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Abstract A new basic single-corner capillary model is

presented. In this model, the distribution of immiscible

fluids is determined by a particular threshold pressure.

Additionally, we derive and analyze the interface curvature

and profile of the fluid menisci in different tubes. Various

polygonal cross sections are obtained by repeatedly

superposing the basic single-corner capillary model. We

study the relationship between the number of polygon

edges and the distribution of fluids as well as the saturation

of the wetting phase in equilateral polygon tubes. Fur-

thermore, for the first time, we discuss the interaction of the

corners to reveal the five stages of the fluid interfaces with

various corner geometries. The dimensionless interface

curvature and the radius of the circle are considered to

extend our conclusions to similar cross-sectional capillary

tubes of different sizes.

Keywords Single-corner capillary � Distribution �
Saturation � Interface � Wetting phase

Introduction

The research of flow in pore level tube models is of great

importance in revealing the flow mechanism in porous

media. It is well known that the channels in real porous

media are not built up as the common cylindrical tubes, and

the geometric properties of the pores could be represented

better by the capillary with triangular or other polygonal

cross sections. When a non-wetting fluid is forced into an

irregular polygonal tube, a pressure difference between the

immiscible fluids occurs if the wetting fluid remains in the

corners. This pressure is a function of the cross-sectional

geometry, surface tension, and contact angle. Mayer and

Stowe (1965) and Princen (1969a; 1969b; 1970) have

developed a method to determine this pressure by consid-

ering that the surface free energy inside the channel

maintains equilibrium. The method they derived was

named the MS-P method. The theory at the core of the MS-

P method is the work balance of the non-wetting phase

displacement, where the work of a very small distance of

the main terminal meniscus equals the change in the sur-

face free energy of the arc menisci; the configuration of

menisci in a triangular tube is shown in Fig. 1 (Jia et al.

2007). By utilizing the MS-P method, Mason and Morrow

(1991) studied the curvature of the menisci under perfect

wetting conditions in irregular triangular tubes. They

investigated capillary tubes with different cross sections

that may have an equal shape factor, G, which was defined

as G = A/P2, where A and P are the area and perimeter of

the triangular cross section. The shape factor was a rea-

sonable method and was applied by other researchers. Lago

and Araujo (2001) also introduced a modified shape factor,

multiplied by 4p, and demonstrated that G would reach its

maximum value in a capillary with a circular cross sec-

tion. Considering the presence of the contact angle in

natural flow, Jia et al. (2007) extended the work of Mason

and Morrow to the case of two-phase flow with arbitrary

contact angles, and they derived the distribution of the

interface between the two immiscible fluids, controlled by

the entry pressure, in a triangular capillary tube. Never-

theless, 3D images provided by high-resolution microto-

mography (Arns et al. 2005) prove that the pore structures
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in natural rock are far more complicated than these trian-

gular and rectangular tubes.

Circular, triangular, and rectangular capillary tubes were

investigated in previous studies of flow simulation in

irregular tubes and pore-scale network modeling (Kovscek

et al. 1993; Man and Jing 1999, 2000, 2001). The shape

factor of a circular tube is 0.07958, while the shape factors

of triangular and rectangular tubes are \0.04811 and

0.06250, respectively. The shape factors reach their max-

imum values with the equilateral triangle and square cross

sections for triangular and rectangular tubes, respectively.

This means that the cross sections with shape factors

between 0.07958 and 0.06250 are represented by a series of

tubes mentioned previously. Irregular triangular tubes with

the same shape factor can have geometrically different

cross sections (Lago and Araujo 2001; Oren et al. 1998).

In these tubes, when two immiscible fluids flow with the

form of piston-like flow, the curvatures of the interfaces are

controlled by the capillary pressure; the distributions of the

fluids denote their saturations, which have a significant

influence on the flow behaviors. Theoretical analysis of the

fluid distributions (Jia et al. 2007) indicates that triangular

capillary tubes with the same shape factor have slightly

different wetting phase saturation profiles. When the contact

angle is\50�, the saturations of each fluid in different tri-

angular tubes with the same shape factor are similar, but the

difference in the saturations increases slightly with

increasing contact angle, after exceeding 50�. Tubes with

shape factors between 0.07958 and 0.06250 are more com-

plicated than triangular tubes, and the saturation profiles of

the fluids in irregular tubes with the same shape factor are

unknown. Accordingly, it is necessary to study the saturation

profiles in tubes with complicated cross sections, and the

saturation analysis between the tube bundles with the same

shape factor is also a focal point in this research.

Researchers have studied the effect of different contact

angles in capillary tubes of fixed geometry to gain a better

understanding of the distribution and flow behaviors in

regular polygonal tubes. Princen (1969a; 1969b; 1970) has

discussed the curvature of menisci in triangular and square

tubes with a zero contact angle. Mason and morrow (1984)

have shown that with a particular critical contact angle, the

wedge menisci would disappear in n-sided polygonal tubes.

The critical contact angle would be zero in circular tubes.

As n goes to infinity, the n-sided polygonal cross section is

similar to a circular cross section. Therefore, Lindquist

(2006) indicated that, as the meniscus configuration

became coincident with the perimeter of a circle, the radius

of the interface was half of the circle radius. In a study by

Raeesi et al. (2013), the effect of roughness on the wetta-

bility was investigated by using the MS-P theory; the

models were tubes with straight grooves along the axial

direction on the tube wall, which will be compared with

polygonal tubes in this paper.

Following decades of remarkable developments,

researchers have aimed to determine the fluid distribution

using mathematical models and experimental models

(Dong and Chatzis 1995; Dong et al. 1995; Frette and

Helland 2010; Jamaloei et al. 2010; Jia et al. 2007; Piri and

Blunt 2004; Van Dijke et al. 2004; Van Dijke and Sorbie

2003). With the advent of computed microtomography and

the development of image analysis techniques, the
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Fig. 1 Drainage in a triangular

tube: a the three-dimensional

view of the drainage, b the cross

section of the drainage and the

arc menisci, c the vertical

section of the drainage and the

profile of the main terminal

meniscus in corner A
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geometrical characterizations and channel cross sections of

pores in porous media have become available (Lindquist

et al. 1996, 2000; Sholokhova et al. 2009; Wildenschild

and Sheppard 2013). This research, on the distribution and

flow behaviors of fluids in irregular tubes, can be consid-

ered a fundamental study for the residual saturation and

flow of fluid in natural rock.

In terms of the flow of fluids in tubes, Ransohoff and

Radke (1988) studied the laminar flow of a wetting phase

along the corners of a non-circular capillary tube that was

originally occupied by a gas phase, and the two-phase flow in

their paper was considered to be a two-dimensional hydro-

dynamic problem that was a function of the cross-sectional

geometry, the viscosity, and the contact angle. Unlike in the

work of Ransohoff and Radke, in which the two fluids were

liquid and gas, the stress between the fluids on the interface is

not negligible in the case of liquid–liquid two-phase flow.

Additionally, in a liquid–liquid system, the velocity coupling

on the interface caused by the interactions between fluids

also considerably influences the flow. Other researchers also

studied the velocity coupling between the liquids at different

viscosities (Patzek and Kristensen 2001). Furthermore, in

porous media, the interactions are generally presented as a

function of the relative permeability that depends on the

saturations of the two phases (Bartley and Ruth 1999).

In this paper, a new basic single-corner capillary model is

presented, which is similar to the kite-shaped pore model

(Mason and Morrow 1984). The distribution of immiscible

fluids is controlled by a particular threshold pressure,

meaning that the meniscus curvature of the fluids can be

analytically derived with the MS-P method. By repeatedly

superposing the basic single-corner capillary model, various

polygons are obtained, and the profile of the interfaces

within these polygonal tubes is discussed. Admittedly, as the

most commonly used research model, the triangular cross-

sectional capillary is one of the polygons discussed here.

Additionally, the influence of the number of edges of the

polygons on the saturation of the wetting fluid in the equi-

lateral polygon tubes, the interaction between the corners,

and the saturation difference between the bundle and the

polygonal tube with the same shape factor are analyzed in

detail. To extend the fluid distribution result to the flow

behaviors of fluids and to investigate the application of the

tube models in porous media, the results of numerical sim-

ulations of the two-phase flow with varying corner combi-

nations, contact angles, and viscosity systems are discussed.

Single-corner capillary model

In the process of non-wetting phase piston-like displace-

ment in a capillary tube, the work balance between a very

small displacement of the main terminal meniscus (MTM)

and the change in the surface free energy of the arc menisci

(AM) controls the distribution of the fixed fluids. The

curvatures of the main terminal meniscus and the arc

menisci are controlled by the capillary pressure, Pc, and the

pressure maintaining the piston-like displacement can be

expressed as a function of the cross section geometry and

the surface tension:

Pc ¼
ðrns � rwsÞLns þ rnwLnw

An

ð1Þ

where r, L, and A are the surface tension, length, and area,

respectively, and the superscripts n, w, and s refer to the

non-wetting phase, wetting phase, and solid phase,

respectively. By introducing the Young equation:

rns � rws ¼ rnw cos h ð2Þ

where h is the contact angle, the Pc function can be

simplified to:

Pc ¼
rnwLns cos hþ rnwLnw

An

: ð3Þ

When the capillary pressure in the tube reaches

equilibrium, the curvatures of the main terminal meniscus

and the arc menisci are equal, and the relationship between

the capillary pressure and the meniscus radius, R-m, is

related to the surface tension:

Pc ¼
rnw
Rm

: ð4Þ

To determine the geometric configuration of the

interface between the immiscible fluids, Eqs. (3) and (4)

are combined to determine the value of R-m:

Rm ¼ An

Lns cos hþ Lnw
: ð5Þ

As written, Eq. (5) can be applied to calculate the

meniscus curvature of the piston-like displacement in a

capillary tube with an irregular cross section, including a

circle, triangle, and square. To simplify this equation, the

numerator and the denominator can be defined as the

effective area, Aeff, and the effective perimeter, Peff,

respectively, which are essential to determine the fluid

distributions. In addition, the universal formula of Rm is

expressed as (Jia et al. 2007)

Rm ¼ Aeff

Peff

: ð6Þ

Equation (6) reflects the core theory of the MS-P

method that the work generated by the small

displacement of the MTM is equal to the change in the

surface free energy of the AM; the complicated analysis in

the MS-P method is based on a series of trigonometric

derivations, but it is simplified here to solve the problem of

menisci in irregular cross-sectional tubes.
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Compared to triangular and rectangular capillary tubes,

irregular tubes with a polygonal cross section have more

corners, such as a pentagon, hexagon, or more complex

geometry. Moreover, in irregular tubes, the rough edges of

the cross section can be more complicated than the simple

convex polygons for the concave portions, which are more

similar to the natural pore structures in porous media. For

the purpose of determining the fluid distributions in the

irregular polygonal capillary tubes, a capillary tube with a

single-angle cross section is proposed. Through repeated

superpositioning, multiple single-corner capillary models

can be combined into a polygonal tube model with a more

complex cross-sectional structure.

When the contact angle is equal to 0

The cross section of this new capillary model based on the

single-corner capillary is the combination of a circle of

radius, R, and a corner with an acute angle, a,\p, whose
corner is shown in Fig. 2. The two edges of the corner, AB

and AC, are tangent to the circle portion of the cross sec-

tion at the points B and C. In the case of perfect wetting,

the meniscus touches the edges at the points M and N, and

the lengths O’M and O’N are the meniscus radius, Rm,

while the center of the meniscus, O’, is on the straight line

between the vertex, A, and the circle center, O. Since M

and B are points of tangency, the lines OB and O’M are

perpendicular to the corner edge, indicating that the angles

\AOB and \AO’M are equivalent. Moreover, the basic

geometry literature suggests that the single-corner cross

section is axisymmetric along the straight line AO, which

is also the angular bisector to the corner. Therefore, the

\AOB and \AO’M are the half angles of \BOC and

\MO’N, symbolized as b and c, respectively.
In the case of complete wetting, the effective area, Aeff,

and the effective perimeter, Peff, are given, and the formula

can be derived from Eq. (6) in terms of AB, AM, and b:

Rm ¼
AB � Rþ pR2 2p�b

2p � AM � Rm þ pR2 b
2p

2ABþ 2pR 2p�b
2p � 2AMþ 2pR b

2p

: ð7Þ

Generally, in the primary geometric relationship,

aþ b ¼ p, AB ¼ R cot a
2
, and AM ¼ Rm cot a

2
. By

introducing an angle parameter, w, where w ¼ cot a
2
þ a

2
,

and simplifying Eq. (7) with the three geometric

relationships, the relationship between the meniscus

radius and the circle radius can be expressed as:

Rm

R

� �2 p
2
� w

� �
þ Rm

R
� 2 p

2
þ w

� �
� p

2
þ w

� �
¼ 0: ð8Þ

This quadratic equation for the normalized threshold

radius, Rm

R
, has only one rational solution, which is:

Rm

R
¼ � pþ 2wð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p pþ 2wð Þ

p
p� 2w

: ð9Þ

Equation (9) shows that the normalized threshold radius

for a perfect wetting condition is a function of the corner

angle, which actually defines the shape of the cross section.

When the contact angle is not equal to 0

Considering the contact angle, h, in the tube corner, the

condition for the presence of the wetting phase is h\ p
2
- a

2
,

and the meniscus distribution in this case is shown in

Fig. 3. Using the relationships aþ b ¼ p, aþ cþ 2h ¼ p,
and AM ¼ Rm cot a

2
cos h� sin h

� �
, the equation of the

normalized threshold radius can be written in terms of a
and h:

Rm

R

� �2 p
2
� a
2
� h� cot

a
2
cos h� sin h

� �
cos h

h i
þ Rm

R

� 2 cos h p
2
þ w

� �
� p

2
þ w

� �
¼ 0:

ð10Þ

For a perfect wetting condition, the contact angle is 0,

and Eq. (8) is a simplification of Eq. (10). Similar to

Eq. (9), the rational solution of this equation is a function

of angles, and the relationship between the normalized

threshold radius and the contact angle, h, for different

single-corner tube shapes is shown in Fig. 4. The five

curves plotted in Fig. 4 represent the normalized threshold

radius for tubes with corner angles of 30�, 60�, 90�, 120�,
and 150�, which increase with increasing contact angle.

R 

O 

A B 

C 

O’ 

Rm

M 

N 

Fig. 2 Cross section of the single-corner capillary tube in the case of

complete wetting. The points O and O’ are the center of the circle

portion of the cross section and the center of the meniscus,

respectively
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The change in the increase gradually increases with larger

contact angles. Due to the presence of the wetting phase,

the range in the normalized threshold radius for the curves

decreases with increasing corner angle. When the contact

angle approaches zero, the normalized threshold radius will

be a minimum. Additionally, the deceasing intervals

between the curves and the phenomenon that the

minimum of the normalized threshold radius with the

largest corner angle tube is approximately equal to 0.5

illustrate that, as the single corner is smoothed, the

meniscus radius is half of the circle radius.

With the single-corner capillary models, the normalized

threshold radius of the tubes with complex polygonal cross

sections can be calculated by the superposition method. In

the next two sections, the tubes with equilateral polygonal

cross sections, with corners that can be superposed inde-

pendently, and more complex tube shapes, with interac-

tional corners, are modeled and discussed in detail.

Equilateral polygon

For an equilateral polygon composed of n vertices and n

edges, the corner angle, a, equals n�2
n
p. For a tube with four

corners, the effective area and the effective perimeter in

Eq. (6) can be expressed as:

Aeff ¼ nAB � Rþ pR2 2p� nb
2p

� nAM � Rm cos h

þ pR2
m

nc
2p

ð11Þ

and

Peff ¼ 2nABþ 2pR
2p� nb

2p
� 2nAM

� �
cos h

þ 2pRm

nc
2p

: ð12Þ

With the universal formula of Rm, Eq. (6), the solution

for Rm

R
can be expressed as a function of the contact angle

and the number of edges:

Rm

R
¼

� tan p
n
cos hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
n
� hþ sin h cos h

� �
tan p

n

q
p
n
� h� tan p

n
cos h� sin h

� �
cos h

: ð13Þ

The effect of the contact angle on the normalized

threshold radius for different equilateral polygonal tubes

with various numbers of edges is plotted in Fig. 5. These

equilateral polygons are a regular triangle, quadrilateral,

pentagon, hexagon, octagon, and decagon, whose vertices

are 60�, 90�, 108�, 120�, 135�, and 144�, respectively. The
curves in Fig. 5 have trends similar to the curves in Fig. 4:
Rm

R
increases with an increasing contact angle, and the

ranges of the curves for the tubes with more edges decrease

with an increasing number of edges. Moreover, the

minimum normalized threshold radius value of the graph

also goes to 0.5. This phenomenon indicates that, as n goes

to infinity and the cross section is circular, the meniscus

profile is coincident with the circumference of the circle

and the radius of the meniscus is half the radius of the
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Fig. 4 Normalized threshold radius, Rm

R
, as a function of the contact

angle, h, and the corner angle, a
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, for different equilateral
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Fig. 3 Cross section of the single-corner capillary with the contact

angle, h
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circle portion (Lindquist 2006). Therefore, the centers of

the menisci constitute a concentric circle of radius R/2, and

the entry pressure for a cylindrical capillary, Pc ¼ 2r
R
,

agrees with the classic literature.

To investigate the smoothing effect on the normalized

threshold radius, the relationship of the wetting phase

saturation, S, and the number of polygon edges are studied

for four different contact angles, 0�, 10�, 20�, and 30�,
respectively, using the equation

S ¼ Rm

R

� �2

1�
p
n

tan p
n

� �
; ð14Þ

and the result is shown in Fig. 6. The saturation decreases

rapidly when the polygon becomes circular, and the decline

curve is asymptotic for polygonal cross sections that are

more complex than a hexagon. This trend indicates that the

proportion of the phase that occupies the tube corners

decreases as the corners become more obtuse and the

wetting phase saturation is maximized in a triangular

capillary tube. At low contact angles, in the same tube, the

interface has a greater curvature and a longer length, and

the profile of the meniscus in the corner is shown in Fig. 7.

It shows that the not-wetting phase is in less contact with

the inner walls, and the wetting phase has a greater influ-

ence on the flow of the non-wetting phase, when the phase

occupying the central region is liquid and does not have a

slip effect.

For a polygon with more than 20 edges, the saturation is

approximately zero, revealing that the wetting phase

behaves as a thin liquid membrane in these cases. When the

number of edges goes to infinity, the polygon can be

considered circular. Although the film between the non-

wetting phase and the inner walls of the tube is extremely

thin, the influence of the liquid membrane on two-phase

flow is non-negligible, on the condition that the viscosities

of the phases are unequal and the scale of the cross section

of the tube is very small (Dai et al. 2016; Dai and Wang

2014; Dai and Zhang 2013; Dong et al. 2009; Fairbrother

and Stubbs 1935; Taylor 1961). The influence of the film

on the flow in the tubes with polygonal cross sections will

be discussed in a later section.

Interaction corners

In equilateral polygons, the superposed corners are inde-

pendent of each other, but they are inscribed in the same

circle. However, in natural pores, the cross sections are

more irregular, and the complex structure of the polygonal

corners forces the fluid distributions to be more

complicated.

In a capillary tube with a two-corner cross section, as the

corner positions rotate around the center of the circle, the

menisci will undergo no change in shape unless the corners

start to overlap. The rotating procedure for the two-corner

tube model (the corners of \BAC and \B’A’C’, with

angle of a) considered here, in which the drainage phase,

oil, occupies the central part of the tube, is shown in Fig. 8.

When the angle between the bisectors, w, is equal to the

angle between the lines OB and OC, p� a, the corners

touch along the edge of the cross section, and their tangent

points coincide, Fig. 8a (the thick curved lines represent

the menisci). Corner intersection occurs when the inter-

faces are still separated as a consequence of continually

decreasing the angle w, as illustrated in Fig. 8b and its

detail. When the contact angle is constant, the junction of

the meniscus and the wall will gradually move away from

the vertices of the corners, that is, when the angle w
decreases to a critical value, the menisci in the two corners

will connect, as shown in Fig. 8c. In addition, as the two

corners overlap more, the two menisci will merge, as

shown in Fig. 8d, and eventually become a single menis-

cus, as shown in Fig. 8e.

The formula to calculate the threshold radius under

different stages of corner overlap was obtained according

to the definition of the parameters above. If the corners

overlap, the threshold radius can be expressed as:

0
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Fig. 6 Wetting phase saturation, S, for different equilateral polygons

for four contact angles
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Fig. 7 Profile of corner menisci with different contact angles, h
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R
0

m

� �2

p� a� 2h� 2 cot
a
2
cos h� sin h

� �
cos h

h i

þ R
0

m
cos h 4 cot

a
2
þ 2a� p� a� wð Þ � 2 tan

p� a� w
2

	 


� 2 cot
a
2
þ a� tan

p� a� w
2

� �
¼ 0:

ð15Þ

If the two menisci are in contact, the threshold radius

can be expressed as:

R
0

m

� �2

p� a� 2hð Þ þ R
0

m
cos h pþ a� wþ 2 cot

a
2

� �

� 2 cot
a
2
þ pþ a� w

2
� tan

p� a� w
2

� �
¼ 0:

ð16Þ

If the meniscus is integrated and separated from the

wall, the threshold radius can be expressed as:

R
0

m

� �2 p� a� 2hþ w
2

� cos h cot
a� w
2

cos h� sin h

� �	 


þ R
0

m
cos h pþ a� wþ 2 cot

a� w
2

� �

�
2 cot

a
2
þ pþ a� w

2
� tan

p� a� w
2

þ

sin a cot
a
2
� tan

p� a� w
2

� �
cot

a� w
2

� cot
a
2

� �
2
6664

3
7775 ¼ 0:

ð17Þ

In the case of complete wetting, Fig. 9 shows the

relationship between the normalized threshold radius and

the angle of the bisectors for various tubes with two corner

angles of 30� and 30�, 40� and 40�, 50� and 50�, and 60�
and 60�. Similar to the results of the single-corner tube

models, as shown in Fig. 4, the tubes with sharper corners

have a greater threshold radius.

As shown in Fig. 9, as the angle w continues to

decrease, the dimensionless meniscus radius increases at

first and then decreases. The results can be divided into

three stages, namely b, c, and e, in Fig. 8, and the dashed

lines indicate the critical conditions between the different

stages. In stage b, R
0

m
increases with decreasing w; in stage

c, the menisci are in contact with each other, and R
0

m

decreases with decreasing w; in stage e, the menisci mix

together and separate from the wall, and the change in the

decrease in R
0

m
decreases with decreasing w and finally

reaches the R
0

m
corresponding to the case of a single corner

with an equivalent angle.

The saturation of the wetting phase can then be

obtained, as shown in Fig. 10. Similar to the curve of the

dimensionless radius, with a decrease in the angle w, the
wetting phase saturation first increases and then decreases.

The results show that the wetting phase saturation is higher

when the corners of irregular capillary tube are smaller for

the same liquid phase system, and the saturation of the

wetting phase reaches a maximum value when the two

menisci just touch each other.

Conclusions

The single-corner capillary model was presented, and the

relationship between the dimensionless radius and the

contact angle was studied. The results indicate that with

larger contact angles of the same corner capillary tube

geometry, the capillary pressure decreases and the menis-

cus radius becomes larger.

By superposition, the meniscus radius in a capillary tube

with a regular polygonal cross section was determined.

When the number of edges, n, is\6, the geometry of the

cross section has a significant effect on the wetting phase

distribution and saturation. As n increases, the wetting

phase saturation decreases considerably.
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The effects of changing the angle w on the meniscus

radius and the wetting phase saturation were obtained for

three cases. When the corners are in contact with each

other, as the angle w decreases, the meniscus radius and the

wetting phase saturation increase and then decrease and

reach a maximum as the two menisci come into contact

with each other.
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