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Abstract This study presents analytical models for natu-

rally fractured tectonic reservoirs (NFTRs), which essen-

tially correspond to type I fractured reservoirs, including

the effects of the nonlinear gradient term for radial flow,

single phase (oil), for constant rate in an infinite reservoir.

Using an exact solution of Navier–Stokes equation and

Cole–Hopf transform, NFTRs have been modeled. Our

models are applied for fissured formations with extensive

fractures. Smooth and rough extension fractures were

analyzed using single and slab flow geometries. The

motivation for this study was to develop a real and repre-

sentative model of a NFTR, with extension fractures to

describe its pressure behavior. A discussion is also pre-

sented with field examples, regarding the effect of a

quadratic gradient term and the difference between the

nonlinear and linear pressure solutions, comparing the

Darcy laminar flow equation, with the exact solution of the

Navier–Stokes equation applied to the diffusion equation

and boundary conditions in wellbore.

Keywords Extensional and tectonic fractures � Cole–Hopf
transformation � Couette’s and Darcy’s flow � Fluid
dynamics � Nonlinear fluid flow � Analytical solution

List of symbols

U Flow potential (m2/s2)

q Oil density (kg/m3)

qo Oil density at initial pressure (kg/m3)

g Gravity (m/s2)

z Elevation (m)

r Radius (m)

rhv Outer high-velocity radius (m)

rw Wellbore radius (m)

re Outer radius (m)

D Hydraulic diffusivity (m2/s)

h Formation thickness (m)

Re Reynolds number (dimensionless)

Dp Average pore diameter (m)

a Fracture aperture (m)

vd Specific discharge (m/s)

u(y) Velocity profile (m/s)

uðyÞ Average velocity (m/s)

U Upper surface velocity (m/s)

u(y)max Maximum velocity profile (m/s)

v Couette’s equation velocity (m/s)

y Vertical direction

x Horizontal direction

c Specific weight (dimensionless)

H Vertical distance (m)

b Inclination angle (�)
q Oil flow rate (m3/s)

Cf Fracture conductivity (m3)

N Number of fractures per section (dimensionless)

t Time (s)
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Universidad Nacional Autónoma de México (UNAM),
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(UNAM), Mexico, D.F., Mexico

123

J Petrol Explor Prod Technol (2018) 8:1–16

https://doi.org/10.1007/s13202-017-0320-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-017-0320-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-017-0320-8&amp;domain=pdf
https://doi.org/10.1007/s13202-017-0320-8


/ Total porosity (fraction)

/m Matrix porosity (fraction)

/f Fracture porosity (fraction)

k Total permeability (m2)

km Matrix permeability (m2)

kf Single fracture permeability (m2)

c Total compressibility (Pa-1)

co Oil compressibility (Pa-1)

cm Matrix compressibility (Pa-1)

cw Water compressibility (Pa-1)

cf Fracture compressibility (Pa-1)

d Distance between fractures (m)

A Area (m2)

kslab Parallel fractures permeability (m2)

p Formation pressure (Pa)

pwf Wellbore fracture pressure (Pa)

pi Initial formation pressure (Pa)

pf Fracture pressure (Pa)

l Oil viscosity (Pa s)

Conversion factors

ft. 9 3.048 E-01 = m

s 9 2.7777 E-04 = h

psi 9 6.894757 E-00 = kPa

cp 9 1.0 E-03 = Pa s

in. 9 2.54 E-02 = m

g/cm3 9 1.000 E-03 = kg/m3

Darcy 9 9.869230 E-13 = m2

Bbl 9 1.589873 E-01 = m3

Abbreviations

NFTR Naturally fractured tectonic reservoir

Re Reynolds number

Introduction

A fractured medium is formed by the effect of stresses that

break the rock that contains tectonic fractures between

blocks of rock, and there is no fluid interchange between

rock and fractures. These are type I reservoirs in accor-

dance with Nelson (2001) classification of naturally frac-

tured reservoirs.

Some examples are fractured igneous rock or frac-

tured reservoirs classified as type I by Nelson (2001),

with extension fractures where displacement is per-

pendicular to the walls of the fracture. When these

fractures are filled with hydrocarbons, they are called

fissures. In the field of fracture mechanics, it is com-

mon to classify them, as mode I fractures. Figure 1

shows a mode fracture with a perpendicular displace-

ment to its walls.

There are various types of extension fractures, such as

fissures, joints, and veins, which are observed in outcrops,

cores, and fractured reservoirs.

Figure 2 displays different outcrops with calcite-filled

extension fractures in limestone and joints in sandstone.

These parallel fractures present several apertures and

connected fracturing patterns.

Fig. 1 Mode I fracture (Fossen 2010)

Fig. 2 Extension fractures. a Calcite-filled extension fractures in

limestone. b Joints in sandstone. Image Courtesy United States

Geological Survey; image source: Earth Science World Image Bank

(AGI). Marli Miller, University of Oregon. http://www.

earthscienceworld.org/images
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Figure 3 shows a limestone core with an open tectonic

fracture. These types of fractures, considered as extension

fractures, present a visible perpendicular displacement.

Some models of hydrocarbon reservoirs have used these

kinds of natural fractures.

The theory of fluid flow in fractured media developed

by Barenblatt and Kochina (1960) is based on the

assumption of constant rock properties. Barenblatt’s

model consisted of two media, matrix and fractures, with

matrix–fracture transfer which would generate a pressure

gradient during hydrocarbon production. Despite the

medium being fractured, fluid flow is represented using

Darcy’s law.

The proposed analytical techniques assume constant

rock properties, which yield a constant diffusivity. In the

present paper, we use a Navier–Stokes solution called the

Couette’s equation to model fluid flow in extension

fractures.

In practice, fractured reservoirs types I, II, and III

classified by Nelson (2001) are non-stress sensitive media.

The analysis has been developed chiefly with the aim of

obtaining analytical expressions for the solution of the

mathematical flow model, for naturally fractured tectonic

reservoirs.

An analytical model for non-stress-sensitive naturally

fractured tectonic reservoirs is developed; it is solved

analytically using Cole–Hopf transform for the case of an

infinite reservoir and Couette’s flow that includes a quad-

ratic gradient term.

The study of the present paper is based on outcrops, core

samples, and field data; we show that NFTRs could be

modeled using Couette’s flow, considering the effects of

the nonlinear gradient term to describe fluid flow.

Darcy and Couette equation

Darcy’s law is frequently used and sometimes unknowing

its basic assumptions. The most restrictive application

condition is related to the Reynolds number; namely, that

fluid flow is dominated by viscous forces, considering

laminar flow for Reynolds number, Re, which means a

number smaller than unity (Muskat 1946).

Various authors give different limiting values for Darcy’s

laminar flow, between a range of Re from 3 to 10 (Polubari-

nova-Kochina 1962). However,Muskat (1946) discussed that

Darcy’s law can be applied to reservoirs flow problemswhose

conditions yield Reynolds number smaller that unity.

Figure 4 shows different Reynolds numbers for appli-

cability of Darcy’s law, considering linear nonlinear lam-

inar flow and turbulent flow. We applied the Couette’s flow

in the nonlinear laminar zone with Reynolds numbers

ranging between 5 and 13 (Couland et al. 1986).

The Reynolds number and the basic Darcy equation may

be stated as:

Re ¼ Dpvq
l

ð1Þ

For natural fractures, it can be expressed as:

Re ¼ qaq
lA/

ð1aÞ

where

v ¼ � kq
l
rU ð2Þ

where U; p=qþ gz; U; flow potential; p; formation

pressure; q; oil density; g; gravity; z; elevation; l; oil

Fig. 3 Tectonic fractures in a core of NFTR

Fig. 4 Applicability of Darcy’s law (Virtual Campus in Hydrology

and Water Resources Management 2014)
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dynamic viscosity; A, 2prh; A; area; r; radius; h; thickness
formation; k; total permeability; Re; Reynolds number;

Dp; average pore diameter; a; fracture aperture; vd;

specific discharge; /; porosity.
Darcy’s law is valid for the median of the flow proba-

bility distribution (Scheidegger 1960) and is based on the

assumption that fluid flow is inertialess.

It can be stated that for a heterogeneous, anisotropic

and fractured porous medium, the upper limit critical

Reynolds number for laminar flow ranges from 0.1 to 10.

The transition to quadratic flow (without reaching turbu-

lence), see the nonlinear laminar section of Fig. 4, was

demonstrated by Schneebeli (1955). The nonlinear seep-

age flow law will be parabolic at Re[ 13, with deviation

from linearity (Barenblatt et al. 1990; Couland et al.

1986); also nonlinear corrections to Darcy’s law at low

Reynolds numbers for periodic porous media have been

described (Firdaouss et al. 1997). Values of Reynolds

number between 5 and 13 were calculated with numerical

experiments based on the Navier–Stokes equations

(Couland et al. 1986; Stark 1972).

Nonlinear flow is found in fractured porous media.

Consequently, the Couette equation can be used for ana-

lytical modeling because it has a quadratic flow profile that

is an exact solution for the Navier–Stokes equation; this

equation is similar to cubic law and/or Boussinesq’s for-

mula. The cubic law estimates the fluid flow rate for flow

through fractures systems; usually, this equation is used in

naturally fractured tectonic reservoirs (NFTRs), consider-

ing the laminar flow of a viscous fluid between parallel flat

plates (Barros-Galvis et al. 2015; Potter and Wiggert

2007). On the other hand, Singh and Sharma (2001) used

an extension of the three dimensional Couette flow to study

the channel flow and the effect of the permeability of the

porous medium.

The application of Couette or Darcy equations is asso-

ciated with the Reynolds number. Figure 5 shows the high-

velocity fluid flow for naturally fractured tectonic

reservoirs, which is related to the Reynolds number, too.

For radial flow in a reservoir, two zones will be observed, a

high-velocity zone of radius, rhv, and other low velocity

zone for greater radii that rhv.

For radial flow, it has been described that: for a flowing

well the high-velocity flow stabilizes at a radius, which the

Reynolds number is one. Namely, linear laminar flow and

Darcy flow are reached.

The red circle represents the inner (minimum) radius for

Darcy’s flow; for r\rhv, flow is under high-velocity con-

ditions, and Couette equation is used, which Reynolds

number is greater than unity.

We can derive the seepage law, using the Navier–Stokes

equations by means of integration (Barenblatt et al. 1990)

and Couette equation. In this paper, we use and discuss

Couette equation to describe fluid flow in natural fractures.

Analytical model

In order to develop this mathematical model, some con-

siderations are as follows:

1. Fluid is stored and transported in natural tectonic fractures.

2. Single phase. Flow of an undersaturated oil reservoir,

so that the fluid is a liquid (Craft and Hawkins 1991).

3. Porosity, permeability, and density rock are constants. So,

they do not depend on either stresses or fluid pressure.

4. Isotropic permeability

5. Liquid is uncompressible or slightly compressible, in

consequence fluid density changes exponentially with

respect to pressure (Muskat 1946).

6. Isothermal fluid flow of small and constant

compressibility.

Analytical modeling

The analytical model is based on a partial differential equation

that describes the fluid flow in fractures. In developing this

equation, we combine: a continuity equation or law of con-

servation of mass, a flow law such as the Couette’s equation,

and an equation of state (Barros-Galvis 2015).

A linear diffusivity equation depicting the flow of incom-

pressible liquid in a fractured medium can be obtained.

For homogeneous media, the flow law used is Darcy’s

law (Pedrosa 1986; Chin and Raghavan 2000; Marshall

2009), satisfying the Reynolds number Re\ 1.

Figure 6 shows a tectonic fracture represented as two

parallel surfaces. The flow between these plates is taken to

be in the x direction, and since there is no flow in the y

direction, pressure will only be a function of the x direc-

tion. In addition, there are no inertia, viscous, or external

forces in the y direction.

re

rw

rhv

Re = 1 

Fig. 5 Stabilized zone of non-Darcy flow for radial flow toward a

well (high velocity)
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Fluid flow in an extension fracture is modeled using an

exact solution to theNavier–Stokes equation, referred to as the

general Couette flow (seeEq. 3). This equation describes fluid

flow through extension tectonic fractures (Currie 2003):

u yð Þ ¼ � 1

2l
d pf þ cHð Þ

dx
y a� yð Þ þ U

a
y ð3Þ

where pf ; fracture pressure; uðyÞ; velocity profile; U;

upper surface velocity; b; inclination angle; y; vertical

direction; x; horizontal direction; c; specific weight;
H; vertical distance; a; fracture aperture; l; oil dynamic

viscosity.

Equation (3) shows that the velocity profile across the

flow field is parabolic. There are two ways of inducing flow

between two parallel surfaces: (1) applying a pressure

gradient and (2) the upper surface moves in the x direction

with constant velocity U.

In this paper, we induce flow applying a pressure gradient;

the maximum velocity occurs in y = a/2, so that the appli-

cation of a pressure gradient presupposes that the upper

surface will be fixed, and flow can be described by Poiseuille

equation; in consequence, the Poiseuille flow is a specific

case of the general Couette flow. Saidi (1987) used the Poi-

seuille equation for the flow in channel and fractures.

The use of the maximum velocity at y = a/2 (Fig. 6) in

Couette’s equation indicates the highest fluid flow rate into

a discontinuity, for a fixed pressure gradient. In the solution

that follows, gravity is neglected, and Eq. (3) can be

written as:

u yð Þ ¼ � 1

2l
dpf

dx
y a� yð Þ ð4Þ

Equation (4) corresponds to the steady flow pressure

distribution through two inclined parallel surfaces; it can

be used to derive an equation for the flow rate using the

following expression:

q ¼
Z

udA ð4aÞ

Substituting Eq. (4) into Eq. (4a):

q ¼
Za

0

1

2l
y2 � ay
� � o pf þ cHð Þ

ox
dy

¼ � a3

12l
o pf þ cHð Þ

ox

ð4bÞ

Average velocity, �uðyÞ, is defined as �uðyÞ ¼ q=A, where

cross-sectional area A = a * L, L = 1 (unitary length), and

q is oil flow rate.

�u yð Þ ¼ � a2

12l
o pf þ cHð Þ

ox
ð4cÞ

Equation (4b) is known as the cubic law, and in accordance

with the flow direction, the sign may be positive or nega-

tive. If fractures are horizontal, then H = 0.

Equation (4) is similar to Darcy’s equation; considering

y = a/2, this equation can be rewritten, for the maximum

velocity profile, u(y)max:

u yð Þmax¼ � a2

8l
dpf

dx
¼ � a2

8l
rpf ð5Þ

Fracture permeability kf can be expressed as follows

(Aguilera 1995):

kf ¼ 8:35� 106 ða2Þ darcys ð6Þ

In Eq. (6), the aperture (a) is in centimeters. These equa-

tions combine Poiseuille’s law for capillary flow and

Darcy’s law for flow of liquids in permeable beds. Craft

and Hawkins (1991) used Eq. (6) to estimate permeability

in channels or smooth fractures surfaces, with constant

wide aperture.

Singha and Al-Shammeli (2012) reported and estimated

values for tectonic and non-tectonic fractures conductivity

that were matched with well testing for field cases. In

consequence, fractures are not smooth surfaces. They used

Poiseuille’s law, calibrating hydraulic conductivity, and it

is given by:

Cf ¼ kfh ¼ a3

12� 0:98� 10�6
ð7Þ

where Cf is tectonic fracture conductivity in md m and a is

fracture aperture in mm:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf � 11:76� 10�63

p
ð7aÞ

Equation (7a) is developed for diffuse fractures and frac-

ture corridors, with aperture values ranging from

0.0618744 and 39.9288 mm, respectively.

Equations (7) and (7a) are determined for rough and

realistic limestone fractures in a tight carbonate reservoir in

a

Fig. 6 Flow profile between two inclined parallel surfaces (Potter

and Wiggert 2007)
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the Middle East with tectonic fractures, with fracture

porosity of 0.2%. This reservoir is classified as type I, with

low fracture porosity and high permeability.

Equation (6) applies to smooth and ideal fractures.

Normally, reservoir modeling assumes ideal fractures,

generating uncertainty. Substituting Eq. (6) into Eq. (5):

u yð Þ ¼ � kf

66:8� 106l
rpf ð8Þ

Equation (8) describes fluid velocities for smooth and ideal

fractures, where a is fracture aperture in cm and kf is

fracture permeability in Darcy’s.

Applying Eq. (7), the calculated conductivity values is

20 md m for 6.24 9 10-2 mm average fracture aperture in

1 m of formation thickness, h. Equation (7a) can be sub-

stituted into Eq. (5):

u yð Þ ¼ �
kf � 11:76� 10�6
� �2=3

8l
rpf

u yð Þ ¼ � kfð Þ2=3

32:26� 108l
rpf ð8aÞ

It can be observed two constants, C ¼ 66:8� 106 for

Eq. (8), and C = 32.26 9 108 for Eq. (8a).

Equations (8) and (8a) are expressions similar to Dar-

cy’s law, where u(y) = v:

u yð Þ ¼ � kf

Cl
rpf ð9Þ

To derive a partial differential equation for fluid flow in a

fractured medium, we should combine a flow law with the

continuity equation (Matthews and Russell 1967; Lee et al.

2003).

The continuity equation can be expressed using a

derivative or integral equation, which they are equivalent;

considering the former case, this equation is given by

Eq. (10):

o q/fð Þ
ot

¼ �r � qvð Þ ð10Þ

where v; Couette’s velocity equation; /; fracture porosity;
q; oil density; t; time.

Substituting Eq. (9) into Eq. (10) gives:

o q/fð Þ
ot

¼ �r � q � kf

Cl
rpf

� �� �
ð11Þ

Equation (11) can be expressed as

o q/fð Þ
ot

¼ r qkf
l�

� �
rpf þ

qkf
l�

� �
r2pf ð12Þ

where

l� ¼ Cl

Each of the two terms on the right-hand side of Eq. (12)

involves the permeability, viscosity, and porosity, which

are constants. However, fluid density is pressure

dependent. The present problem is restricted to single-

phase liquids and slightly compressible liquids with

constant compressibility, c, defined by Eq. (13):

c ¼ 1

q
dq
dpf

ð13Þ

The liquid (oil) compressibility is a dominant term in total

system compressibility (see Eq. 22);

For constant compressibility c, integration of Eq. (13)

gives

q ¼ qoe
c pf�pið Þ ð14Þ

where q is oil density; and qo is considered at initial

pressure, pi, and pf is a reference pressure in the fracture.

The derivative of Eq. (14) with respect to pressure

yields Eq. (15):

oq
opf

¼ qoe
c pf�pið Þ

h i
c ¼ qc ð15Þ

Applying the chain rule and substituting Eq. (15):

oq
ot

¼ oq
ot

opf

opf
¼ oq

opf

opf

ot
¼ qc

opf

ot
ð16Þ

For one-dimensional flow, the gradient in the right-hand

side of first term of Eq. (12) can be written as:

r qkf
l�

� �
¼ o

ox

qkf
l�

� �
opf

opf
¼ oq

opf

kf

l�

� �
opf

ox

r qkf
l�

� �
¼ qc

kf

l�

� �
opf

ox
¼ qc

kf

l�

� �
rpf ð17Þ

Substituting Eqs. (16) and (17) into Eq. (12):

q/fc
opf

ot
¼ qc

kf

l�

� �
rpfð Þ2þ qkf

l�

� �
r2pf ð18Þ

Transposing terms, Eq. (18) may be expressed:

opf

ot

1

D
¼ c rpfð Þ2þr2pf

h i
ð19Þ

where the hydraulic diffusivity D is defined by Eq. (20)

D ¼ kf

/fcl�
ð20Þ

A similar procedure using Eq. (8a) gives, for rough

fractures (rf)

Drf ¼
k
2=3
f

/fcl�
ð20aÞ

Tectonic reservoirs with extension fractures present low

matrix porosity and permeability. Permeability and effec-

tive porosity of fractures are dominant variables in fluid

6 J Petrol Explor Prod Technol (2018) 8:1–16
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flow; consequently, formation porosity and permeability

are approximated to fractures properties. In this paper,

matrix properties are considered and included in total

permeability and porosity of the reservoir. In other words,

petrophysical properties of the reservoir are considered in

fractures system.

Initial and boundary conditions in radial coordinate are:

1. pf = pi at t = 0 for all r.

2. ropf=orð Þrw¼ �6ql=pkh for t[ 0.

To develop the solution, this boundary condition is

replaced by the line source condition:

lim
r!0

ropf=orð Þrw¼ �6ql=pkh for t[ 0

3. pf(r, t) = pi as r ! 1 for all t.

Equation (19) is a nonlinear partial differential equation

and can be referred to as a nonlinear diffusivity equation

(see Eqs. 19, 20, and 20a). This equation represents an

analytical model for non-stress-sensitive naturally fractured

tectonic reservoir, which describes fluid flow in the fracture

system for an oil fractured reservoir, considering a

nonlinear term of quadratic gradient (rpf)
2, and without

matrix–fracture transfer.

Many papers have been published for the single-phase

flow in homogeneous reservoirs that do not include the

nonlinear pressure gradient term in the diffusivity equation,

considered as small negligible pressure gradient, constant

rock properties, and a fluid of small and constant com-

pressibility; in effect, the nonlinear quadratic term is usu-

ally neglected (see the first right-hand side term of Eq. 20)

for liquid flow (the fluid compressibility c has a small

value) (Samaniego et al. 1979; Dake 1998; Matthews and

Russell 1967). In addition, for an infinite reservoir the

wellbore pressure predicted by this linear Darcy solution

may be significantly smaller than that predicted by the

Couette solution at large times. On the other hand, Jelmert

and Vik (1996) and Odeh and Babu (1988) concluded that

the consideration of the nonlinear quadratic term gives

results significantly smaller in pressure prediction and

recommended its use as the use pressure solution; although

this result was also demonstrated by (Chakrabarty et al.

1993) for wellbore pressure prediction for a closed outer

boundary, the authors stated that the linear pressure solu-

tion is unsatisfactory and should be applied with caution,

stating that an infinite reservoir has a 5% error for large

dimensionless times.

Others papers have presented solutions for the nonlinear

transient flow model including a quadratic gradient term by

using transformations (Friedel and Voigt 2009; Aadnoy

and Finjord 1996; Chakrabarty et al. 1993; Cao et al.

2004); however, they assumed a homogeneous porous

medium.

Mathematical model and solution for constant rate

radial flow in an infinite naturally fractured

reservoir

Our aim is to apply a mathematical transformation to

reduce a nonlinear equation to linear equation diffusivity,

for a naturally fractured system.

The differences between Darcy and Couette equations

applied to the linear diffusivity equation have been

described. Previous authors have not included the nonlinear

pressure gradient term in the nonlinear diffusivity equation

for fractures, or homogeneous systems. In both cases, fluid

flow equations (Darcy and Couette equations) are used in

this solution, considering parallel (slab) and single frac-

tures geometry.

The diffusivity equation models mass and momentum

transfer in the reservoir. The phenomenological description

for fluid flow in NFTR is given by: (1) complex diffusion

in tectonic fractures and (2) hydrodynamics as a result of a

pressure gradient in well.

Complex diffusion contains various types of diffusion:

molecular diffusion, surface diffusion, Knudsen diffusion, and

convection due to gradient pressure. The real fractured system

is heterogeneous and anisotropic, and their diffusion processes

depend on fractures aperture or porous diameter (Cunningham

and Williams 1980; Treybal 1980). In consequence, fast com-

plex diffusion is reached in a nonlinear laminar flow, which

may be modeled by Couette equation. Finally, momentum

transfer is modeled using Couette equation.

Hydrodynamics in the wellbore is governed by pressure

gradient caused by fluid flow. The fluid velocity is related

to oil production rate, and Couette or Darcy equation

application depends on the value of the Reynolds number.

When Reynolds number is greater that unity Couette

equation is applied. This application impacts the boundary

condition of the diffusivity equation.

For bulk and slab block fractures properties, the fol-

lowing expressions should be considered, assuming a

quasi-impermeable or aphanitic matrix.

/ ¼ /m þ /f ð21Þ

c ¼ co þ cw/m þ cm/m þ cf/f

/f

ð22Þ

k ¼
kf Np a

2

� �2h i
þ km A� Np a

2

� �2h i

A
ð23Þ

kslab ¼
kfa

d
ð24Þ

where /; total porosity; /m; matrix porosity; /f ; fracture

porosity; k; total permeability; km; matrix permeability; kf ;

fracture permeability; c; total compresibility; a; fracture

aperture; co; oil compresibility; cm; matrix

J Petrol Explor Prod Technol (2018) 8:1–16 7
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compressibility; cw; water compressibility; cf ; fracture

compresibility; d; distance between fractures; N; number

of fractures per flow section;

kslab; parallel fractures permeability.

Equations (21), (22), (23), and (24) are used by Reiss

(1980) and Aguilera (1995).

Case 1A: Mathematical linear model and its solution

for constant rate radial flow in an infinite reservoir using

Darcy equation

The proposed mathematical model, used and documented

by van Everdingen and Hurst (1949) and Carslaw and

Jaeger (1959), Matthews and Russell (1967), Earlougher

(1977), Streltsova (1988), Dake (1998), and Lee et al.

(2003), will be solved for the pressure behavior of a well

producing under constant rate in a radial infinite reservoir,

using the documented solution for the diffusivity equation.

The diffusivity equation for the radial flow in an infinite

homogeneous reservoir, with its initial and boundary con-

ditions (Matthews and Russell 1967; Lee et al. 2003), is

given by Eq. (25):

o2p

or2
þ 1

r

op

or
¼ /lc

k

op

ot
ð25Þ

Initial and boundary conditions:

1. p(r, 0) = pi at t = 0 for all r

2. rop=orð Þrw¼ �ql=2pkh for t[ 0:

To develop the solution, this boundary condition is

replaced by the line source condition:

lim
r!0

rop=orð Þrw¼ �ql=2pkh for t[ 0

3. p(r, t) = pi as r ! 1 for all t.

The solution for the reservoir pressure is given by:

pi � p r; tð Þ ¼ ql
4pkh

�Ei �/lcr2

4kt

� �� �
ð26Þ

where Ei is the exponential integral function.

�Ei �xð Þ ¼
Z1

x

e�u

u
du ð27Þ

For x\ 0.0025,

�Ei �xð Þ ffi � ln exð Þ ¼ ln 1=xð Þ � 0:5772:

The e symbol is Euler’s constant, equal to 1.78. Thus, for

(4kt//lcr2)[ 100

p r; tð Þ ¼ pi �
ql
4pkh

ln
kt

/lcr2

� �
þ 0:80907

� �
ð28Þ

Equations (26) and (28) are well known as the line source

solution. The flowing wellbore pressure is expressed by

Eq. (29):

pwf ¼ pi �
ql
4pkh

ln
kt

/lcr2w

� �
þ 0:80907

� �
ð29Þ

The solution presented in Eq. (29) describes the actual

finite–wellbore infinite reservoir, based on the assumption

of a small wellbore radius, where p; formation pressure;

pwf ; wellbore pressure; pi; initial formation pressure; /;
total porosity; r; radius; rw; wellbore radius; t; time;

k; total permeability; c; total compressibility; h; formation

thickness; l; oil viscosity; q; oil flow rate.

Commonly, Darcy’s law is used to model the inner

boundary condition for the corresponding radial flow model.

Case 1B

Linear mathematical model and its solution for constant rate

radial flow in an infinite reservoir, using Couette flow in the

diffusivity equation and in the inner boundary condition.

For nonlinear laminar or Couette flow, a similar flow

equation to Eq. (25) is obtained, but the boundary condi-

tion is different. The internal boundary condition is the

cubic law that is implicit in Couette’s flow equation which

can be considered as a solution for the Navier–Stokes

equations (Witherspoon 1980).

o2pf

or2
þ 1

r

opf

or
¼ /l�c

k

opf

ot
ð30Þ

The initial and boundary conditions are:

1. pf(r, 0) = pi at t = 0 for all r

2. ropf=orð Þrw¼ �6ql=pha2 for t[ 0:

To develop the solution, this boundary condition is

replaced by the following condition (which is similar to

the line source approximation for radial flow):

lim
r!0

ropf=orð Þrw¼ �6ql=pha2 for t[ 0

where

q ¼ Au yð Þ
A ¼ 2prh;

and

u yð Þ ¼ � a2=12l
� �

rpf ; then

q ¼ �prh a2=6l
� �

rpf

where

3. pf(r, t) = pi as r ! 1 for all t.

The solution of Eq. (30) is:

pf r; tð Þ � pi ¼ � 3ql
pha2

Ei

/l�cr2

4kt

� �� �
ð31Þ
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where Ei represents the exponential integral function; for

argument values \0.0025 [(4kt//l*cr2)[ 100], the

logarithmic approximation for the wellbore pressure is:

pwf ¼ pi �
3ql
pha2

ln
kt

/l�cr2w

� �
þ 0:80907

� �
ð32Þ

The resultant equations are given in ‘‘Appendix 1,’’ which

also outlines the solution procedure.

Case 1C

Linear mathematical model and its solution for constant

rate using Darcy’s law in diffusivity equation and the

Couette equation as inner boundary condition.

When Darcy’s flow equation is used to describe the flow

in the reservoir, this physical phenomenon may be pre-

sented when the Reynolds number near and far the well is

less than or equal to unity.

o2pf

or2
þ 1

r

opf

or
¼ /lc

k

opf

ot
ð33Þ

Again, initial and boundary conditions are:

1. pf = pi at t = 0 for all r.

2. ropf=orð Þrw¼ �6ql=pha2 for t[ 0:

3. pf ! pi as r ! 1 for all t.

Applying the last procedure of Case 1B, the solution to

Eq. (33) for constant rate and radial flow in an infinite

reservoir is given by:

pi � pf r; tð Þ ¼ 3ql
pha2

�Ei �/lcr2

4kt

� �� �
ð34Þ

For pressure at the wellbore, r = rw, and (4kt//
lcr2)[ 100, Eq. (34) can be written:

pwf ¼ pi �
3ql
pha2

ln
kt

/lcr2w

� �
þ 0:80907

� �
ð35Þ

Solution of the nonlinear non-stress-sensitive partial

differential equation

The Cole–Hopf transformation was employed to obtain a

solution to the Burger’s nonlinear partial differential

equation (Burgers 1974; Ames 1972). Also, it has been

used to solve a nonlinear diffusion problem for the flow of

compressible liquids through homogeneous porous media

(Marshall 2009). The Cole–Hopf transformation is a

mathematical technique, through which a nonlinear partial

differential equation may be reduced to linear partial dif-

ferential equation.

Equation (20) describes the fluid flow in a fractured

non-stress sensitive reservoir, with a nonlinear pressure

term. These reservoirs are well known as type I, or single

fracture model according to (Nelson 2001; Cinco-Ley

1996) classifications, respectively.

Case 2

Flow in extension fractures, without matrix–fracture fluid

transfer and nonlinear diffusion. Oil is stored in the

extension fractures and oil production flows through them

to the wellbore. There is no matrix–fractures transfer

because matrix porosity and permeability is very low, or

tends to 0%, so that this matrix does not practically contain

fluids.

It was observed that the transformation y = F(pf)

applied in Burgers equation generated a linear partial

equation of type qy/qt = Dr2y, and this concept was uti-

lized to solve the nonlinear diffusivity equation (Ames

1972; Burgers 1974; Marshall 2009):

opf

ot
¼ Dr2pf þ D

F00 pfð Þ
F0 pfð Þ

� �
rpfð Þ2 ð36Þ

with a quadratic gradient term. It can be observed that

Eq. (20) is similar or equivalent to Eq. (36). To find a

solution to Eq. (20), we would solve Eq. (36) for F. Then

y ¼ F pfð Þ ¼ 1

c
e cpfþað Þ
h i

þ b ð37Þ

F0 pfð Þ ¼ e cpfþað Þ ð38Þ

F00 pfð Þ ¼ ce cpfþað Þ ð39Þ

where a and b are arbitrary integration constants generated

due to the integration of F0(pf) and F00(pf).
Equation (37) is named the Cole–Hopf transformation.

If a = b = 0 (Tong and Wang 2005), the transformation

variable vanishes at some reference pressure. Then

y ¼ 1

c
e cpfð Þ , pf ¼

1

c
lnðcyÞ

opf

oy
¼ 1

cy
ð40Þ

o2pf

oy2
¼ � 1

cy2
ð41Þ

Our goal is to eliminate rpfð Þ2; to accomplish this task, we

need to derive expressions for: qpf/qt, r2pf and (rpf)
2:

opf

ot
¼ opf

oy

oy

ot
¼ 1

cy

oy

ot
ð42Þ

To express (rpf)
2, we should consider rpf ¼ opf=ox.

Applying the chain rule for one dimension:
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opf

ox
¼ opf

oy

oy

ox
ð43Þ

opf

ox
¼ opf

oy
ry ð44Þ

Substituting Eq. (40) in Eq. (44)

rpfð Þ2¼ 1

cyð Þ2
ryð Þ2 ð45Þ

For the term r2pf:

r2pf ¼
o2pf

ox2

� �
¼ o

ox

opf

ox

� �
ð46Þ

Substituting Eq. (43) into Eq. (46) gives:

r2pf ¼
o

ox

opf

oy

� �
oy

ox

� �� �
ð47Þ

Applying the derivative product and transposing terms

give:

r2pf ¼
o

ox

opf

oy

� �
oy

ox
þ o

ox

oy

ox

opf

oy

� �

r2pf ¼
o

oy

opf

ox

� �
oy

ox
þ o2y

ox2
opf

oy

� �
ð48Þ

Substituting Eq. (43) into Eq. (48) gives:

r2pf ¼
o

oy

opf

oy

� �
oy

ox

� �� �
oy

ox

� �
þ o2y

ox2
opf

oy

� �

r2pf ¼
o2pf

oy2

� �
oy

ox

� �2

þ o2y

ox2
opf

oy

� �
ð49Þ

Substituting Eqs. (40) and (41) into Eq. (49)

r2pf ¼
1

cy
r2y
� �

� 1

cy2
ryð Þ2 ð50Þ

Substituting Eqs. (42), (45), and (50) into Eq. (20) gives:

1

Dcy

oy

ot
¼ 1

c yð Þ2
ryð Þ2þ 1

c yð Þ r2y
� �

� 1

c yð Þ2
ryð Þ2

Simplifying this equation, we obtained the linear

diffusivity equation, Eq. (51).

1

D

oy

ot
¼ r2y ð51Þ

This equation is solved in Matthews and Russell (1967) for

different conditions or cases: (1) constant rate, infinite

reservoir; (2) constant rate, closed outer boundary; and (3)

constant rate, constant pressure outer boundary case.

Moreover, this type of equation is compared in papers

(Chakrabarty et al. 1993; Odeh and Babu 1988) to validate

these linear equations.

Equation (51) models fluid flow in a nonlinear diffusion

process for a reservoir with extension fractures, without

matrix–fracture transfer; this equation expressed for radial

flow becomes:

o2y

or2
þ 1

r

oy

or
¼ /l�c

k

oy

ot
ð52Þ

Initial and boundary conditions for transformed Eq. (52)

are:

1. y(r, 0) = yi at t = 0 for all r

2. roy=orð Þrw¼ �6ql=pha2 for t[ 0.

To develop the solution, this inner boundary condition is

replaced by the line source condition:

lim
r!0

1=cy roy=orð Þrw¼ �6ql=pha2 for t[ 0

3. y(r, t) = yi as r ! 1 for all t.

The solution of Eq. (52) is:

y ¼ yi

1� 3qlc
pha2 Ei

/l�cr2

4kt

	 
h i ð53Þ

Substituting the initial transformation pf ¼ ð1=cÞ lnðcyÞ
into Eq. (53):

pf ¼
1

c
ln

yi

1� 3qlc
pha2 Ei

/l�cr2

4kt

	 
h i
0
@

1
A ð54Þ

where Ei represents the exponential integral function, for

argument values \0.0025 [(4kt//l*cr2)[ 100]; the

logarithmic approximation for the wellbore pressure is:

pwf ¼
1

c
ln

yi

1� 3qlc
pha2 ln kt

/l�cr2w

	 

þ 0:80907

h i
0
@

1
A ð55Þ

The resultant equations are given in ‘‘Appendix 2,’’ which

also outlines the solution procedure.

A flow equation similar to Eq. (20) (nonlinear parabolic

differential equation) was solved numerically using implicit

finite difference for non-steady–steadyflow, and the pressure

distribution in fractured reservoirs (Yilmaz et al. 1994). In

this paper, our solution is analytical, and it was developed

applying Cole–Hopt and Boltzmann transformations.

Jump condition

A jump condition holds at a discontinuity or abrupt change.

A composite media, £, is traditionally modeled using

Darcy’s equation. At the interface between two media, the

continuity of mass and momentum across the interface is

required. So, a jump condition is needed.

Impermeable fractures have no jump of normal velocity

while jumps of pressure are present in £; highly permeable
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fractures have jumps of normal velocity, with no pressure

jump on £. In our study, the jump is in flow velocity. So, jump

condition constrains the two states on either side of a dis-

continuity in conformance with conservation of momentum.

We adopt a Couette’s equation for the fractures, in

which the volumetric flow rate q on £ satisfies Eqs. (4b)

and (8a). Equation (10) satisfies the conservation of mass

in the fracture.

Equation (56) guarantees the continuity of momentum:

r£ u; pð Þ ¼ r uð Þ � apI ð56Þ

It is necessary for the existence of a traction jump across a

flat interface for dynamics of solid–solid phase transition.

Here, I is the identity tensor, p is pressure, a is Biot con-

stant associated with compressibility, r(u) is the stress

tensor, and u is velocity.

As already stated, fractures could be open or closed. If

they are open fractures, a connected porous space will be

observed in its width. However, a closed fracture does not

have width. Then, n� ¼ �nþ, which expresses velocity

changes continuously from n�to � nþ in porous media.

For any function g defined in £, the jump of g on £ in the

direction of nþ:

g½ �£ ¼ gþ � g� ð57Þ

The width w is the jump of u � n� on £:

w ¼ � u½ �£ � nþ; ð58Þ

where n is perpendicular to velocity (Chambat et al. 2014;

Cermelli and Gurtin 1994).

Results and discussion

In this section, comparisons and a field example are pre-

sented to describe fluid flow in NFTRs.

Comparisons of linear wellbore pressure using Darcy

and Couette flow: infinite reservoir. To examine the dif-

ferences between Darcy and Couette flow without a square

term, we used analytical models to calculate and compare

wellbore pressures. Key data and reservoir parameters

values employed are presented in Table 1.

Equation (25) is used, with its initial and boundary

conditions, to describe the pressure distribution using

Darcy law. Its solution is Eq. (29), namely Case 1A.

Equation (30) is used, with its initial and boundary

conditions, to describe the pressure distribution using the

Couette equation. Its solution is Eq. (32), namely Case 1B.

For the application of Darcy’s law in the diffusivity

equation, and the Couette equation in the inner boundary

condition, Case 1C, we employed Eq. (33) and its solution

is given by Eq. (35).

For the above three cases, we used two types of

geometry: slab of parallel fractures and single fracture,

which are presented in Table 2.

Figures 7 and 8 show pressure behavior for a single and

slab fractures (smooth and rough) in a NFTR, considering

Darcy and Couette equations for inner boundary condition

and the diffusivity equation, for smooth fractures, wellbore

fracture pressure decreased strongly because flow velocity

is high, so that this assumption is not real for fractured

reservoirs due to the friction effect between fracture walls.

In this paper, we used Poiseuille’s law (Eq. 7), con-

sidering hydraulic conductivity, kh, and fracture aper-

ture, a, for rough fractures. These parameters were

Table 1 Data and parameters of a naturally fractured tectonic

reservoir (N)

Parameters Values (field unit) Values (SI)

Initial pressure, pi 2000 psi 13.79 MPa

Rate, q 1000 Bbl/D 1.84 9 10-3 m3/s

Depth, D 18,000 ft. 5486.40 m

Formation thickness, h 400 ft. 121.92 m

Matrix porosity, /m 5 9 10-4

(fraction)

5 9 10-4 (fraction)

Matrix permeability, km 1 9 10-4 md 9.86923 9 10-20 m2

Fracture porosity, /f 0.06 (fraction) 0.06 (fraction)

Oil viscosity, lo 3 cp 3 9 10-3 Pa s

Number of fractures, N 200 200

Fracture aperture, a 0.059 in. 0.0015 m

Outer radius, r 2000 ft. 609.6 m

Wellbore radius, rw 0.5 ft. 0.1524 m

Maximum time 100 h 360,000 s

Fracture compressibility,

cf

19 9 10-6 psi-1 2.756 9 10-10 Pa-1

Matrix compressibility,

cm

1 9 10-7 psi-1 1.450 9 10-11 Pa-1

Water compressibility, cw 2.3 9 10-6 psi-1 1.336 9 10-10 Pa-1

Oil compressibility, co 3 9 10-5 psi-1 1.450 9 10-9 Pa-1

Table 2 Application cases for NFTRs

Casesa Equationsb Geometryc

Case 1A Darcy/Darcy Single/slab

Case 1B Couette/Couette Single/slab

Case 1C Darcy/Couette Single/slab

Case 2 Couette/Couette Single/slab

a Cases developed through the mathematical analysis of the present

study
b Used equations. For example: Darcy/Couette means Darcy’s law

was used for diffusivity equation and the Couette flow was used for

inner boundary condition
c Used geometry: Single/Slab means superposed single fracture or

slab or parallel fractures
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determined using well testing for a NFCR (Singha and

Al-Shammeli 2012). In contrast, we used Eq. (6) con-

sidering permeability, k, and fracture aperture, a, for

smooth fractures.

Also, Figs. 7 and 8 display Case 1C, which were mod-

eled using Couette equation as inner boundary condition,

describing non-Darcy flow nearby the well; for a single

fracture, the initial pressure drop is high and approaches a

nearly constant pressure for long times. A similar behavior

is also observed for a slab fracture.

When Darcy equation is used, pressure behavior in

NFTR is quasi-constant. In other words, pressure drop is low,

creating conservative results and overestimating fluid flow.

Conclusion

This paper has presented an analytical model for the

description of fluid dynamics in naturally fractured tectonic

reservoirs (essentially type I reservoirs, Nelson 2001). The

models describe the pressure behavior and fluid flow in

fractured non-stress-sensitive reservoirs, without matrix–

fracture transfer.

From the preceding discussions and based on the

material presented in this paper, the following conclusions

can be made:

1. The analytic model presented an analysis of the single-

phase flow equation for incompressible fluid, in non-

stress sensitive naturally fractured tectonic reservoirs.

This analysis showed the error in using the linear

solution for NFTRs.

2. An analytical solution to quantify fluid dynamics in

non-stress-sensitive NFTRs is proposed.

3. The nonlinear solution shows that for high flow rates

there is a correction for the pressure and fluid flow,

suggesting that the nonlinear term in Eq. (1) must be

taken into account, to correctly describe oil flow

through NFTRs due to non-Darcy laminar flow.

4. This study explains the phenomenon of high initial

production rates, declining after a short period of time

for fissured formations without interaction matrix–

fractures.

5. Our results suggest that exact solution of Navier–

Stokes equation, namely Couette’s flow, correctly

predicts fluid flow in NFTRs.
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Fig. 7 Pressure behavior: Couette and Darcy flow for an equivalent fracture
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Appendix 1: Solution of Eqs. (30) through (32)

Basic equation. The differential equation, initial condi-

tions, and boundary conditions for nonlinear laminar or

Couette flow are

o2pf

or2
þ 1

r

opf

or
¼ /l�c

k

opf

ot
ðA� 1Þ

The initial and boundary conditions are:

1. pf(r, 0) = pi at t = 0 for all r

2. ropf=orð Þrw¼ �6ql=pha2 for t[ 0.

To develop the solution, this boundary condition is

replaced by the following condition (which is similar to

the line source approximation for radial flow):

lim
r!0

ropf=orð Þrw¼ �6ql=pha2 for t[ 0

where

q ¼ Au yð Þ
A ¼ 2prh;

and

u yð Þ ¼ � a2=12l
� �

rpf ;

then

q ¼ �prh a2=6l
� �

rpf

3. pf(r, t) = pi as r ! 1 for all t.

To obtain the solution to Eq. (A-1), the Boltzmann

transformation is used:

s ¼ /l�cr2

4kt
ðA� 2Þ

Deriving with respect to r and t:
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Fig. 8 Pressure behavior: Couette and Darcy flow for slab fractures
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os

or
¼ 2s

r
ðA� 3Þ

os

ot
¼ � s

t
ðA� 4Þ

Equation (A-1) can be conveniently expressed as

1

r

o

or

ropf

or

� �
¼ /l�c

k

opf

ot
ðA� 5Þ

Applying the chain rule and using Eqs. (A-3) and (A-4)

opf

or
¼ opf

os

os

or
¼ opf

os

2s

r
ðA� 6Þ

opf

ot
¼ opf

os

os

ot
¼ � opf

os

s

t
ðA� 7Þ

Substituting Eqs. (A-6) and (A-7) into Eq. (A-5)

1

r

o

os

os

or

ropf

os

os

or

� �
¼ /l�c

k

opf

os

os

ot
ðA� 8Þ

Substituting Eqs. (A-3) and (A-4) into Eq. (A-8) and

multiplying by r2/4:

o

os

opf

os
sð Þ

� �
¼ � sð Þ opf

os
ðA� 9Þ

Equation (A-9) can also be expressed as follows:

s
o2pf

os2
þ 1þ sð Þ opf

os
¼ 0 ðA� 10Þ

Now, the transformed equation depends on the

transformation, s; then pf is only a function s, of the

transformation:

s
d2pf

ds2
þ 1þ sð Þ dpf

ds
¼ 0 ðA� 11Þ

The new transformed boundary conditions are:

1. 2sdpf=dsð Þ ¼ �6ql=pha2 for s[ 0.

To develop the solution, this boundary condition is

replaced by the condition:

lim
s!0

sdpf=dsð Þ ¼ �3ql=pha2

2. pfðsÞ ¼ pi as s ! 1.

Defining opf=os ¼ p0f then

s
dp0f
ds

þ 1þ sð Þpf ¼ 0 ðA� 12Þ

Dividing by p0 and s:

dp0f
p0f

¼ � 1þ sð Þds
s

ðA� 13Þ

Separating variables and integrating

ln p0f þ ln s ¼ sþ C1 ðA� 14Þ

Making C1 ¼ lnC2 and solving Eq. (A-13) for pf
0:

p0f ¼
dpf

ds
¼ C2e

�s

s
ðA� 15Þ

Substituting Eq. (A-15) in the previously stated inner

(wellbore) boundary condition and evaluating it at the limit:

lim
s!0

dpf

ds
s ¼ � 3ql

pha2

C2 ¼
3ql
pha2

ðA� 16Þ

Substituting Eq. (A-16) into Eq. (A-15) and integrating:

pf � pi ¼
3ql
pha2

Zs

1

e�s

s
ds ðA� 17Þ

where

Ei �sð Þ ¼
Zs

1

e�s

s
ds ðA� 18Þ

Substituting Eq. (A-18) into Eq. (A-17)

pf � pi ¼
3ql
pha2

Ei �sð Þ½ � ðA� 19Þ

Substituting Eq. (A-2) into Eq. (A-19), the solution for

Eq. (A-1) is obtained:

pf r; tð Þ � pi ¼ � 3ql
pha2

Ei

/l�cr2

4kt

� �� �
ðA� 20Þ

where Ei represents the exponential integral function; for

argument values \0.0025 [(4kt//l*cr2)[ 100], the

logarithmic approximation for the wellbore pressure is:

pwf ¼ pi �
3ql
pha2

ln
kt

/l�cr2w

� �
þ 0:80907

� �
ðA� 21Þ

Appendix 2: Solution of Eqs. (52) through (55)

Basic equation. The differential equation, initial condi-

tions, and boundary conditions for nonlinear diffusion

process for a reservoir with extension fractures without

matrix–fracture transfer are

o2y

or2
þ 1

r

oy

or
¼ /l�c

k

oy

ot
ðB� 1Þ

Initial and boundary conditions for transformed Eq. (B-1)

are:

1. y(r, 0) = yi at t = 0 for all r

2. roy=orð Þrw¼ �6ql=pha2 for t[ 0.
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To develop the solution, this inner boundary condition is

replaced by the line source condition:

lim
r!0

1=cy roy=orð Þrw¼ �6ql=pha2 for t[ 0

3. y(r, t) = yi as r ! 1 for all t.

To obtain the solution to the transformed Eq. (B-1) for

constant rate radial flow, the Boltzmann transformation,

s ¼ /l�cr2

4kt
is used, as followed for case 1B, yielding Eq. (B-

2):

s
d2y

ds2
þ 1þ sð Þ dy

ds
¼ 0 ðB� 2Þ

Now, the transformed equation depends on the

transformation, s; then y is only function s. To develop the

solution for Eq. (B-2), the boundary conditions are given by:

lim
s!0

1=cy sdy=dsð Þ ¼ �3ql=pha2 for t[ 0

and y sð Þ ¼ yi as s ! 1
Solving Eq. (B-2) with its boundary conditions, defining

y0 = dy/ds, and dividing by 1/sy0:

1

y0
dy0

ds
¼ � 1þ sð Þ

s
ðB� 3Þ

Separating variables, integrating, and defining C1 = ln C2:

y0 ¼ dy

ds
¼ C2e

�s

s
ðB� 4Þ

Considering the outer boundary condition and evaluating it

at the limit:

C2 ¼ � 3qlcy
pha2

ðB� 5Þ

Substituting Eq. (B-5) into Eq. (B-4) and integrating:

y ¼ yi

1þ 3qlc
pha2

R s

1
e�s

s
ds

� � ðB� 6Þ

or

y ¼ yi

1þ 3qlc
pha2 Ei �sð Þ½ �

ðB� 7Þ

where

Ei �sð Þ ¼
Zs

1

e�s

s
ds ðB� 8Þ

Substituting the Boltzmann transformation in Eq. (B-7):

y ¼ yi

1� 3qlc
pha2 Ei

/l�cr2

4kt

	 
h i ðB� 9Þ

Substituting the initial transformation, pf ¼ ð1=cÞ lnðcyÞ
into Eq. (B-9):

pf ¼
1

c
ln

yi

1� 3qlc
pha2 Ei

/l�cr2

4kt

	 
h i
0
@

1
A ðB� 10Þ

where Ei represents the exponential integral function, for

argument values \0.0025 [(4kt//l*cr2)[ 100]; the

logarithmic approximation for the wellbore pressure is:

pwf ¼
1

c
ln

yi

1� 3qlc
pha2 ln kt

/l�cr2w

	 

þ 0:80907

h i
0
@

1
A ðB� 11Þ
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