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Abstract
Considering the importance of cost reduction in the petroleum industry, especially in drilling operations, this study focused 
on the minimization of the well-path length, for complex well designs, compares the performance of several metaheuristic 
evolutionary algorithms. Genetic, ant colony, artificial bee colony and harmony search algorithms are evaluated to seek the 
best performance among them with respect to minimizing well-path length and also minimizing computation time taken to 
converge toward global optima for two horizontal wellbore cases: (1) a real well offshore Iran; (2) a well-studied complex 
trajectory with several build and hold sections. A primary aim of the study is to derive less time-consuming algorithms that 
can be deployed to solve a range of complex well-path design challenges. This has been achieved by identifying flexible 
control parameters that can be successfully adjusted to tune each algorithm, leading to the most efficient performance (i.e., 
rapidly locating global optima while consuming minimum computational time), when applied to each well-path case evalu-
ated. The comparative analysis of the results obtained for the two case studies suggests that genetic, artificial bee colony and 
harmony search algorithms can each be successively tuned with control parameters to achieve those objectives, whereas the 
ant colony algorithm cannot.

Keywords  Metaheuristic algorithms · Well-path designing · Well-path optimization · Genetic algorithm · Harmony search · 
Artificial bee colony

List of symbols
Definitions of wellbore trajectory variables	 (modified 
after Shokir et al. 2004)
�1,�2,�3	� First, second and third hold 

angles, °
�1	� Azimuth angle at kickoff 

point, °
�2	� Azimuth angle at end of first 

build, °

�3	� Azimuth angle at end of first 
hold section, °

�4	� Azimuth angle at end of 
second build or drop, °

�5	� Azimuth angle at end of 
second hold section, °

�6	� Azimuth angle at end of third 
build portion, °

T1	� Dogleg severities of first 
build portion, °/100 ft

T2	� Dogleg severity of first hold 
portion, °/100 ft

T3	� Dogleg severity of second 
build or drop portion, °/100 
ft

T4	� Dogleg severity of second 
hold or drop portion, °/100 ft

T5	� Dogleg severity of third 
build or drop portion, °/100 
ft

TMD	� True measured depth
TVD	� True vertical depth
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DKOP	� Depth of kickoff point
DB	� True vertical depth of the 

well at the end of drop-off 
section (top of third build 
section), ft

DD	� True vertical depth of the 
well at the top of drop-off 
section (top of second build 
section), ft

HD	� Lateral length (horizontal 
length), ft

Introduction

Optimizing the wellbore length of a multi-directional well 
requires algorithms that not only find the minimum length, 
but do so quickly and effectively, taking into account opera-
tional limitations in design. Hence, the execution time of 
algorithms should be taken into account in addition to their 
ability to find the optimum well trajectory in a reproducible 
manner. This study compares several established metaheuris-
tic optimization algorithms in terms of both their ability to 
achieve an acceptable objective function value (i.e., wellbore 
length subject to operational constraints applied) and the 
algorithms’ computer execution times.

Heuristic algorithms seek “acceptable” solutions to opti-
mization challenges by “trail-and-error” taking a “reason-
able” amount of computational timing. What constitutes 
“acceptable” and “reasonable” is clearly subjective and to 
an extent depends upon the nature of the optimization task 
addressed and the context and urgency in which an optimal 
solution is being sought. Heuristic methods generally do not 
guarantee finding the best or global optimum, i.e., their solu-
tions often could be improved upon if more computational 
time were dedicated to the task. However, in many applied 
operational applications a “good/acceptable” solution may 
be a rapidly determined local optima situated close to the 
global optimum. Hence, heuristic algorithms that search local 
regions of a feasible solution space detecting local optima 
form important components of metaheuristic methods.

The term metaheuristic refers to higher-level heuris-
tic algorithms (e.g., Bianchi et al. 2009; Yang 2009) that 
typically combine several lower-level heuristic processes 
in achieving their higher-level strategic optimization objec-
tives. High-performing metaheuristic optimization algo-
rithms efficiently search a feasible solution space which is 
too large to be completely sampled in a reasonable time. As 
Yang (2009) explains, “intensification” and “diversification” 
are two key attributes of modern metaheuristics: “For an 
algorithm to be efficient and effective, it must be able to gen-
erate a diverse range of solutions including the potentially 

optimal solutions so as to explore the whole search space 
effectively, while it intensifies its search around the neigh-
borhood of an optimal or nearly optimal solution.” The 
metaheuristic optimization algorithms evaluated, in terms 
of wellbore designs of a complex trajectory subject to con-
straints, are: genetic algorithm (GA), artificial bee colony 
(ABC), ant colony optimization (ACO) and harmony search 
(HS). The results are compared to previously published work 
on the particle swarm optimization algorithm applied to one 
of the case studies evaluated (Atashnezhad et al. 2014).

Genetic algorithms (GA) involve an evolutionary process, 
typically starting with a random set of feasible solutions, 
followed by steps of evolution, i.e., successive iterations that 
aim to improve their performance in terms of the objective 
function by modifying a number of some genetic opera-
tors, using mechanisms akin to those operating in biologi-
cal evolutionary processes (Sivanandam and Deepa 2008). 
GAs have been successfully applied to many nonlinear and 
non-smooth types of optimization challenges across many 
industries (Gallagher and Sambridge 1994).

Artificial bee colony algorithm (ABC) was created based 
on swarm intelligence and specifically the food-foraging 
strategies of bee colonies (Karaboga and Basturk 2007). 
It has been demonstrated that algorithms based upon bee 
colony behaviors can solve NP-hard optimization problems 
(Karaboga and Basturk 2007). Using ABC algorithms, many 
highly constrained and complex models, as well as models 
that cannot be solved with deterministic functions (i.e., are 
probabilistic in nature), can be solved (Karaboga and Bas-
turk 2007). ABC algorithms typically involve three distinct 
types of bees: employed bees, onlooker bees and scout bees. 
The location of each potential food source (or meal) is con-
sidered as a possible solution, with the objective function 
looking to minimize the distance/time taken to access the 
identified target location. In the first step of ABC algorithms, 
a number of random routes are selected between the hive 
and the specified food source (i.e., target for optimization). 
The shorter routes provide the employed bees with more 
foraging time at the food source enabling them to return to 
the hive with more nectar than those employed bees that 
have spent longer traveling. On their return to the hive, the 
employed bees exchange information with the onlooker bees 
that observe the amount of nectar each bee has collected (in 
nature this is achieved by a dancing ritual in the hive). The 
routes between hive and the target location taken by the bees 
returning with the most nectar are selected with higher pref-
erences for the routes selected by the employed bees for sub-
sequent iterations. In addition, scout bees select a new set of 
random routes to the specified target to avoid the algorithm 
becoming stuck at local optima solutions. The onlooker 
bees accumulate information imparted by employed and 
scout bees in successive iterations of the ABC algorithm 
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(Karaboga and Basturk 2007). According to the principles 
of swarm intelligence, eventually the optimal route between 
the hive and the specified target is found. ABC algorithms 
have been successfully applied to solve a number of non-
linear, non-smooth optimization challenges (Karaboga and 
Ozturk 2009).

Ant colonies optimization (ACO) is also based on the 
behavior of social communities of insects, which operate 
as distributed systems that despite the functional simplicity 
of the individual members of the colony, a complex social 
organization is created by the accumulated knowledge of 
multiple individuals which leads to modified behavior trend-
ing toward optimal patterns (Dorigo and Stutzle 2004; Dar-
quennes 2005). Different components of ACO algorithms 
are inspired by different aspects of ant colony behavior in 
finding optimum routes between the colony’s nest and an 
identified food source. Initially the ants follow random trails, 
but leave pheromone (or scent) along each path. The high-
est pheromone deposit is located on the shortest route and 
that encourages ants to follow that route on future journeys 
between the nest and the food source, reinforcing the phero-
mone. Overtime the pheromone deposit evaporates at a spec-
ified rate resulting in the infrequently followed routes being 
collectively “forgotten.” As with ABC algorithms, scout ants 
can be employed to select some random routes in each itera-
tion to avoid the colony becoming stuck in local optima and 
missing a better overall of global optimum solution (i.e., 
the shortest distance between nest and target location). Tra-
ditional ACO algorithms focus upon discrete optimization 
problems, but require modification and hybridization with 
other metaheuristics to efficiently solve continuous optimiza-
tion problems (Hu et al. 2008).

Harmony search (HS) algorithms apply the principles 
employed by musicians and composers when playing exist-
ing musical scores and striving to achieve the best combina-
tion of musical notes to produce a harmonious outcome (Lee 
and Geem 2005). Musicians typically take combinations of 
three distinct approaches when attempting to improve on 
musical scores through improvisation, these are: (1) playing 
parts of the original score as initially written, (2) playing the 
sections of the piece in a close but slightly different combi-
nation of notes to the original score and (3) creating sections 
of the piece through random substitution of notes. Improved 
scores resulting from the combination of these processes are 
stored in a matrix known as harmony memory (HM) which 
is used to converge to the optimum solution (Yang 2009).

The metaheuristic evolutionary algorithms are widely 
applied to many complex and NP-hard problems that can-
not be readily solved analytical models. For example, in 
the drilling industry GA are applied in many areas, e.g., 
drilling optimization, well placement, well design, anti-col-
lision problems and ROP modeling. GA are also applicable 
in multi-objective problems involving several conflicting 

objectives, such as simultaneously optimization of drilling 
parameters (Guria et al. 2014) that focused on drilling depth, 
drilling time and drilling cost. The conflicting objectives 
together with nonlinear constraints and large numbers of 
variables make such problems difficult to solve with con-
ventional methods. Some of the evolutionary algorithms are 
very simple to implement. For example, HS can be read-
ily adapted to solve complex problems such as fluid injec-
tion (Khalili et al. 2013) or well placement (Afshari et al. 
2013). Also, ABC and PSO are demonstrated to be efficient 
at solving continuous problems, such as well placement area 
(Nozohour and Fazelabdolabadi 2016). Despite their sim-
plicity, these algorithms are robust and very fast in terms of 
computational running time. Among the algorithms evalu-
ated, ACO is more suited to discrete and network optimiza-
tion problems. For example, the application of ACO is gas 
allocation in gas lift operations (Zerafat et al. 2009).

All the above-mentioned evolutionary optimization algo-
rithms have been coded in MATLAB to solve 3-D well-path 
design optimization problems. Each optimization algorithm 
includes some key parameters that require tuning (i.e., select-
ing optimum values that lead to better or faster performance). 
This tuning process is described for each algorithm applied 
and results are presented for various values of the key param-
eters for each algorithm, from which the best, or optimally 
tuned values, are selected. Results obtained by each optimiza-
tion algorithm applied to the same complex well-path design 
are presented and compared. A discussion of the pros and 
cons associated with each algorithm applied to the well-path 
design optimization is also provided. MATLAB codes were 
all run on a PC computer with the following specifications: 
Intel Core i5 2430 M 2.4 GHz, 4 GB DDR3 Memory.

Well‑path design problem used to test 
optimization algorithms

The gas or oil well-path design to be optimized by the optimi-
zation algorithms studied involves determining the combined 
wellbore length of a complex well involving multiple straight 
and curved sections of various inclinations and orientations. 
The objective function is to minimize the combined well bore 
length subject to a number of specified constraints. As meas-
ure depth drilled typically is directly proportional to the drill-
ing cost, it follows that the shortest overall wellbore design is 
likely to be the cheapest, although other factors such as torque 
and casing design also play important roles requiring multiple 
objectives to be optimized (e.g., Mansouri et al. 2015). The 
particular well-path targets and constraints applied are those 
used by Shokir et al. (2004) and further utilized by Atash-
nezhad et al. (2014) to illustrate the performance of tuned-
PSO algorithms and Mansouri et al. (2015) to illustrate the 
multi-objective optimization performance of GA. The lengths 
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of the curved sections of the wellbore in the example used 
are calculated by the radius-of-curvature method based on the 
curves being achieved at constant rates of curvature (Fig. 1). 
The curvatures of the curved wellbore sections are achieved 
using the following formulas (Shokir et al. 2004):

Two wellbore scenarios are evaluated in this study. The first 
Eq. (4) consists of five-component sections, and the second 
Eq. (5) consists of seven component sections constituting 
the complete well path, as illustrated in Figs. 2 and 3. The 
overall wellbore length is therefore calculated by summing 
the lengths of the all component sections that are calculated 
separately for each well-path design considered.

Symbols and abbreviations are explained in Figs. 1, 2 and 3 
and in the nomenclature section.

(1)a =
1

Δm

√
(�2 − �1)

2 sin4(
�2 + �1

2
) + (�2 + �1)

(2)r =
1

a
=

180 × 100

� × T

(3)Δm = r

√
(�2 − �1)

2 sin4
(
�2 + �1

2

)
+ (�2 + �1)

(4)TMD1 = DKOP + D1 + D2 + D3 + DH

(5)TMD2 = DKOP + D1 + D2 + D3 + D4 + D5 + HD

Operational limitations should also be taken into account, 
e.g., torque and drag (T&D), wear and fatigue of the drill 
string. For example, a deep kickoff point (KOP) reduces 
T&D compared to a shallow KOP. There is, therefore, a 
need to establish a balance between several different factors 
influencing a well path’s design. These factors include T&D, 
stuck pipe, damage and wear of the drill string, wellbore 
cleaning and stability. For example, a carefully selected KOP 
may enable a well to be drilled in less time and at lower 
cost, but problem formations or shallow reservoir targets 
can place constraints on where the KOP can be located. 
Wellbore stability issues related to factors such as wellbore 
inclination and azimuth also need to be considered. Gener-
ally, wells drilled parallel to the direction of least in situ 
stress demonstrate better stability. Also, in cases where the 
difference between the maximum and minimum horizontal 
stress is high, wellbore sections with lower inclination are 
more stable. Such cases must be considered in determining 
the inclinations and azimuth well. Dogleg severity (DLS) 
should also be limited in order to lower the risks of drill pipe 
failure, casing fatigue and damage, etc. An increase in DLS 
results in an increase in lateral force that will cause dam-
age and wear. To limit lateral force in order to prevent tool 
joint damage, Lubinski (1961) recommended a limitation 
of 2000 lb. DLS proportional to the amount of force can be 
calculated using Eq. (6) (Devereux 1998).

(6)DLS =
108, 000F

�LT

Fig. 1   Calculation of the length 
for a deviated section of the 
well trajectory after Atash-
nezhad et al. (2014) describes 
the terms used to define the 
different angles and compo-
nents of the wellbore trajec-
tory. MD = measured depth; 
TVD = true vertical depth
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where F is the lateral force, L is half length of the drill pipe 
and T is tensile force on the pipe at depth of interest. Thus, 
in the upper part of a well the amount of DLS desirable 
is limited. In practice, there are typically points along the 
trajectory where the DLS may exceed the desirable design 
limits and constraints need to be applied. For example, if 2° 
is the maximum DLS is desired, the design should consider 
values less than 2°.

Case studies

We considered two case studies for examining the perfor-
mance of the trajectory optimization algorithms. The first 
case study (Case 1) is for a producing well offshore Iran. The 
well is a horizontal well and has two build sections. The res-
ervoir section is located at a TVD of 1200 m from the rig’s 
kelly bushing (RKB) and the wellbore involves a horizontal 

Fig. 2   The vertical plane of a 
horizontal well (first case study) 
with the operational parameters. 
Note that the scenario involves 
two build sections

Fig. 3   The vertical plane of a horizontal well (second case study) 
with the operational parameters from Atashnezhad et  al. (2014) 
developed from the wellbore scenario studied originally by Shokir 
et al. (2004). Note that the scenario involves more than one build sec-

tion and a drop-off section separating the build sections. The wellbore 
trajectory formulation incorporates all the sections identified in this 
diagram
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section of 1470 m. The plan view of the well is illustrated in 
Fig. 2 with operational constraints listed in Table 1. Figure 4 

shows the sequence of geological formations encountered in 
drilling this first case study well.

In the original plan for the well, the KOP is set at 125 m, 
in Aghajari formation, but its TVD can range from 62 to 
210 m in that formation. The build section should end before 
the high-pressured Gachsaran formation is encountered in 
order to set a casing point. The second buildup should be 
started in the Ilam formation in order to maintain an accept-
able lateral force and end before entering the reservoir zone. 
A long-radius design is applied in order to build angle, as 
this can achieve a greater offset from the surface location 
(Carden and Grace 2007).

A 2000-lb maximum lateral force constraint for DLS, 
already discussed, is applied. Considering a typical bottom-
hole assembly (BHA) and drill pipe grade E for directional 

Table 1   Constraints applied to the example well path (Case 1—off-
shore Iran)

TVD 3936 ft (1200 m)
DH 4821 ft (1470 m)
Max DLS for 1st build 6°/100 ft
Inclination angles φ1 = 30–50 

φ2 = 90°
Azimuth angle θ = 250°
Kickoff point depth 203–688 ft (62–210 m)
2nd build point depth 3214–3542 ft (980–1080 m)

Fig. 4   Sequence of geological 
formations encountered by drill-
ing (Case 1—offshore Iran)
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drilling, about 60,000 lbs can be imposed on the drill string 
as the maximum tension in drill string at the depth of the 
first build section, which results in the maximum DLS per-
missible for this section of about 6°/100 ft. The drill pipe at 
the depth of second build section experiences less tension 
and therefore can tolerate a higher DLS. The DLS for this 
second build section needs to be less than about 9°/100 ft 
in order to prevent drill pipe fatigue, but the long-radius 
build method employed results in the DLS value actually 
being less than 6°/100 ft. The tangent section-inclusive (TSI) 
method is applied to the design of the horizontal section of 
the trajectory. The TSI method enables TVD adjustments for 
differences in DLS between the overall well plan and actual 
well path (Garden and Grace 2007). Results from previously 
drilled offset wells in the field suggest that a hold angle of 
30˚ to 50˚ is an appropriate inclination angle to maintain 
stability of the well and we apply this limitation as the geo-
mechanical constraint for our design example.

The second case study (Case 2) has been extracted from 
(Shokir et al. 2004) and also evaluated by Atashnezhad et al. 
(2014). The related information and constraints have been 
summarized in Table 2. The plane view of this well has been 
presented in Fig. 3.

Genetic algorithm (GA)

Using a genetic algorithm that follows the main five steps, 
the optimization has been applied on two wellbore scenarios 
as mentioned before. The main steps are:

1.	 Initialize a set of random feasible solutions (called a 
sample population).

2.	 Calculate the objective function and then rank the solu-
tions (i.e., best solution is rank#1).

3.	 Assemble high-ranking selected solutions and some ran-
domly generated solutions to act as parents for the next 
generation (i.e., iteration of the GA).

4.	 Apply cross-over and mutation on various parent solu-
tions and to create some new solutions to compare with 
the high-ranking solutions of the previous generation.

5.	 Rank the new generation: reject the lowest-rank solu-
tions; retain the highest ranking solutions to perpetuate 
the next generation.

6.	 Repeat steps 2–5 until the solution converges to an opti-
mum value or a specified number of iterations or com-
putational time has elapsed (i.e., termination criteria are 
met).

The GA evaluated in this study adopts a process 
sequence illustrated by the flowchart shown in Fig. 5. 
For coding the GA for the cases considered, a string of 
five-component solution for the first case study represent-
ing five variables in the trajectory design (KOP, second 
build depth, inclination angle and DLSs) and 12-compo-
nent solution representing the 12 variables in the second 
case study (KOP, second and third build depth, inclina-
tion angles, azimuth angles and DLSs). This type of code 
construction is applied to all the algorithms considered 
except in ACO.

The main GA operators controlling its behavior are cross-
over and mutation, which involve key behavioral parameters 
for the algorithms. Those behavioral parameters are: (1) 
cross-over probability (Pc); (2) mutation probability (Pm); 
and (3) mutation rate. These three parameters should be set 
to appropriate so that the GA functions appropriately achieve 
the best result (Gen and Cheng 2008; Lin et al. 2003). Such 
tuning of the key behavioral parameters avoids premature 
convergence (i.e., getting stuck at local optima) and encour-
ages convergence toward the global optimum as quickly as 
possible (i.e., in the fewest iterations). Multiple runs of the 
GA for the example well path (see Fig. 6), applying a range 
of key behavioral parameter values, reveal that the GA per-
forms better when the values of these parameters vary as 
the generations (iterations) progress rather than maintaining 
constant values for these parameters across all generations. 
The best sequence of variations applied to the behavioral 
parameters was found to be: (1) Pm commencing at a higher 
value than Pc and then gradually decreasing as the gen-
eration evolve; and (2). Whenever the algorithm becomes 
locked into a local minima, Pm is abruptly increased in an 
attempt to release the algorithm from that local optima and 
continue its search for the global optimum.

Table 3 lists the different values of GA behavioral param-
eters applied in each of the four runs shown in Fig. 6 together 
with the key performance results of each run.

Table 2   Constraints applied to the example well path (Case 2, after 
Shokir et al. 2004)

TVD 10,850–10,900 ft (3307–3323 m)
HD 2500 ft (762 m)
Dogleg severity T1, T2, T3 ≤ 5°/100 ft
Min. value of inclination angles φ1 = 10°, φ2 = 40°, φ3 = 90
Max. value of inclination angles φ1 = 20°, φ2 = 70°, φ3 = 95
Min. value of azimuth angles θ1 = 270°, θ2 = 270°, θ3 = 270°ͦ
Max. value of azimuth angles θ1 = 280°, θ2 = 280°, θ3 = 280°
Kickoff point depth 600–1000 ft (182–304 m)
Draw down point depth 6000–7000 ft (1829–2134 m)
Third build point depth 10,000–10200 ft (3048–3109 m)
1st casing setting depth 1800–2200 ft (548–670 m)
2nd casing setting depth 7200–8700 ft (2195–2652 m)
3rd casing setting depth 10,300–11000 ft (3140–3353 m)
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Ant colony optimization (ACO)

Ant colony optimization (ACO), based upon the natural 
behavior of ants in finding the shortest path from the nest 
to a specific and identified source of food, can be exploited 
to find the shortest path among a discrete number of alter-
native routes distributed in 2D or 3D feasible solution 
space, honoring defined constraints (Guan et al. 2016). 

The ACO algorithm applied here to wellbore trajectory 
optimization is illustrated in Fig. 7.

The selection probability of a path is proportional to the 
following relation:

(7)Pi =

⎡⎢⎢⎣
Fn
i∑

i

Fn
i

⎤⎥⎥⎦

Fig. 5   Flowchart of GA used for 
optimizing well bore length of 
the example well bore. Initially 
a set of N solutions is generated 
randomly and their objective 
function values are calculated 
and ranked. From the solution 
set, some solutions are selected 
as “parents” with the probability 
of selection proportional to the 
rank of their objective func-
tions. The parents are combined 
and some of them are mutated 
or crossed over to obtain a 
new solution set potentially 
involving some solutions with 
better fitness/objective function 
values. This process is repeated 
for multiple iterations up to the 
maximum number of specified 
iterations

Fig. 6   Objective function trends 
compared for variable GA 
behavioral parameters versus 
constant-value GA behavioral 
parameters. The four runs (Case 
1) illustrated were all conducted 
using the same initial popula-
tion, i.e., the trends all begin 
with the optimum for an initial 
random sample population at 
the left side of the graph. Run 4 
(i.e., variable behavioral param-
eters) shows better performance 
than other runs (i.e., constant 
behavioral parameters). The 
better performance of Run 4 
is characterized by it exiting 
local minima more rapidly than 
the other runs. Note that the 
mutation probability in the GA 
is obtained by the relationship 
Pm = 1 − Pc
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The pheromone update rule is calculated as (Guan et al. 
2016):

where P is probability of selection for each path, F is phero-
mone intensity on each path, Cevp is evaporation constant 
and T is the incremental pheromone concentration to be 
added at each iteration. Suffix i refers to the ith path and n 
refers to the nth iteration. In each iteration, paths selected 
more frequently will establish, via Eqs. (6) and (7), higher 
pheromone concentrations. Cevp refers to the effect of phero-
mone evaporation that prevents excessive accumulation of 
pheromone concentrations. Higher values of Cevp result 
shorter run times for the algorithm, but also increase the 
probability of becoming trapped at a local optima. Table 4  
show the results of optimization for various values of Cevp. 
A variable Cevp that decreases as the iterations increase pro-
duced an acceptable result with a compromise between algo-
rithm run times and objective function values achieved. The 
value of T, Eq. (8), should be selected so as not to increase 
the pheromone density rapidly. In this study, T is set to 2 

(8)Fn
i
= CevpF

n−1
i

+ Tn
i

with the initial pheromone density set at 1, and Cevp is able 
to vary between a range of 0.2 and 1. 

In order to apply an ACO algorithm to the well trajec-
tory design cases evaluated, it was necessary to modify the 
decision space. Traditional ACO algorithms are designed 
to optimize discrete decision spaces, and on other hand, the 
well trajectory design is composed of a complex and con-
tinuous decision space of various parameters such as inclina-
tions, azimuths, doglegs and vertical depths. To convert this 

Table 3   Key GA behavioral parameters values applied to four runs 
and the optimal objective function value found after 2000 iterations

The optimal objective function value for each iteration of each run is 
illustrated as trends in Fig. 6 (Case 1)

Run 1 Run 2 Run 3 Run 4

Pm 0.8 0.5 0.2 Variable
Pc 0.2 0.5 0.8
Optimal solution 

found—TMD (m)
2352 2352 2354 2352

Fig. 7   Flowchart of a gen-
eral ACO algorithm used for 
optimizing well bore length 
of the example well bore. The 
entire feasible range allowable 
for each variable is divided 
into subsections, such that each 
subsection represents a node. 
Initially each ant is placed at 
a node and the ants then move 
through the all nodes in order 
to complete the well path. The 
lowest-well-path length dictates 
the highest pheromone density, 
which in turn results in higher 
probability of selection for the 
next iteration

Table 4   Results of optimization for various values of Cevp in 500 
iterations (Case 1)

Cevp Running time (s) Objective func-
tion value (m)

0.95 41 2381
0.75 123 2377
0.5 249 2361
Variable 165 2371

Table 5   ABC algorithm behavioral parameter variations and their 
impact on the algorithm’s performance for the well-path example 
(Case 1) over 50 iterations

Run 1 Run 2 Run 3 Run 4

L 100 500 750 1000
a 5 5 5 5
Number of bees in popula-

tion
50 50 50 50

Optimal solution found—
TMD (ft) after 50 itera-
tions

2352.65 2352.56 2352.79 2352.82

Computational time (s) 0.65 0.6 0.55 0.45
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continuous space into a discrete space, the permissible range 
of each parameter was divided into smaller sections, with 
each subsection considered as a node. This modification cre-
ates a large number of nodes that slows down the speed of 
optimization and results in the algorithm consuming high 
computation time. In addition, large number of nodes neces-
sitate the deployment of larger numbers of ants, which again 
increases the computation time. Figure 8 shows the trend 
of optimization of the objective function by dividing the 
solution variables into sections (nodes) and deploying 10 
ants. Increasing the number of ants yields better results in 
terms of objective function values located, but increases the 
computation time vice versa.

It is clear that the ACO algorithm applied may produce 
good results for the well-path optimization problem stud-
ied here, but the running time will be very high rather than 
that obtained by GA in previous section. Actually ACO 
algorithm is structured and best suited to discrete optimiza-
tion (Dorigo and Stutzle 2004) and best suited to solving 
problems with discontinuous decision spaces in the form of 
specified nodes in the space (Blum 2005, Hatampour et al. 
2013). Although ACO can be applied to continuous domains 
(Socha and Doriga 2008), it is necessary to deform the deci-
sion space of the well-path optimization problem studied 
here into a discontinuous space as described above. Because 
of high computation time associated with that approach, the 
ACO algorithms were not developed further. To improve 
the performance of ACO, one approach would be to hybrid-
ize it with other metaheuristics better adapted to deal with 
continuous solution spaces (e.g., Hu et al. 2008).

Artificial bee colony (ABC) optimization

Artificial bee colony (ABC) is a more recently developed 
metaheuristic optimization algorithm than ACO or GA 
approaches (Karaboga 2005; Karaboga and Basturk 2007, 
2008; Karaboga and Ozturk 2009). ABC is a simple evo-
lutionary algorithm using only common control param-
eters such as colony size and maximum cycle number. This 
algorithm provides a population-based search procedure 
described above and expressed by the following equations 
summarized from Karaboga and Gorkemli (2014):

Initialization phase

All the vectors of the population of food sources, Xm’s, are 
initialized (m = 1…SN, SN: population size) by scout bees 
and control parameters are set. Since each food source, Xm, 
is a solution vector to the optimization problem, each Xm 
vector holds n variables, (Xmi, i = 1…n), which are to be 
optimized so as to minimize the objective function.

The following definition is used for initialization 
purposes:

where Li and Ui are the lower and upper bound of the param-
eter Xmi, respectively. And rand is a random number between 
0 and 1.

(9)Xmi = Li + rand × (Ui − Li)

Fig. 8   The ACO algorithm 
behavior with 10 ants and 1000 
iterations that takes about 150 s 
to complete (Case 1)
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Employed bees phase

Employed bees search for new food sources (Vm) having 
more nectar within the neighborhood of the food source 
(Xm) in their memory. They find a neighbor food source 
and then evaluate its profitability (fitness). For example, 
they can determine a neighbor food source Vm using the 
formula given by Eq. (10):

where Xk is a randomly selected food source, i is a randomly 
chosen parameter index and ∅mi is a random number within 
the range [− a, a]. After producing the new food source Vm, 
its fitness is calculated and a greedy selection is applied 
between Vm and Xm.

The fitness value of the solution, fitm(Xm), might be cal-
culated for the problem using the following formula (11):

where f(Xm) is the objective function value of solution Xm.

Onlooker bees phase

Unemployed bees consist of two groups of bees: onlooker 
bees and scouts. Employed bees share their food source 
information with onlooker bees waiting in the hive and 
then onlooker bees probabilistically choose their food 
sources depending on this information. In ABC, an 
onlooker bee chooses a food source depending on the 
probability values calculated using the fitness values pro-
vided by employed bees. For this purpose, a fitness-based 
selection technique can be used, such as the roulette wheel 
selection method (Goldberg 1989).

The probability value pm with which Xm is chosen by 
an onlooker bee can be calculated by using the expression 
given in Eq. (12):

After a food source Xm for an onlooker bee is probabil-
istically chosen, a neighborhood source Vm is determined 
by using Eq. (10), and its fitness value is computed. As in 
the employed bees’ phase, a greedy selection is applied 
between Vm and Xm. Hence, more onlookers are recruited 
to richer sources and positive feedback behavior is 
perpetuated.

(10)Vmi = Xmi + �mi × (Xmi − Xki)

(11)fitm(Xm) =

{
1

1+f (Xm)
, f (Xm) > 0

1 + abs(f (Xm)), f (Xm) < 0

(12)
Pm =

fit(Xm)

SN∑
m=1

fit(Xm)

Scout bees phase

The unemployed bees who choose their food sources ran-
domly are called scouts. Employed bees whose solutions 
cannot be improved through a predetermined number of 
trials, specified as the “limit” or “abandonment criteria,” 
become scouts and their solutions from previous iterations 
are abandoned. The converted scouts start to search for 
new solutions, randomly. For instance, if solution Xm has 
been abandoned, the new solution discovered by the scout 
who was the employed bee of Xm can be defined by Eq. (9). 
Hence, those sources which are initially poor or have failed 
to be improved by exploitation are abandoned and negative 
feedback behavior is used to trigger new exploration efforts.

ABC algorithms combine local search processes, carried 
out by employed and onlooker bees, with global search pro-
cesses, managed by onlookers and scouts, to achieve a bal-
ance between exploration and exploitation efforts. A general 
ABC algorithm involves the following steps (Karaboga and 
Gorkemli 2014):

1.	 Initialize the food source positions, i.e., the target loca-
tions (note in the wellbore path problems there is typi-
cally one bottom-hole target location).

2.	 Employed bees identify new food sources within a site 
of specified dimensions and exploits the best food source 
within that site.

3.	 Onlooker bees select a site depending upon the quality 
of the performance observed from other bees return-
ing to the hive; they detect new food sources within the 
selected site and exploits the best food source located in 
that site.

4.	 Determine which sites should be abandoned and desig-
nate the employed bees visiting it to become scout bees 
to searching randomly for new food sites.

5.	 Memorize the best food sources found so far within the 
sites visited.

6.	 Repeat steps 2–5 until the solution converges to an opti-
mum value or a specified number of iterations or com-
putational time has elapsed (i.e., termination criteria are 
met).

In ABC algorithms, two parameters play key roles:

1.	 Acceleration coefficient (a)—determines the amplitudes 
of a random number (phi) used to create a new site to 
explore for bees; and

2.	 Abandonment limit parameter (L)—typically a linear 
function of several variables including the population 
size. The abandonment limit establishes an upper bound-
ary of another parameter that records how many times 
bees encounter a food source at a specific search area. If 
the abandonment parameter value exceeds the abandon-
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ment limit parameter (L), that search area (site) must be 
abandoned and scout bees are instead sent out to search 
for new promising sites. The purpose of the abandon-
ment limit is to prevent searches becoming trapped at 
local optima.

Other parameters, such as the number of bees in the pop-
ulation, are effective at impacting the computational time 
required by ABC algorithms to locate global optimum val-
ues of the objective function. The behavioral parameters, a 
and L, are used here to tune the ABC algorithm (Table 5).

With regard to behavioral parameter “L,” lower values 
result in greater computational time and more iterations 
being required to find the global optimum of the objective 
function. Better outcomes were achieved for the well-path 
optimization example by systematically varying the value of 
behavioral parameter “a” as the ABC algorithm progresses 
through its iterations. An initial value for “a” (e.g., 1 in 
the first iteration) multiplied by a linear coefficient (e.g., 
1.0005), increasing incrementally from one iteration to the 
next (according to Eq. 13), combined with higher values for 
parameter “L” were found to produce the best outcomes and 
fastest convergence for the well-path design cases evaluated.

where “c” is a constant value (e.g., c = 1.0005).

Harmony search (HS) optimization

HS is a relatively recently developed optimization algo-
rithm that has been successfully applied (e.g., Yang 2009) 
and adapted to solve various optimization challenges 
(Chakraborty et  al. 2009; Daham et  al. 2014). It is not 
though without its critics (e.g., Weyland 2010; Padberg 
2012) who conclude that it is similar to other evolutionary 
algorithms in searching feasible solutions spaces and lacks 
efficiency by repeatedly retracing previously travelled path-
ways. The solutions to an optimization problem derived by 
an HS algorithm are progressively enhanced as a harmony 
is improved by refining individual improvisations by musi-
cians while the music is being played (Yang 2009). The HS 
algorithm consists of five distinct steps:

1.	 Initializing the problem.
2.	 Initializing the harmony memory (HM).
3.	 Creating a new harmony (solution).
4.	 Updating HM.
5.	 Repeat steps 2–4 until: (a) the solution converges to an 

optimum value; (b) a specified number of iterations; or 
(c) computational time has elapsed (i.e., termination cri-
teria are met).

(13)ai+1 = ai × c

HM is a matrix of N × M dimensions that stores N solu-
tions each consisting of M components or variables. A new 
solution can be produced either by a random amendment 
to an element selected from the whole range of available 
variables, or by a small incremental change to an existing 
solution from the HM to explore the regions surrounding 
that known solution. Comparing a random number between 
0 and 1 and the harmony memory considering rate (HMCR) 
forms the basis of deciding the manner in which a new solu-
tion will be calculated. If HMCR is set to 0.7 and if the 
random number generated in each iteration is lower than 0.7, 
the new solution is created using as a starting point a solu-
tion already available in the HM. However, if the random 
number generated is greater than the specified HMCR value, 
then the new solution is created randomly from the whole 
range of available variables (Yang 2009).

Using the HM, the new solution is created using the fol-
lowing equations:

XOLD is chosen randomly from the HM, UB and LB are 
the upper and lower boundaries of the variables. And the 
ε is a small number between − 1 and +1 causing the new 
solution to be close to the old one. (Yang 2009).

The key HS behavior controllers are the number of solu-
tions that are stored in the HM, known as harmony mem-
ory size (HMS), and the rate of change that is applied to 
the solutions taken from HM known as harmony memory 
considering rate (HMCR) (Weyland 2010). A larger har-
mony memory (i.e., higher HMS) results in a more thor-
ough search of the feasible solution space, but also results 
in higher computational time. The HS algorithm evaluated 
in this study adopts a process sequence illustrated by the 
flowchart shown in Figs. 9, 10.  

The effect of the HMCR value on the progress of the 
HS algorithm is shown in Fig. 11. Higher HMCR values 
tend to yield the better optimal objective function values 
as the algorithm progresses. In the HS algorithm applied 
here, we set HMCR as a variable so that whenever the algo-
rithm becomes trapped at local minima, the HMCR value 
is abruptly decreased, enabling more as-yet-untested solu-
tions from the entire solution space to enter the HM. Such 
an approach increases the chances of the algorithm escaping 
from local minima in which it has become trapped or locked 
into. Figure 11 compares the HS algorithms performance 
with different constant HMCR values and compares that 
performance with higher performance with variable HMCR 
values.

Another key behavioral parameter of HS algorithms is the 
mutation rate (Rm), which determines what proportion of the 
variables contributing to the existing HM solutions should 

(14)XNEW = XOLD + B × �

(15)B = UB − LB
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Fig. 9   Performance of the ABC 
algorithm for different values 
of “L” (abandonment limit) 
applied to the wellbore trajec-
tory (Case 1)
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Fig. 10   Flowchart of HS applied to the wellbore path optimization 
problem. As for the GA, there is a string of components represent-
ing a solution. Each component is responsible for a variable. Initially, 
a set of solutions is generated randomly and assembled as the har-
mony memory (HM). Based on their fitness, established from their 
respective objective function values, the HM solutions are ranked. 
Applying a probabilistic selection method (a random number from 
the range 0–1, but closer to 1) a solution with high fitness from the 

HM is selected and a slight change is applied to it to generate a new 
solution. That new solution replaces the lowest-ranking solution in 
the HM. Alternatively, the new solution may be generated indepen-
dently from the whole range of solutions in the HM dependent on a 
predetermined threshold for the random number generated. This cycle 
is repeated over a significant number of iterations until the specified 
maximum iteration is reached



1500	 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

be changed to generate new slightly modified solutions to 
be evaluated. Rm should be as low as possible to make a 
slight change in good solutions and to explore the solution 
space around them. A high value of Rm can abruptly disturb 
the searching process. Rm of 0.05 is applied in this study. A 
potentially negative feature of the HS algorithm evaluated 
is that it requires a large number of iterations to achieve an 
acceptable “optimum” value for the objective function; how-
ever, each iteration can be conducted with relatively short 
computational time.

Comparative results applying tuned 
metaheuristic algorithms

Each of the metaheuristic algorithms applied is tuned for the 
wellbore path optimization Cases 1 and 2 (i.e., as defined 
in Figs. 1 and 3 and Tables 1 and 2) and then evaluated and 
compared for performance (i.e., objective function value 
and computational time consumed). Tables 6 and 7 list the 
results obtained for the optimization of wellbore Cases 1 
and 2 of each algorithm evaluated. It is important to bear 
in mind that these results were obtained on a PC computer 
with specifications “Intel Core i5 2430 M 2.4 GHz., 4 GB 
DDR3 Memory.” Attempts to run these algorithms on dif-
ferent computer systems are likely to result in different com-
putation times, but their relative performance order will be 
the same.

From Fig. 12 and Tables 6 and 7, its apparent that all the 
algorithms evaluated except ACO are very fast solving these 

complex cases involving continuous nonlinear solution spaces. 
GA, ABC and HS showed that in very complex problems, 
for which there may not be single exact analytical solutions, 
they can be employed to find an acceptable solution near to 
global optima. The modified-discrete ACO algorithm devel-
oped for this study was found not to be an appropriate solver 
for wellbore trajectory optimization problems, i.e., involving 
continuous solution space and large numbers of variables. This 
finding is perhaps not surprising as the original ACO algo-
rithm was developed to address discrete optimization problems 
(Dorigo and Stutzle 2004). Clearly A the ACO algorithm is 
better suited to solve problems with discontinuous decision 
spaces in the form of specified nodes in the space (Hatampour 
et al. 2013). 

Discussion

A summary of the converged optima achieved by each 
metaheuristic algorithm applied to the wellbore path opti-
mization Cases 1 and 2 is provided in Tables 8 and 9, 
respectively.

Fig. 11   Performance comparison of tuned HS versus non-tuned con-
stant HMCR–HS for well-path Case 1. Variable HMCR runs tend 
to yield better optimum values of the objective function because the 

algorithm remains trapped at local minima for less iterations than 
for runs applying fixed-HMCR values. The mutation rate in all runs 
shown is set at 0.2

Table 6   Comparative results of tuned metaheuristic algorithms 
applied to the wellbore optimization Case 1

GA ACO ABC HS

Optimal solution found—TMD (m) 2353 2370 2352 2352
Required number of iterations 1000 2000 100 2000
Computational time (s) 1.02 300 0.46 1.50
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The minimum total measured depth (TMD) located by 
all studied algorithms is similar (except for ACO), but the 
computation times and number of iterations taken by each 
one are different. The GA and HS algorithms require more 
iterations than ABC and PSO to converge toward the global 
optima. The same TMD achieved by the algorithms suggest 

that all have reached good solutions, but still we cannot say 
these are the absolute global optima.

An important consideration in this study is that for all 
algorithms evaluated, a strategy of non-constant key-con-
trol parameters is applied. For example, in tuning the GA, 
high cross-over probability typically leads to better per-
formance than high mutation probability. This is applied 
to the GA in such a way that when the GA becomes 
trapped around local minima, mutation probability is 
abruptly increased until an improvement in the GA trend 
is observed. The same approach has been applied to the 
HS algorithm such that by default a high value for har-
mony memory considering rate (HMCR) is applied. How-
ever, when the HS becomes trapped around local minima, 
HMCR is decreased to promote exploration of new solu-
tions spaces. This strategy is applied to all the algorithms 
evaluated with successful results; multiple runs of each 
algorithm with the flexibility to vary key parameters have 
proven that non-constant parameters result in significant 
improvements in their performance.

Table 7   Comparative results of 
tuned metaheuristic algorithms 
applied to the wellbore 
optimization Case 2

GA ACO ABC HS PSO from Atash-
nezhad et al. 
(2014)

Optimal solution found TMD (ft) 15,023 15,239 15,023 15,024 15,023
Required number of iterations 1000 2000 100 2000 100
Computational time (s) 1.60 1350 5.02 2.8 2.2

Fig. 12   Performance trends for 
GA, ABC and HS algorithms 
applied to the wellbore optimi-
zation Case 1 for 400 iterations. 
GA and HS may require more 
iterations to be fully converged
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Table 8   Comparison of the best results achieved by each tuned 
metaheuristic algorithms applied to the wellbore optimization Case 1

GA HS ABC ACO

Optimal solution found 
TMD (m)

2352 2352 2352 2370

KOP (ft) 62 62 62 65
2nd BU depth (ft) 980 980 980 987
Inclination (°) 30 30 30 30
1st DLS (°/100 ft) 3.76 3.76 3.76 4.07
2nd DLS (°/100 ft) 3.90 3.90 3.90 3.90
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An important achievement of the algorithms developed 
and tuned for this study is that they can solve a nonlinearly 
constrained problem in less than 2 s (e.g., ABC, GA and HS 
in Case 1).

The wellbores studied in this paper are evaluated to mini-
mize wellbore length (TMD). Other functions that could be 
set as objective functions include torque and drag on the drill 
string. The algorithms could also be examined for multi-
objective purposes, but this requires a separate study which 
is beyond the scope of this work. Another consideration that 
can be developed by means of metaheuristic algorithms is 
the anti-collision constraint in a multi-well drilling program. 
This can represent a very complicated limitation and is the 
subject of work in progress by the authors.

Conclusions

Evaluation of a suite of metaheuristic evolutionary algo-
rithms applied to complex well-path optimization provides 
insight to their relative performance and how they might best 
be tuned to optimize their performance. Key insights gained 
from this study are:

1.	 GA, HS, ABC and PSO are fast-convergence algorithms 
that can be successfully applied and tuned to solve com-
plex and time-consuming wellbore trajectory design 
problems.

2.	 HS is a simple algorithm that typically requires a high 
number of iterations to converge toward the global 
optima, but does so in low computation times.

3.	 For each algorithm evaluated, a set of key-control 
parameters can be tuned to optimize their performance 
when applied to specific wellbore trajectory problems. 
Constant values applied to these parameters did not 
result in optimal performance. Rather, it was found that 
changing these parameters progressively within certain 
ranges through successive iterations resulted in the best 
performance of each algorithm studied.

4.	 With the exception of ACO, all algorithms evaluated 
in this study demonstrate their ability to solve complex 
wellbore trajectory problems rapidly and locate accept-
able solutions close to global optima.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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