lithology type, assigns weights to the neigh-
boring points, constructs a local cumulative distribution 
function (CDF) for the lithology type probability from the 
neighboring lithology type, extracts from the CDF of single 
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lithology type to occupy the empty pixel point, proceeding 
to step one and repeating the process until the entire simula-
tion grid is simulated (Zhang 2008a; Yu and Li 2012). The 
SISIM is not memory demanding like the multiple-point 
geostatistics methods and takes less time for simulation as 
compared to multiple-point geostatistics methods (Manchuk 
et al. 2011). The SISIM generates models that the highs 
are maximally disconnected from the lows, thus produc-
ing maximum entropy in their generated model (Caers and 
Zhang 2004).

Single normal equation simulation (SNESIM)

The single normal equation simulation algorithm (SNESIM) 
developed by Strebelle (2000, 2002) is a multiple-point geo-
statistics method, from the use of training images. It is an 
efficient pixel-based sequential simulation algorithm. The 
training image exported can be conditioned to hard or soft 
data or both.

For every location K = (x, y) along a random path, spa-
tial configuration of the local data values termed data 
event is recorded. Replicate that matches this event is done 
by scanning the training image. The replicates correspond-
ing to the central node values are used to calculate the 

Fig. 3   Training image from first realization of SISIM for Reservoir-E 
in Hatch Field

Fig. 4   Reservoir-E correlation across wells in Hatch Field

Table 1   Top and base of Reservoir-E in all the wells in Hatch Field

Well name HT-1 HT-2 HT-3ST1 HT-4ST1 HT-5

Top (ft) 8076.39 9112.08 9541.75 8692.93 10,226.50
Base (ft) 8170.55 9150.50 9593.18 8754.08 10,329.50
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Fig. 5   Seismic-to-well tie using checkshot of HT-1 Hatch Field

Fig. 6   Reservoir-E top picked on a 3D seismic volume of Hatch Field
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conditional probability of the central value, given the data 
event. The implementation of SNESIM requires significant 
CPU efficiency by performing this scanning before simula-
tion and saving the conditional probabilities in a dynamic 
data structure that is referred to as search tree. The method 
is used successfully in facies model (Park et al. 2013). The 
issue of memory is one among the limitations of SNESIM 
algorithm. In complex 3D, multi-facies cases, where large 
training images with strong data connectivity, the RAM 
demand may exceed the current hardware system, thus pre-
venting the algorithm from running. This limitation can 
be overcome eventually by the continuously increasing 
computer memory (Strebelle and Cavelius 2014).

Filter‑based simulation (FILTERSIM)

FILTERSIM is an MPS algorithm called filter-based simu-
lation (Zhang et al. 2006), the algorithm was proposed 
to solve the challenges posed by SNESIM which handles 
only categorical variable in simulation, and it is memory 
demanding when the training image is large with a large 
variety of different pattern. The FILTERSIM algorithm 

is far much less memory demanding, and it can handle 
both categorical and continuous variables during simula-
tion. FILTERSIM uses linear filters to classify training 
patterns in a filter score space of reduced dimensions. The 
algorithm reduces pattern dimensions by applying spe-
cial designed filters and lowering the dimensional space 
of the patterns. Coded patterns are then clustered, and a 
prototype is chosen for each grid node. This speeds up the 
search process and reduces the run time of the algorithm 
(Wu et al. 2008).

The proposed FILTERSIM algorithm is actualized in 
three major steps (Wu et al. 2008): filter score calcula-
tion, pattern classification and pattern simulation. The pro-
cess works by applying a set of filters to the template data 
obtained from scanning the training image. This produces 
a set of filter score maps, with each training pattern repre-
sented by a vector of score values. This is done to actually 
reduce the pattern data dimension from the template size to a 
smaller number of filter scores. The similar training patterns 
are clustered into a so-called prototype class, each of this 
class is being identified by a point-wise average pattern. In 
the course of sequential simulation process, the conditioning 
data event is retrieved with a search template of same size 

Fig. 7   Horizon E time surface map for Hatch Field
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like the one used for scanning the training image. The pro-
totype class similar to the conditioning data event is selected 
using some distance function. A training pattern sampled 
from that pattern class and pasted on the simulation grid. 
This simulation is actually based on pattern similarity.

Training image

Construction of 3D training image is challenging since 
most geological pattern is either in 1D or 2D; nevertheless, 
a code in MATLAB was used in the conversion of our train-
ing image from jpeg format to SGeMS format that will be 

Fig. 8   Horizon E depth surface map for Hatch Field

Fig. 9   Cross-plot of deposi-
tional facies in Hatch Field
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Fig. 10   Upscale facies for 
Reservoir-E for the five wells in 
Hatch field

Fig. 11   SISIM realization for Reservoir-E Hatch Field Niger Delta
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acceptable by the Stanford Geostatistical Modeling software 
in our modeling. In this study, the first realization of SISIM 
was converted from jpg format to SGeMS format and was 
used as a training image (Fig. 3).

Hard data conditioning

Primary data are direct measurement of targeted reservoir 
properties; for example, well log data are typical example 
of a primary data sets. The training image used in this study 
was conditioned to these hard data using Stanford Geosta-
tistical Modeling Software.

Results and discussion

Well correlation

The five wells HT-1, HT-2, HT-3ST1, HT-4ST1 and HT-5 
were loaded in Petrel environment displaying measured 
depth, gamma ray (black) and resistivity (red) logs, respec-
tively. The gamma ray log was used for our lithofacies, and 
the resistivity log was used to identify the presence of hydro-
carbons to confirm it as a reservoir. Reservoir-E was deline-
ated and correlated across all the wells (Fig. 4) to enable 
us produce a realistic facies model of the Hatch Field. The 
Reservoir-E tops and base in all the wells are presented in 
Table 1.

Fig. 12   SNESIM realization for Reservoir-E Hatch Field Niger Delta
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Seismic horizon interpretation

A seismic-to-well tie was generated (Fig. 5) with a good tie 
and Horizon E picked as Reservoir-E top (Fig. 6). The hori-
zons picked were used to create time and depth surfaces for 
Reservoir-E (Figs. 7, 8). The surface map revealed a ridge like 
structure (anticline) in the North-east and South-west that is 
separated by a syncline that trends North-west to South-east 
that divides the anticlinal structures (Fig. 8). The anticlinal 
structures are areas of interest for hydrocarbon exploitation.

Volume of shale analysis

The plot of brine permeability versus core porosity reveals 
two facies in the depositional environment (Fig. 9). The 
areas with lower permeability values are classified as shale, 

while those with high permeability are classified as sand. 
The plot reveals that the reservoir is dominated by sand 
facies with smaller fractions of shale. This was the basis 
for our interpretation of classifying the lithofacies into sand 
and shale.

The volume of shale calculated gave a proportion of sand 
to shale as 0.7232:0.2768. The result clearly shows that 
Reservoir-E is composed of 72.32% of sand and 27.68% of 
shale. These percentages reaffirm Reservoir-E as a potential 
reservoir in Hatch Field Niger Delta.

SISIM, SNESIM and FILTERSIM algorithm 
interpretations

The data loaded in Stanford Geostatistics Modeling Soft-
ware were up-scaled (Fig. 10), and the facies properties 

Fig. 13   FILTERSIM realization for Reservoir-E Hatch Field Niger Delta
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distributed using SISIM, SNESIM and FILTERSIM. The 
SISIM realization revealed poor connectivity in the litho-
facies distribution as compared to SNESIM and FILTER-
SIM (Fig. 11a–e). Qualitatively, the visual interpretation 
of the MPG algorithm of SNESIM and FILTERSIM pro-
duces realizations that are distinctly better than the popular 
variogram-based model (two-point statistics) ((Fig. 12a–e) 
and (Fig. 13a–e)). The five realizations for SNESIM and 
FILTERSIM clearly show good connectivity in lithofacies 
distribution within Reservoir-E of the Hatch Field. The mean 
and variance realization of the algorithms are presented in 
Tables 2, 3 and 4. The magnitude of correlation coefficient 
of algorithms was calculated using variance and mean of 
their realization as shown in Tables 5 and 6. The magni-
tude of correlation coefficient between SISIM and SNESIM 

yielded a value of 0.9637 for mean and 0.8933 for variance, 
0.5097 and 0.8639 for SISIM and FILTERSIM, and 0.8603 
and 0.9717 for SNESIM and FILTERSIM.

Conclusion

The study shows that Reservoir-E is characterized by chan-
nel sand with the presence of shale as seen from the realiza-
tion of SNESIM and FILTERSIM. These sands will allow 
transmission of fluid from one point to another. The SNE-
SIM and FILTERSIM algorithm show good continuity in 
lithofacies distribution when compared to the SISIM algo-
rithm which considers X and Y direction neglecting the Z 
direction. MPG simulations produce explicit facies models 

Table 2   Mean and variance 
realization statistics for SISIM 
algorithm

SISIM 
algorithm 
statistics

Realization 000 Realization 001 Realization 002 Realization 003 Realization 004

Mean 0.28999 0.56274 0.56501 0.23354 0.36771
Variance 0.205898 0.246066 0.245776 0.179001 0.232502

Table 3   Mean and variance 
realization statistics for 
SNESIM algorithm

SNESIM algo-
rithm statistics

Realization 000 Realization 001 Realization 002 Realization 003 Realization 004

Mean 0.55366 0.52457 0.54341 0.49417 0.53387
Variance 0.247123 0.249399 0.248118 0.249969 0.248855

Table 4   Mean and variance 
realization statistics for 
FILTERSIM algorithm

FILTERSIM 
algorithm sta-
tistics

Realization 000 Realization 001 Realization 002 Realization 003 Realization 004

Mean 0.49685 0.5334 0.48363 0.49358 0.47783
Variance 0.249993 0.248887 0.249735 0.249961 0.249511

Table 5   Variance magnitude of correlation coefficient between SISIM and SNESIM, SISIM and FILTERSIM, and SNESIM and FILTERSIM

Realization SISIM SNESIM SISIM FILTERSIM SNESIM FILTERSIM

0 0.205898 0.247123 0.205898 0.249993 0.247123 0.249993
1 0.246066 0.249399 0.246066 0.248887 0.249399 0.248887
2 0.245776 0.248118 0.245776 0.249735 0.248118 0.249735
3 0.179001 0.249969 0.179001 0.249961 0.249969 0.249961
4 0.232502 0.248855 0.232502 0.249511 0.248855 0.249511

|Corrcoef(SISIM, SNESIM)| = 0.9637 |Corrcoef(SISIM, FILTERSIM)| = 0.5097 |Corrcoef(SNESIM, FILTER-
SIM)| = 0.8603
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with sharp display of realistic geological constraints that 
are honored by sampling training image TI that was gener-
ated using SISIM. The multiple-point geostatistics is able to 
capture the X, Y and Z direction of Reservoir-E, thus giving 
more realistic geologic images than the mostly used SISIM 
algorithm.
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