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Abstract
Three-dimensional models of petrophysical properties were constructed using stochastic methods to reduce ambiguities 
associated with estimates for which data is limited to well locations alone. The aim of this study is to define accurate and 
efficient petrophysical property models that best characterize reservoirs in the Niger Delta Basin at well locations and 
predicting their spatial continuities elsewhere within the field. Seismic data and well log data were employed in this study. 
Petrophysical properties estimated for both reservoirs range between 0.15 and 0.35 for porosity, 0.27 and 0.30 for water satu-
ration, and 0.10 and 0.25 for shale volume. Variogram modelling and calculations were performed to guide the distribution 
of petrophysical properties outside wells, hence, extending their spatial variability in all directions. Transformation of pillar 
grids of reservoir properties using sequential Gaussian simulation with collocated cokriging algorithm yielded equiprobable 
petrophysical models. Uncertainties in petrophysical property predictions were performed and visualized based on three 
realizations generated for each property. The results obtained show reliable approximations of the geological continuity 
of petrophysical property estimates over the entire geospace.
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Introduction

Evaluation of petrophysical properties is a vital component 
in reservoir characterization in the oil and gas industries. 
The conventional petrophysical properties needed for hydro-
carbon exploration, characterization, field development, 
evaluation and reservoir management are lithology, poros-
ity, permeability, net-to-gross and fluid saturation (Emujak-
porue 2017). Detailed petrophysical property characteriza-
tion is critical during the oil and gas exploration, production, 
management and surveillance stages. Parameters such as 
porosity, permeability and volume of sand and shale that 
are of interest to geoscientists and engineers are products of 
complex chemical and physical processes. It is significant 
to understand their spatial orientations and scales as well as 
the uncertainties that characterize these variables in space 
from one well to another in a particular field, for optimal 

hydrocarbon production. Permeability which is a dynamic 
property of the reservoir is difficult to characterize due to 
the irregular nature of pore structures occasioned by depo-
sitional and diagenetic alterations. The spatial distribution 
of rock permeability in heterogeneous reservoir systems is 
problematic since its determination has no direct solution 
(Fegh et al. 2013). Generally, two direct and reliable ways of 
determining permeability are the laboratory measurements 
and well test methods (Noah and Shazly 2014), which are 
expensive, limited to either the well bore or certain sections 
of the well bore and cannot be applied to all the wells drilled 
in the field. Alternatively, estimation of permeability from 
porosity–permeability cross-plot generated through linear 
correlation of porosity and permeability data is being used 
and has gained wide patronage in the oil and gas industries 
(Jennings Jr and Lucia 2001; Rezaee et al. 2006). However, 
this method can provide adequate result in sandstone res-
ervoirs with little or no complexities and may not be relied 
upon when considering reservoirs with higher degree of het-
erogeneities due to episodes of diagenetic alterations (Edig-
bue et al. 2015; Ebong et al. 2019).

The application of indirect method, i.e. geostatistical meth-
ods in complex reservoir situations can provide information 
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such as rock types, fluid contents and other physical processes 
within the formation. It involves the use of seismic sections, 
wireline logs and measurement while drilling and yields 
reliable results in a less expensive and faster way and can 
be performed over a large area (Dowell et al. 2006). Results 
generated from direct methods which are localized are used 
to estimate petrophysical properties elsewhere beyond wells 
via stochastic and fuzzy logic processes (Esmaeilzadeh et al. 
2013). Geostatistical assisted modelling which is one of the 
many methods often applied to reservoir characterization 
(Bueno et al. 2011) has the ability to integrate several groups 
of information in the generation of suitable reservoir models 
that fit any given subsurface geologic condition of interest 
(Caers and Zhang 2002; Liu et al. 2004). Geostatistical princi-
ples also ensure that the geologic realities of the reservoirs are 
not lost in the course of the model building (Chen et al. 2011). 
The geologic model of the training image includes lithofacies 
assemblages from seismic sections, well log and production 
data as constraints and the petrophysical model which consist 
of the parameters of each facie (Caers 2002; Gonzalez and 
Reeves 2007). Akin to the deterministic approach, hard data 
points are usually conserved where it exists and have been 
interpreted and soft data where they are useful (Zhou et al. 
2014; Wilson et al. 2011). In contrast to the deterministic 
approach, geostatistics provides several plausible outcomes 
(Zarei et al. 2011). When performed over a large area of the 
reservoir, results from such spatial investigations permit bet-
ter characterization of the reservoir and effective recoverable 
reserves needed for adequate reservoir management can be 
estimated (Soleimani et al. 2017). In this study, the stochas-
tic technique which is capable of generating more reliable 
numerical petrophysical models was used, due to the difficulty 
of predicting the spatial distribution of these properties deter-
ministically (Ma et al. 2008).

This study which involves the estimation of petrophysi-
cal properties is aimed at estimating reservoir properties at 
well locations and predicting the spatial variability of these 
properties elsewhere within the field.

Stochastic reservoir modelling in brief

Petrophysical properties such as porosity, permeability and 
fluid saturation are the requirements for building 3D grid 
during flow simulation. These properties are limited to well 
locations and can pose a great deal of uncertainty in grid 
block property assignment. Building alternative numerical 
models or images of these petrophysical properties, taking 
into consideration the unknown aspects of the spatial distri-
bution is generally referred to as stochastic reservoir model-
ling (Deutsch 1992). The traditional geostatistical approach 
to reservoir property modelling is through the sequential 
simulation of facies and/or petrophysical properties (Arpat 

2005). The sequential simulations usually performed for 
stochastic reservoir modelling are the sequential Gaussian 
simulation which is parametric and the sequential indicator 
simulation, i.e. non-Gaussian and nonparametric approach 
(Xu et al. 1992). These two are performed using computer 
codes (Deutsch and Journel 1998). The sequential simulation 
path is such that it visits each node of the model and simu-
lated values are drawn from conditional distribution of the 
values at the node given the neighbouring subsurface data 
and previously simulated values (Arpat 2005). Simulation 
techniques generate multiple realizations of unknown spatial 
distribution of observations, without losing the originality 
of the observed data. The differences between realizations 
provide quantitative measure of uncertainty (Vasquez 2014).

Since sequential simulation implies the reproduction of 
desired spatial properties through sequential use of condi-
tional distributions, we can represent the primary variable of 
interest distributed over a field A as, z1(u) and the coordinate 
vector, u ∈ A . The primary variable in this work is the well 
log data from which porosity, permeability, fluid saturation, 
u, were derived on a three-dimensional scale. The integrals 
of z1(u) are associated with total pore volume. Randomly 
distributed values z1(u�), � = 1,… , n1 are available at well 
locations u� ∈ A , and the seismic data z2(u��), � = 1,… , n2 
of related nature are available at much larger number n2 
locations, u�

�
∈ A . The purpose of this coupled approach 

is to produce several highly resolved maps of the distribu-
tion z1(u) over the field, A, making the most of both hard 
{z1(u�), � = 1,… , n1} and soft {z2(u��), � = 1,… , n2} data. 
The term “hard data” is used to emphasize the fact that the 
modelling method should exactly reproduce the point data 
obtained from wells at its location. On the other hand, “soft 
data” which is the seismic section is used as constraint to 
guide the process and may not be reproduced exactly.

Data conditioning is significant especially when seismic 
data is utilized in estimating petrophysical properties. Hence, 
both hard and soft data must be conditioned before usage. Hard 
data conditioning may not only mean an exact reproduction of 
the original data but also requires the generation of adequate 
continuity around the defined area as dictated by the geological 
continuity model (Arpat 2005). For instance, if the geology 
of the reservoir shows evidence of thin, continuous horizontal 
layer of shale, a well data which indicates the shale value at 
a particular location should be honoured by generating such 
shale layer at neighbouring data location. Variogram-based 
simulation algorithms always exactly honour hard data values 
via the use of kriging, which is an exact interpolation method 
(Lima 2005). Soft data which refers to data sets obtained from 
indirect measurements, e.g. seismic sections, represents the 
“filtered” view of the subsurface heterogeneity (Arpat 2005). 
Since the filtered view is not the exact physical response, it is 
usually approximated by a mathematical model, which often 
times is referred to as “forward model”. Soft data sets are 
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usually integrated using variogram-based methods (Deutsch 
and Journel 1998).

Estimation algorithm

Kriging is a spatial interpolation technique commonly used in 
estimating varying petrophysical properties of reservoirs based 
on variograms (Matheron 1962). It is an estimation technique 
used to populate reservoir layers with continuous varying 
petrophysical values by means of interpolation in an unbiased 
pattern with minimum variance (Lima 2005). Kriging is a lin-
ear, least square estimation paradigm on which all algorithms 
are based. Unlike other spatial interpolation techniques, krig-
ing provides a window for assessing the uncertainty associated 
with its prediction. The kriging estimator can be used to define 
non-stationary variable and multiple covariates (i.e. collocated 
kriging). Kriging technique is a generalized regression algo-
rithm in which an unknown value is estimated from a linear 
combination of the primary data z1.

where z∗
1
 is the kriging surface which is a regression hyper-

plane fitting a ( n1 + 1)-dimensional calibration scattergram 
of values z1(u) versus z1(u + h�) at distances h� = u� − u 
elsewhere, � = 1,… , n1 . In practice, this calibration is lim-
ited to two-point statistics which relates any two values z1(u) 
and z1(u + h) as the covariance. The weights denoted by �� , 
which determine the regression, are represented by a system 
of normal equations. The more robust collocated kriging 
(cokriging) estimator is an extension of the kriging estima-
tor that includes other sets of data different from z1 . In this 
case, if n2 seismic data z2(u��) is coupled with n1 well data 
z1

(
u�

)
 , the cokriging estimator for the primary variable at 

any unknown point u can be expressed as

Once again, the calibration is limited to two-point statistics 
which relates any two values z(u) and z(u + h) , such that z can 
be of type z1 or z2 and, n1 and n2 weights �(1)

�
 and �(2)

�
 , respec-

tively, are given by a set of normal (cokriging) equations. The 
kriging estimator only differs from the cokriging estimator in a 
practical sense, in that instead of the one covariance function, 
we now have four inference and consistent modelling covari-
ance functions (Onyekwelu 2013). The covariance functions 
are as follows:

(1)z
∗
1
=

n1∑
�=1

��z1(u�)

(2)z
∗
1
(u) =

n1∑
�=1

�(1)
�
z1

(
u�

)
+

n2∑
�=1

�(2)
�
z1(u

�
�
)

(3)C11(h) = Cov{z1(u), z1(u + h)}

(4)C22(h) = Cov{z2(u), z2(u + h)}

where C12(h) ≡ C21(h) . It is usually difficult to handle, but 
with modern workstations increased dimensions of the 
cokriging system can be handled.

Matrix instability is one of the implementation prob-
lems associated with full collocated kriging approach when 
a dense secondary data is involved (Deutsch 1992). The 
closeness and large autocorrelation of contiguous seismic 
data (i.e. z2 ), as opposed to the large separation distances 
and poor autocorrelation between well data (i.e. z1 ), creates 
unstable cokriging matrix, i.e. close to singularity (Onyek-
welu 2013). Collocated secondary data z2(u) with z1(u) value 
to be estimated tends to obscure the influence of farther sec-
ondary data. The solution to this problem is to retain only 
the collocated secondary data at each location u to be esti-
mated, hence, making n2 = 1 and the estimate z∗

1
(u) as

where m1 = E{Z1(u)} and m2 = E{Z2(u)} are two sta-
tionary means, and C1(h) , C2(h) , C12(h) = C21(h) are 
cross-covariances.

At this point, no small covariance value associated 
with the highly redundant secondary data exists, but it still 
requires the inference of C12(h) . The standardize form of 
the collocated cokriging under the Markov model (Xu et al. 
1992) can be written as

where the two stationary variances are �2
1
= Var{Z1(u)} and 

�2
2
= Var{Z2(u)}.
All regression algorithms, including kriging, full cokrig-

ing, kriging with an external drift model or collocated 
cokriging with a Markov-type cross-covariance model, are 

(5)C12(h) = Cov{z1(u), z2(u + h)}

(6)C21(h) = Cov{z2(u), z1(u + h)}

(7)

z
∗
1
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n1∑
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�(1)
�
[z1

(
u�

)
− m1] +
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�=1
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�
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′
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n1∑
�=1

�
(1)

�
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�=1

�
(1)

�
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(8)
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1
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low-pass filters which tend to yield an over-smoothed image 
of the actual spatial variability of the primary data z1. Such 
characteristics are suited for static volumetric calculations 
such as mapping of reservoir top, but may under-represent 
extreme values (conditional bias) when applied to dynamic 
modelling, e.g. spatial distribution of permeability model-
ling (Onyekwelu 2013). It may also remove certain patterns 
of spatial connectivity arising from barriers and flow paths 
for such primary data as permeability. To overcome these 
shortfalls, stochastic simulation (i.e. full-pass) algorithms 
that reproduce full spectrum (i.e. covariance) of spatial vari-
ability can be applied. The sequential Gaussian simulation 
with collocated cokriging algorithm provides a more reli-
able approach since it involves sequential steps in drawing 
alternatives, equiprobables and joint realizations of the ran-
dom variable component from random function model. The 
various realizations represent possible images of the spatial 
distribution of regionalized variable over the domain. Each 
realization represents the properties that have been employed 
in developing the model. Details of this method can be found 
in Cekirge et al. (1981), Xu et al. (1992), Deutsch (1992).

Location and geology

The petroliferous Niger Delta Basin (NDB) lies between 
Longitudes 4.0° and 8.8°E of the Greenwich Meridian 
and Latitudes 3.0° and 6.5°N of the Equator (Fig. 1). It is 
regarded as one of the world’s largest regressive deltas and 

situated along the nose end of the northeast/southwest Benue 
Trough—an African Cratonic quasi-linear Cretaceous sedi-
mentary depression (Doust and Omatsola 1990; Reyment 
1965; Cratchley and Jones 1965; Mascle 1976). The NDB 
is bounded by the Cameroon Volcanic Line to the east and 
the eastern-most West African transform-fault passive mar-
gin, Dahomey Basin to the west. It covers ~ 300,000 km2 in 
area of land extending towards the Atlantic Ocean (Kulke 
1995). Wu and Bally (2000) classified the NDB as a clas-
sical shale tectonic province due to the presence of over-
pressured shales and shale diapiric structures associated with 
the area. The overall sediment volume in the Niger Delta is 
~ 500,000 km3 (Hospers 1965) with ~ 10 km sedimentary 
thickness around the depocenters (Kaplan et al. 1994).

The NDB formed along a failed arm of the triple junction 
system (aulacogen) was initially developed in the late Juras-
sic following the breakup of the Gondwana into the African 
and South American plates (Burke 1972; Whiteman 1982). 
The southwestern coast of Nigeria and Cameroon which har-
bours two of the arms formed the West African passive con-
tinental margin, while the third failed arm developed to form 
the Benue Trough (Lehner and De Ruiter 1977). During Cre-
taceous to Tertiary time, synrift sediments were accumulated 
within the basin with the Albian age sediments being the 
oldest dated sediments. Several episodes of transgression 
and regression led to the deposition of marine and marginal 
marine sediments and carbonates (Doust and Omatsola 
1990). During the Early Santonian—Late Cretaceous, the 
occurrence of basin inversion marked the end of the synrift 
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phase. Renewed subsidence resulting from the separation of 
the continents paved the way for the sea to transgress into 
the Benue Trough. Progradation of the Niger Delta clastic 
wedge continued during the Mid-Cretaceous into the depo-
center located on top of the deformed continental margin at 
the spot where the triple junction was situated. During the 
Late Cretaceous, sediment progradation was interrupted by 
episodes of transgression (Whiteman 1982).

The fault system in the Niger Delta is predominantly nor-
mal faults resulting from movements of ductile, over-pres-
sured, deep-seated marine shale (Fig. 2). These processes 
over time have led to the deformation of the Niger Delta 
clastic wedge to a large extent (Doust and Omatsola 1990). 
Several of these faults which were due to slope instability 
along the continental margin were formed during delta pro-
gradation. These affected sediment dispersal, due to the syn-
depositional episodes during the basin evolution. At depths, 
the faults flatten onto master detachment plane near the sum-
mit of the over-pressured marine shales around the base of 
the Niger Delta sedimentary succession. Pockets of complex 
structures in isolated areas are indicators of the density and 
style of faulting. Flank and crestal folds (i.e. simple struc-
tures) occur along individual faults. Hanging-wall rollover 
anticlines were built-up, due to listric-fault geometry and 
differential loading of the clastic wedge above over-pres-
sured shales. Several complex structures, truncated by group 
of faults with varying amounts of throw, include collapsed-
crest structures with domal shape and strongly contrasting 
fault dips at depth.

The NDB is dominated by offlap cycles of fluvio-marine 
sedimentary fill in a stepwise pattern. This reflects sedimentary 
progradation towards the south, from the edge of the continent 
in the direction of the oceanic basement. The Tertiary Niger 
Delta stratigraphic evolution and underlying Cretaceous strata 
are well documented in Short and Stauble (1967). The three 
major subsurface lithostratigraphic units of the Niger Delta are 
the Akata, Agbada and Benin Formations (Fig. 3). The Tertiary 
Niger Delta stratigraphic evolution and underlying Cretaceous 
strata are well documented in Short and Stauble (1967).

Materials and methods

The data set includes processed soft copies of inlines and 
crosslines 3D seismic sections, ten composite wireline well 
log data (Fig. 4) and velocity check-shot data. The entire seven 
suites (i.e. caliper, gamma-ray, spontaneous potential, resistiv-
ity, density, neutron and sonic logs) were used. The sonic and 
density logs were used to generate the synthetic seismogram 
which was used for well-to-seismic tie and check-shot edit-
ing. The spontaneous potential, resistivity and gamma-ray logs 
were used for lithologic and horizon delineation and correla-
tion. The Schlumberger Petrel 2014.2 software and Techlog 
were used for data modelling. Petrophysical properties such 
as volume of shale, total and effective porosities, permeability 
and water saturation were first estimated empirically. Shale 
volume was estimated from the gamma-ray index by delin-
eating the clean sand line from gamma-ray logs. For linear 
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responses, shale volume is equal to the gamma-ray index, 
which gives an over estimated value of shale volume in a par-
ticular formation (Asquith and Gibson 1982). The nonlinear 
empirical response that provides a more reliable result (i.e. 
shale volume value is lower than that derived from the latter) 
was used. It takes into consideration the geographical area and/
or age of formation (Asquith and Krygowski 2004). Larionov 
(1969) correlation for Tertiary unconsolidated sands used in 
estimating shale volume ( Vsh ) is represented as

where IGR is the gamma-ray index, GRlog is GR value of 
formation measured from log, GRmin is GR minimum value 
of clean sand, and GRmax is the GR maximum value of 
shale at zone of interest. Total porosity was estimated from 
density and sonic logs (Eq. 11).

(9)Vsh = 0.083 × [2(3.7×IGR) − 1]

(10)IGR =
GRlog − GRmin

GRmax − GRmin

where density of rock matrix, �ma = 2.65(g∕cm3) and aver-
age density of formation fluid, �f = 1.0(g∕cm3) . The effec-
tive porosity was estimated by introducing the volume of 
shale percent into Eq. 11 (Atlas 1979). Thus,

 
The Indonesia model (Eq. 13) which can be applied nearly 

everywhere was used to estimate water saturation across the 
reservoirs (Poupon and Leveaux 1971).

(11)Total porosity (�tot) =
�ma − �b

�ma − �f

(12)Effective porosity (�e) = (1 − Vsh) × �tot
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Fig. 3   Stratigraphic column 
of the Niger Delta Basin. 
(Redrawn from Doust and 
Omatsola 1990)
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where Rw is water resistivity at formation temperature 
(Ω-m), Rt is resistivity reading on the deep log (Ω-m), �e 
effective porosity (fractional), m is the cementation expo-
nent, n is the saturation exponent, Rsh is the resistivity of 
shale (Ω-m), and Vsh is the volume of shale (fractional). Per-
meability was estimated using Eq. 14 as

where Swirr is the irreducible water saturation (Tixier 1949). 
Although permeability relates to porosity, it does not totally 
depend on porosity, but on the volume and size of the inter-
connecting pores or capillaries (Nelson 1994). The measure 
of the potential of productive portion of the entire reservoir 
as percentage or decimal fraction is referred to as net-to-
gross (NTG). The NTG ratio (which is between 0 and 1 or 
expressed as percentage) is the proportion of the gross rock 
volume that can store or produce hydrocarbon. It is usually 
defined by a cut-off on a permeability or porosity plot. The 
risk in this technique lies in the changes in recoverability 
during the life of the field and recovery technique employed 
(Worthington and Cosentino 2003). Hence, NTG can change 
during field life, which can be misleading (Egbele et al. 
2005). NTG was estimated using Eq. 15

(14)Permeability, k (mD) =

[
250 ×

(
�e

)3
Swirr

]2

where the net thickness = gross thickness − shale thickness.
Well correlation was performed using gamma-ray and 

resistivity logs, and lateral continuity of the reservoir sands 
was delineated (Fig. 5). Equations 9 to 15 were used to esti-
mate petrophysical properties (Fig. 6). The seismic wavelet 
extraction was performed using the statistical wavelet extrac-
tion technique. Well-to-seismic tie which shows how well 
the synthetic trace derived from the convolution of seismic 
wavelet and reflectivity series from well logs correlate with 
seismic data was performed using synthetic seismograms of 
wells which had complete sonic and density logs. Figure 7 
shows the modelling workflow. Quality control checks for 
unit consistencies and missing intervals were performed on 
the check-shot data, sonic and density logs prior to usage. 
Good ties with minimal time shift of ~ 15 ms were achieved 
when the synthetic seismograms were matched with the well 
logs apiece. Manual horizon picking which allows the inter-
preter to determine the directional behaviour of the tracking 
process was employed (Ebong et al. 2019). Both the inline 
and crossline of the seismic volume were mapped at inter-
vals of 10 m, and two horizons were identified. Interpreted 
faults across the 3D seismic vintage were normal and lis-
tric growth faults that are characteristic of the Niger Delta 

(15)NTG =
Net thickness

Gross thickness

Fig. 4   Base map showing the distribution of wells in the field
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Province. The convergent interpolation algorithm was uti-
lized in the generation of time maps (Fig. 8) which were later 
converted to depth maps using velocity modelling processes 
and velocity data. Input fault sticks arising from seismic 
interpretation were used in building the structural models 
of the reservoirs. Lateral grid cell dimensions and reser-
voir boundaries (i.e. pillar gridding) were defined. Horizon 
models were built using depth surfaces with seismic and 

well tops as control. Each reservoir model was zoned and 
layered using an average thickness of 2 ft to capture the het-
erogeneity observed on the log curves during upscaling. The 
faults were modelled and pillar gridded to generate 3D grid. 
The modelled faults were quality checked with interpreted 
fault sticks to ensure consistency in geometry. A lateral grid 
dimension of 50 m by 50 m was used. Horizon models were 
built utilizing well tops and depth converted surfaces. The 

Fig. 5   Well correlation and horizon interpretation of K200 (a) and K300 (b) reservoirs

Fig. 6   Schematic flow chart of 
petrophysical property model-
ling

Data import (Seismic and well log data)

Well correlation

Horizon interpretation Fault interpretation

Time map generation

Time-to-depth map conversion

Depth map generation

Facies description

Petrophysical property estimation

Structural modeling

Property modeling

Geostatistical variogram modeling

Stochastic modeling of petrophysical property distribution

Stratigraphic modeling

3D geologic grid

Well-to-seismic tie
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Fig. 7   Time surface maps of 
K200 (a) and K300 (b) reser-
voirs

Fig. 8   Sample gamma-ray logs and logs of estimated petrophysical properties, i.e. net-to-gross, total porosity, effective porosity, water saturation 
and permeability
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resultant horizons were quality checked by superimposing 
the contours of the input seismic interpreted surfaces of the 
horizon models to ensure consistency in geometry. The res-
ervoir models were zoned using isochores generated from 
well tops. The zones created were further subdivided into 
layers. Input logs were scaled-up within the property model-
ling domain using the appropriate averaging algorithm. In 
the data analysis domain, data transformation of parameters 
like porosity was performed. Variogram parameters were 
measured in the vertical, major and minor ranges (Fig. 9). 
The facies logs were scaled-up into the grid cells using the 
“Most of” algorithm. Porosity, net-to-gross (NTG) and 
water saturation were upscaled using the arithmetic aver-
aging method at all reservoir levels. Permeability data was 
upscaled into the 3D grid using the geometric averaging 
method. All the input property logs (facies, porosity, NTG, 
permeability and water saturation) were upscaled such that 
each resultant upscaled log retained the heterogeneity cap-
tured by the input logs. Facies models were built from the 
upscaled facies using sequential indicator simulation (SIS). 
Porosity was built by conditioning the facies model using 
sequential Gaussian simulation (SGS) algorithm. This was 
done because of the innate relationship between porosity and 
facies. Permeability was modelled and cokriged with poros-
ity model and distributed using the SGS algorithm. By this, 
the permeability model will follow the porosity distribution 
as porosity will provide closer correlation than facie distri-
bution (Lucia 2007). Water saturation was modelled using 
SGS algorithm and collocated cokriged with porosity and 
conditioned to facies. The hydrocarbon saturation, which 
is usually the difference between unity and the fraction of 
water saturation, was estimated. Equiprobable realizations of 

some petrophysical properties are shown in Figs. 10, 11, 12, 
13, 14 and 15. Due to non-availability of core information, 
the root-mean-square error (RMSE) technique was consid-
ered as statistical validation tool to compare observed data 
derived from well log analysis and those predicted by the 
geostatistical tool (Al-Mudhafar 2017).

where Xobs is observed values and Xmodel is modelled values 
at time/place i.         

Results and discussion

The interpretation of well logs and time surfaces revealed 
two reservoirs, i.e. K200 and K300 with depth to top of about 
8050–8530 ft and 8190–8800 ft, respectively (Fig. 5 and 
Table 1). The wells were used to delineate the various litho-
logic units. The lithofacies were predominantly the sand/shale 
sequence typical of the Niger Delta Basin. Studies show that 
depositional facies pattern controls the distribution of reser-
voir properties (i.e. lithofacies-dependent properties such as 
porosity and permeability), and the lithofacies defined were 
used to constrain the porosity distribution across the field. 
Although porosity varies with lithofacies, porosity statistics 
with lithofacies as constraint will exhibit less variability (Ma 
et al. 2008). Studies also show that porosity can provide more 
accurate correlation of permeability than the facies (Nelson 
1994; Abbaszadeh et al. 2003; Lien et al. 2006; Lucia 2007). 

RMSE =

�∑n

i=1
(Xobs,i − Xmodel,i)

n

Fig. 9   Samples of semivariogram models
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Fig. 10   Equiprobable realiza-
tions of net-to-gross from K200 
reservoir

Fig. 11   Equiprobable realiza-
tions of total porosity from 
K200 reservoir
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Fig. 12   Equiprobable realiza-
tions of permeability from K200 
reservoir

Fig. 13   Equiprobable realiza-
tions of net-to-gross from K300 
reservoir
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Fig. 14   Equiprobable realiza-
tions of total porosity from 
K300 reservoir

Fig. 15   Equiprobable realiza-
tions of permeability from K300 
reservoir
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Permeability which is a measure of interconnectivity of pores 
can be deduced more precisely using porosity as constraint. 
Hence, porosity provides more closer estimate than deposi-
tional facies based presumption, as the latter changes with 
time. Additionally, permeability and porosity in clastic rocks 
(i.e. clean sands) exhibit a direct relationship (Rahmouni et al. 
2014), so anisotropy and heterogeneities in petrophysical 
properties are facies dependent, hence, the use of porosity as 
constraint in permeability estimation for both reservoirs. The 
variogram model parameter defined along the major, minor 
and vertical directions was employed in the distribution of the 
properties of the reservoirs based on the voxel-based method 
(Fig. 9).

The total porosity maps generated across the two reservoirs 
show distinctive character based the deformational episodes 
and depth of burial of sediments that characterize the basin 
(Doust and Omatsola 1990; Owoyemi 2004). The ranges of 
porosity of interest that are dominant across the reservoirs 
lie between 0.20 and 0.35 (~ 25% on average) (Table 2). This 
range of porosity with colour codes between green and yel-
low tends to dominate over 80% of the both reservoir units 
and are classified to be the high pay zones (Figs. 11 and 14). 
This range of porosity corroborates with reports of Okwoli 
et al. (2015) and Nwankwo et al. (2015) within the Niger Delta 
Basin. The streak of blue–pink which depicts lower porosi-
ties ≤ 0.10 shows the net pay cut-off. In clastic sediments, this 

range of porosity (i.e. ≤ 0.10) could be due to cementation and/
or overburden stress since porosity at depths of ~ 10,000 ft will 
be about this range (Larsen and Chilingarian 1982; Byrnes 
1997). Within the Niger Delta Basin, it could be due to the 
over-pressured shales from the Akata Formation (Osinowo 
and Oladunjoye 2015). However, Weber and Daukoru (1975) 
reported evidences of overpressure at shallower depths than 
the Akata Formation due to rapid sediment loading of the 
sandy Agbada and Benin Formations on the mobile shales of 
Akata Formation. Conversely, some of these areas with lower 
porosities could be sandy-shale or silty-shale portions which 
may be gas prone areas. The shale volume estimated ranged 
between ~ 0.10 and ~ 0.25 across the field (Figs. 10 and 13). 
Permeability values were generally ≥ 100.0 mD (Figs. 12 and 
15, Table 2). The porosity and permeability values observed 
were influenced by the depositional sequences and the differ-
ential responses resulting from the various diagenetic regimes 
within the basin. Water saturation observed across the reser-
voirs was ≤ 0.30 (Table 2).

Conclusion

A comprehensive petrophysical property evaluation is vital 
in order to optimize production and reservoir development. 
Geostatistical modelling affords the opportunity of evalu-
ating petrophysical properties and extrapolating to predict 
those properties away from the well bore with the assistance 
of variogram models. The spatial and vertical variability 
of the petrophysical properties were estimated using seis-
mic and well logs. The geostatistical reservoir simulation 
method involving the SGS algorithm was used to distrib-
ute the properties across each reservoir. The local varying 
mean estimator was used for porosity and other parameters 
except permeability which employed the collocated cokrig-
ing estimator in its distribution. These yielded high-resolu-
tion images of the petrophysical properties in the 3D grid. 
The validity of the estimator was tested using the RMSE 
techniques, and the results of the observed and estimated 
total porosity fitted well with minimum error of the range 
0.001–0.64 (Fig. 16). Simulations were performed for each 
of the properties of the two reservoirs identified with three 
realizations each to ensure stability of the variance models. 
3D maps were generated from which good and poor reser-
voir qualities zones were identified. K200 shows values of 
total porosity (0.25–0.35), permeability (> 100 mD), water 

Table 1   Summary of reservoir tops and bases and thicknesses at each 
well

Well number Reservoir

K200 (ft) K300 (ft)

Top Base Top Base

Well_001 8370 8450 8470 8670
Well_002 8230 8380 8450 8590
Well_003 8190 8300 8400 8660
Well_004 8200 8300 8430 8620
Well_005 8190 8360 8430 8620
Well_006 8530 8710 8800 8900
Well_007 8240 8310 8380 8480
Well_008 8270 8310 8430 8520
Well_009 8050 8120 8190 8320
Well_010 8420 8460 8560 8690
Maximum 8530 8710 8800 8900
Minimum 8050 8120 8190 8320

Table 2   Ranges of some 
petrophysical properties

Reservoir Petrophysical property ranges

Total porosity Permeability (mD) Shale volume Water saturation

K200 0.25–0.35 ≥ 100.0 015–0.25 0.27–0.29
K300 0.15–0.28 ≥ 100.0 0.10–0.20 0.28–0.30
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saturation (0.27–0.29) and shale volume (0.15–0.25). K300 
shows values of total porosity (0.15–0.28), permeability 
(> 100 mD), water saturation (0.28–0.30) and shale volume 
(0.10–0.20).
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