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Abstract Slurry transport has become a subject of interest in

several industries, including oil and gas. The importance of

slurry/solid transport in the oil and gas industry is evident in

areas of cuttings transport, sand transport and, lately,

hydrates. There is therefore a great need to develop instru-

mentation capable of characterizing fluids with high solid

content. Presence of solids in fluids makes the rheological

characterization of these systems difficult. This is because

available rheometers are designed with a narrow gap and

cannot prevent solids from settling. The main aim of this

paper is to present a step-by-step procedure of converting

torque and shaft speed into viscosity information by applying

the Couette analogy, equivalent diameter and inverse line

concepts. The use of traditional impeller geometries such as

cone and plate may be challenging due to their narrow gap

and inability to prevent settling. Therefore, the use of non-

conventional impeller geometry is imperative when dealing

with settling slurries and suspensions. The most challenging

task using complex geometry impeller is data interpretation

especially when dealing with complex rheology fluids. In

this work, an autoclave is transformed into a mixer-type

viscometer by modifying its mixing, cooling and data

acquisition systems. Mathematical models relating the

measured torque to shear stress and themeasured shaft speed

to shear rate were developed and expressed in terms of the

equivalent diameter. The shear rate and shear stress constants

were expressed in terms of equivalent diameter and mea-

sureable parameters such as impeller speed and torque. The

mixer-type viscometer was calibrated using four Newtonian

and four Power-Law fluids to determine the rheological

constants (equivalent diameter, shear rate and shear stress

constants). The concept of inverse line was used to identify

the laminar flow regime. The calibrated instrument was used

to characterize two Power-Law fluids. This procedure can be

extended to any rheological model. Methods developed in

this work can be used to characterize fluids with high solid

content. This is particularly important when dealing with

complex rheology slurries such as those encountered in food

processing, oil and gas and pharmaceuticals.

Keywords Rheology � Settling and non-settling slurries �
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List of symbols

A Geometric constant (1/rad)

A0 Geometric constant (m3/rad)

D Cell diameter (m)

eq. cp Equivalent cp

R Cell radius (m)

n Flow behavior index

K Consistency coefficient (Pa�sn)
T Torque (Nm)

h Impeller height (m)

r
�2=n
r ¼ r

�2=n
e � R�2=n

de Equivalent diameter (m)

d Impeller diameter (m)

k0 Shear rate constant (1/rad)

k00 Shear stress constant [m-3 or Pa/(Nm)]

Greek symbols

l Newtonian fluid viscosity (Pa�s)
q Density (kg/m3)

g Apparent viscosity (Pa�s)
s Shear stress (Pa)

_c Shear rate (1/s)
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x or W Rotational speed (rad/s)

N Rotational speed (rev/s)

Subscripts

e Equivalent

MO Metzner and Otto

CP Castel-Perez

CD Cheng and Davis

Introduction

When determining viscosities of complex fluids that con-

tain solids such as heavy oils, emulsions or slurries, the

convectional viscometer types, i.e., concentric cylinders, or

cone and plate, are often not suitable. This is because either

the narrow gap or geometry would not accommodate the

particle size (Roos et al. 2006), inability to maintain the

particles suspended or inability to achieve the desired

homogeneity. Vane or helical ribbon mixer geometry types

have been proposed as potential candidates for slurry

characterization (Roos et al. 2006; Metzner and Otto 1957;

Patterson et al. 1979; Carreau et al. 1993).

The most challenging task for the helical ribbon

geometry systems is transforming measurements into vis-

cous information that is defining the shear stress and shear

rate especially for complex rheology fluids (Guillemin

et al. 2008; Glenn and Daubert 2003; Omura and Steffe

2003; Sulaiman et al. 2012; Glenn et al. 2000; Choplin and

Marchal 1997; McNamee and Conrad 2011; La Fuente

et al. 1996; Estellé and Lanos 2008; Thakur et al. 2004;

Castell-Perez et al. 1991; Wu and Liu 2015; Kalombo et al.

2014; Hammad 2014). This is because it is not straight-

forward to establish the shear stress and shear rate rela-

tionships for complex geometry and complex rheology

systems in terms of measured parameters and fluid prop-

erties. This difficulty may lead to rigorous and time-con-

suming data analysis and experimentation to establish the

geometric constants which may be dependent on fluid

rheology as well (Castell-Perez et al. 1991).

The challenges of defining geometry for complex mixers

such as vane or helical ribbon can be addressed by

employing the Couette analogy concept (Choplin and

Marchal 1997; La Fuente et al. 1996). Choplin successfully

applied the Couette analogy concept to helical ribbon

geometry and obtained good results for Power-Law fluids

of varying rheological parameters (Choplin and Marchal

1997).

In this study, an autoclave is modified by including a

helical ribbon impeller and a torque sensor and calibrated

with different fluids including Newtonian and Power-Law

fluids. The Couette analogy concept is used to develop

three different approaches of data interpretation including;

analytical approach, dimensionless analysis, and empirical

models. Using these three approaches, geometric constants

are determined, and shear stress and shear rate definitions

established.

Rotational mixer theory

The diameter of the helical ribbon impeller (real system) is

approximated by an equivalent diameter of the corre-

sponding concentric cylinder (virtual system) by use of the

Couette analogy concept (Choplin and Marchal 1997; Wu

and Liu 2015) as illustrated in Fig. 1. By defining torque at

this equivalent diameter for a Power-Law fluid, the

equivalent diameter can be defined as follows (Roos et al.

2006; Choplin and Marchal 1997).

de ¼ D � 1þ 2x
n

phKD2

2T

� �1=n
" #�n=2

ð1Þ

where T is the generated torque at shaft speed x, D is the

vessel diameter, n is the flow behavior index, K is the

consistency coefficient, and h is the vessel height.

The equivalent diameter can be determined by measur-

ing torque at several rotational speeds using standard

Power-Law fluids. Using this equivalent diameter, several

other terms needed may be defined including Reynolds

number, power number, shear rate, and shear stress. The

following section discusses the different approaches that

can be used to establish these definitions.

Method I: analytical

Starting with the equation of motion, it is easy to develop

the following equation relating the measured torque to

rotational speed for Power-Law fluids (Carreau et al. 1993).

Fig. 1 Couette analogy principle (D = 0.083 m, d = 0.070 m,

h = 0.114 m, de = 0.076 m)
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T ¼ 2ph
1

r
�2=n
e � R�2=n

" #n

K
2

n
x

� �n

ð2Þ

where re is the equivalent radius and R is the vessel radius.

There are several ways in which Eq. (2) can be re-ar-

ranged into shear rate and shear stress components (Roos

et al. 2006; Choplin and Marchal 1997; Steffe 2007). The

two methods in which Eq. (2) can be re-arranged analyti-

cally are discussed next.

First analytical approach

The most common way is to define torque at the equivalent

diameter for complex geometries. The drawback to this

option is prior determination of the equivalent diameter.

This option leads to following shear stress–shear rate

relationship.

2

phd2e
T ¼ K

2

n

x

1� de=D

� �2=n

2
64

3
75
n

ð3Þ

Equation (3) is of form

s ¼ K _cn ð4Þ

where

s ¼ 2

phd2e

� �
T ¼ k001T ð5Þ

_c ¼ 2

n

1

1� de=D

� �2=n

0
B@

1
CAx ¼ k01x ð6Þ

Both k001 and k01 are functions of geometry and fluid

rheology. The dependence on rheology is weak and may be

neglected (Metzner and Otto 1957). The variation of shear

rate constant/coefficient k01 with equivalent diameter and

flow behavior index can be examined theoretically.

Figure 2 shows shear rate constant/coefficient k01 as a

function of flow behavior index and vessel diameter to

equivalent diameter ratio.

It can be seen from Fig. 2 that above flow behavior

index of 0.4, there is little dependence of the shear rate

constant/coefficient on the equivalent diameter and the

flow behavior index.

The shape of trends in Fig. 2 is governed by two terms

in brackets of Eq. (6), namely 2
n
and de=D. For an increase in

flow behavior index from 0.1 to 0.4, 2
n
decreases from 20 to

5, whereas an increase in flow behavior index from 0.4 to

0.8, 2
n
decreases from 5 to 2.5. This results in a quick

decrease of k01 up to flow behavior index of 0.4 and a

gradual decrease of k01 above the flow behavior index of

0.4.

Considering de=D equals to 1.2, for example, an increase

in flow behavior index from 0.8 to 1.2 leads k01 to decreases

from 6.8 to 6.3. This change is small compared to the

measurement uncertainties (estimated at 7 %) and can

therefore be neglected for practical purposes. This obser-

vation is in support of the Metzner and Otto (1957)

hypothesis which assumes that the shear rate coefficient is

constant.

Second analytical (proposed) approach

Alternatively, Eq. (2) can be simplified by modifying the

term in the first bracket as follows

T

2phrr2
¼ K

2

n
x

� �n
ð7Þ

where

1

r
�2=n
e � R�2=n

� 1

rr�2=n
ð8Þ

and rr is an intermediary term used to simplify the equation

of motion.

Similarly, Eq. (7) is of form shown in Eq. (4) where

s ¼ 1

2phrr2

� �
T ¼ k002T ð9Þ

and

_c ¼ 2

n
x ¼ k02x ð10Þ

k002 is a function of fluid rheology and system geometry but

k02 is a function of fluid rheology only.

Method II: dimensionless analysis

A fundamental relationship based on dimensionless

numbers can be developed by analyzing the power

Fig. 2 The dependence of shear constant/coefficient on equivalent

diameter de and flow behavior index n
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consumption of mixer-type viscometers using the

Buckingham-Pi theorem (Steffe 2007). This analysis

shows that the power number is related to several other

dimensionless groups, such as Reynolds number, Froude

number, Weissenberg number, and several geometrical

ratios (Sulaiman et al. 2012; Castell-Perez et al. 1991;

Steffe 2007). However, for homogenous fluids under

laminar flow, the power number is inversely proportional

to the Reynolds number and the constant of propor-

tionality is geometry dependent (Metzner and Otto 1957;

Sulaiman et al. 2012; Steffe 2007). The transition from

laminar to turbulent is observed at a Reynolds number of

10 (Castell-Perez et al. 1991) but may be extended to

Reynolds numbers around 100 when a helical blades

type is used (La Fuente et al. 1996).

The Power number (NPo) is related to the Reynolds

number (NRe) by the following relationship:

NPo ¼
A

NRe

ð11Þ

where

NPo ¼
T

qx2d5e
ð12Þ

NRe ¼
qxd2e
g

ð13Þ

g is the apparent viscosity.

Combining Eqs. (11), (12) and (13), we find:

T ¼ A0xg ð14Þ

where

A0 ¼ Ad3e ð15Þ

Considering a Power-Law fluid

T ¼ A0gx
g ¼ K _cn�1

�
T ¼ KA0x _cn�1 ð16Þ

Assuming a constant shear coefficient, k0MO proposed by

Metzner and Otto, Eq. (16) can be expressed as

k0MO

A0

� �
T ¼ K k0MOx

	 
n ð17Þ

Also, Eq. (17) is of form shown in Eq. (4) where

s ¼ k0MO

A0

� �
T ¼ k00MOT ð18Þ

and

_c ¼ k0MOx ð19Þ

k0MO and k00MO are considered to be constant for a given

geometry and are determined experimentally (Metzner and

Otto 1957).

Method III: empirical

As shown in the above two methods, several parameters are

involved in transforming the experimental data into viscous

information. Several researchers have reported different

values/models for these parameters. This has resulted in

lack of common criteria to define these parameters and thus

laboratory testing almost always has been preceded by

tedious calibration testing for each setup. However, for

some common geometries, correlations have been devel-

oped to simplify data interpretation.

Castell-Perez et al. (1991) showed that the average shear

stress and average shear rate for anchor-like geometries

could be estimated from geometrical parameters and the

flow behavior index using the following equations (Castell-

Perez et al. 1991):

_c ¼ 2
D=d
	 
 2� nð Þ=n

D=d

� �n=2
�1

2
664

3
775 d

h

� �n=2
8>><
>>:

9>>=
>>;
x ¼ k0CPx ð20Þ

Cheng and Davis (1969) proposed the following

relation for narrow gap geometry

_c ¼ 1

KR

1þ KR

n0
þ 1

3

KR

n0

� �2

1� n00ð Þ
" #( )

x ¼ k0CDx

ð21Þ

where,

KR ¼ ln
D

d

� �
; n0 ¼ d ln sð Þ

d ln xð Þ ; n00 ¼ d ln n0ð Þ
d ln xð Þ ð22Þ

Metzner and Otto (1957) proposed the following

relationship for Power-Law fluids,

_c ¼ k0MOx ð23Þ

Combining Eqs. (23) and (16), the following

relationship is established

T

KA0x

� �1=n�1

¼ k0MOx ð24Þ

Metzner-Otto’s approach requires the use of a Newtonian

fluid and Eq. (14) to determine the geometric constant A0.
The determination of the shear rate constant k0MO also

requires the use of a Power-Law fluid.

Experimentation: apparatus, fluids
and procedures

The mixing setup developed for this study consisted of a

Parr autoclave (model 4547) equipped with a helical ribbon

impeller, torque sensor, speed controller and an automated
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data acquisition system. In the device development pro-

cess, the pitch blade turbine type impellers were replaced

with the helical ribbon impeller, the internal cooling coils

replaced with an external cooling jacket, and a torque

sensor was installed. These modifications were employed

following a guideline of good mixing and data quality,

such as avoiding obstruction to flow field, avoiding hot

spots, handling high viscosity and avoiding settling. The

traditional autoclave is shown in Fig. 3, the modifications

are represented in Fig. 4, whereas the new rheometer setup

is shown in Fig. 5. The physical helical ribbon impeller

diameter was 0.070 m (2.75 inches), and the cell diameter

was 0.083 m (3.25 inches).

The impeller-shaft system was rotated by a 93 W

(0.125 hp) motor with variable speed control—from 0 to

32 rev/s. A torque sensor with an operating range of

0–1 Nm was installed to measure the torque on the shaft.

The measured values of temperature, shaft speed and tor-

que were recorded every second. A concentric cylinder

rheometer, Anton Paar (MCR 301), was used to establish

the rheological parameters of the fluids used in this study.

The diameters of the cup and the bob used on the rheometer

were 0.029 and 0.267 m, respectively. The cup and bob

were both smooth surfaces. The samples were sheared from

0.01 to 1200 s-1.

Four Newtonian fluids were prepared and used in this

study (Table 1). The viscosity of these fluids was deter-

mined at 21 �C within an error margin of ±5 %.

Similarly, four non-Newtonian fluids were prepared

using PAC powder at different concentrations and char-

acterized with an Anton Paar (MCR 301) rheometer. The

flow behavior index (n) and consistency coefficient

(K) were determined at 21 �C within error bands of vis-

cosity of ±10 and ±5 %, respectively. These rheological

parameters were determined by directly fitting trend lines

on to the flow curve generated from the MCR 301

rheometer data. However, the shear rate range of interested

was 100–800 s-1 and therefore only data in this range were

used in determining the rheological parameters of fluids.

Table 2 shows the properties of the non-Newtonian fluids

used in this study.

During testing, fluid samples were placed in the auto-

clave and temperature equilibrated for at least 1800 s while

mixing at 6.7 rev/s. Shaft speed was ramped up and down

from 0 to 13.3 rev/s in steps of 0.8 rev/s. At each shaft

speed, torque readings were recorded for about 60–180 s.

Temperature was maintained at 21 ± 2 �C throughout the

test by circulating glycol in the external jacket.

Results and discussion: calibration and rheological
characterization

The average values of the measured torque at different

shaft speeds are presented in Fig. 6. Fitting a trend line on

N1 data gave an R-squared value of 0.98 indicating that the

data is linear as expected for Newtonian fluids from

Eq. (14). The first three data points of N2 were off the

trend line, but when these points were removed, the

remaining N2 data points gave an R2 value of 0.99. N3 and

N4 showed two slopes indicating transition from laminar orFig. 3 Traditional Parr autoclave model 4547

Fig. 4 Modified version of Parr

autoclave
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undeveloped flow to turbulent flow regime. The onset of

turbulent flow leads to axial and radial velocity compo-

nents, that is, flow in azimuthal direction. These other

velocity components lead to additional energy consump-

tion and, hence, increase in torque values. This early tur-

bulent onset could be attributed to the low fluid viscosity.

This implies that the device developed in this work may not

be suitable for testing low-viscosity fluids. Figure 6 shows

results of measured torque at different shaft speeds for the

Newtonian fluids.

Before starting data analysis, flow regimes need to be

established, so that non-laminar data points can be

discarded. Flow regimes were determined using power

curves. Power curves for Newtonian fluids are presented in

Fig. 7. From Eq. (11), a plot of power number against

Reynolds number should yield an inverse line of slope

A for a perfect laminar case. Since A is a geometric con-

stant, all lines should have the same slope and should be

closely aligned. The difference in N1 and N2 power curves

is not significant and has almost the same slopes, whereas

N3 and N4 were far apart and the difference between them

is significant. This behavior could be due to the low vis-

cosities of these fluids. Low-viscosity fluids transition to

turbulent flow at low shaft speeds compared to high vis-

cosity fluids. Since N3 and N4 did not achieve laminar flow

Fig. 5 Rheometers used in this

study. a In-house rheometer,

b MCR 301 rheometer

Table 1 Newtonian fluids

Fluid Viscosity (mPa�s)

N1 745

N2 450

N3 135

N4 7

Table 2 Power-Law fluids

Fluid n K (Pa�sn)

PL1 0.28 23.78

PL2 0.31 10.48

PL3 0.43 2.29

PL4 0.50 1.17

Fig. 6 Average torque values at different shaft speeds for Newtonian

fluids. The double arrow dotted lines indicate the multiple slopes

observed with low-viscosity fluids
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regime, they were not used in the calibration process. For

the high viscosity fluids, N1 and N2, the first few points did

not align with the inverse line. This could be because flow

is still developing, that is, not all the fluid is participating in

flow until a certain shaft speed is reached. This undevel-

oped flow behavior is therefore responsible for the non-

linearity of the first few data points on the power curve for

N1 and N2. Thus, the first five points data points for N1

and N2 were discarded because they were in the undevel-

oped flow region. These points can be clearly identified in

Fig. 9, and this point will be discussed later.

Similarly, power curves were developed for the Power-

Law fluids as shown in Fig. 8. Laminar flow was achieved

at lower shaft speeds since Power-Law fluids have high

apparent viscosity in this range of shaft speed. However, as

shaft speed increases, Power-Law fluids experience turbu-

lent flow due to reduced apparent viscosity. This is because

as the apparent viscosity reduces turbulent eddies over-

come the viscous forces and create additional velocity

components which increases torque required to maintain a

given flow velocity. Therefore, only data points that

aligned well with the inverse line were selected for further

analysis. For this case, only the first five data points for

PL1 and PL2 were selected. It was not possible to identify

at least three data points that were well aligned with the

inverse line for PL3 and PL4 and thus all data points were

considered to be turbulent.

In both cases above, Newtonian and Power-Law fluids,

data analysis indicated that laminar flow existed at Rey-

nolds numbers as high as 1000. This could be because the

Reynolds number in this study was defined using the

equivalent diameter concept. The equivalent diameter is

bigger than the physical impeller diameter and the Rey-

nolds number strongly depends on this value.

Determination of the geometric constants

The two geometric constants were determined namely the

mixer constant A0, and the equivalent diameter, de. The

mixer constant A0 was found to be 0.008 ± 0.0018 m3/rad

determined using Newtonian fluids and Eq. (14). This

value is a unique geometric parameter specific for the

helical ribbon system used in this study. Also, the mixer

constant A in Eq. (11) can be determined plotting the

product of NPo and NRe against NRe as shown in Fig. 9. This

plot should be a horizontal line in the laminar region and its

value along the y-axis is the geometric constant A. The

value of A for N1 and N2 are 16 and 20 rad-1, respectively,

giving an average of 18 rad-1. The average value may be

slightly affected by the number of data points used.

The equivalent diameter de was determined from Eq. (1)

using both Newtonian and Power-Law fluids and results are

summarized in Fig. 10.

The calculated de using Newtonian fluids showed almost

no dependence on viscosity or shaft speed. Since the

apparent viscosities of Power-Law fluids decrease with

increasing shaft speed which may results in turbulent flow,

Newtonian fluids should be used in determining the

equivalent diameter. For practical purposes, the equivalent

diameter, de, was assumed to be independent of shaft speed

and fluid viscosity, and an average value of

0.076 ± 0.003 m was adopted for this set-up. Similarly,

this value is a unique geometric parameter specific for the

helical ribbon system used in this study.

Fig. 7 Power curve showing undeveloped, laminar and turbulent

regimes for the Newtonian fluids tested. The laminar data points are

represented by the unfilled symbols. Only laminar data points were

used in the calibration process

Fig. 8 Power curve showing laminar and turbulent regimes for the

Power-Law fluids tested. The laminar data points are represented by

the unfilled symbols. Only laminar data points were used in the

calibration process
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Determination of the shear rate coefficient k0

There are five shear rate coefficient models presented in

this work, some are to be determined from experimental

data, whereas the others are to be calculated from geo-

metric and rheological parameters. Analytical shear coef-

ficient k01 can be calculated using Eq. (6), whereas k02 can

be calculated using Eq. (10). The shear coefficient k0CP
proposed by Castel-Perez, shear coefficient k0CD proposed

by Cheng and Davis and shear coefficient k0MO proposed by

Metzner and Otto can be can be calculated using Eqs. (20),

(21) and (24), respectively. These shear coefficients were

determined within a maximum error margin of ±15 %.

This error margin was established using PL1 and PL2 data

points since PL3 and PL4 data points were in turbulent

region. Where experimental data are required, laminar data

points were used (Table 3).

With the exception of the shear coefficient values

obtained using the Castel-Perez method, there was less

variation in values obtained using a given method and

different fluids compared to the variation in values

obtained with different methods but same fluid.

The obtained values of k02 and k0MO were comparable to

literature values of the similar geometry. The reported

values using helical ribbon geometry range between 2 and

8 rad-1 (La Fuente et al. 1996; Castell-Perez et al. 1991;

Steffe 2007). All the shear coefficient values were used to

generate a flow curve for a fluid that had already been

characterized with Anton Paar rheometer and when these

flow curves were compared to that generated from Anton

Paar rheometer data, k02 and k0MO provided a good match.

Since Metzner and Otto shear coefficient values gave the

best match, the average shear coefficient value for this

instrument was determined using k0MO values. Since most

data points for PL3 and PL4 lay in the turbulent regime,

average values were computed using PL1 and PL2.

Therefore, the shear coefficient for this device was found to

be 6 rad-1.

Determination of the shear stress coefficient k00

There are three shear stress models presented in this work,

likewise, some are determined from experimental data,

whereas the others are calculated from geometric and

rheological parameters. The analytical shear stress coeffi-

cient k001 can be calculated using Eq. (5) and k00MO can be

calculated using Eq. (18). On the other hand, the shear

coefficient k002 can be determined from experimental data by

plotting Eq. (9).

Similarly, all the shear stress coefficient values were

used to generate a flow curve for a fluid that had already

been characterized with Anton Paar rheometer and once

again Metzner and Otto shear stress coefficient values

gave the best match. Therefore, the average shear stress

coefficient value for this instrument was determined

using k00MO values which was found to be 750 m-3

(Table 4).

Fig. 9 Variation of A with Reynolds number for Newtonian fluids—

A is a constant in Eqs. 11 and 15. The laminar data points are

represented by the unfilled symbols. Only laminar data points were

used in determining constant A

Fig. 10 Equivalent diameter determined using several fluids

Table 3 Shear rate coefficient values

PL1 PL2 PL3 PL4

k01 16.74 16.33 15.30 14.94

k02 7.14 6.45 4.65 4.00

k0MO 5.93 6.09 5.40 4.08

k0CD 7.70 9.15 7.50 7.00

k0CP 247.00 190.00 103.00 81.00
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The shear rate and shear stress definitions established in

this work for this mixer-type viscometer are given in terms

of the shaft speed and measured torque as follows

shear definition

for the device
� _c ¼ k0x ¼ 6x

s ¼ k00T ¼ 750T

�
ð25Þ

Characterization of Power-Law fluids

The instrument was used to determine the rheological

parameters of two unknown Power-Law fluids, and results

were compared to Anton Paar rheometer measurements.

Figure 11 shows performance and sensitivity of the device

on these Power-Law fluids. The measured apparent vis-

cosity values were with ±15 % of the Anton Paar values

especially at low shear rates.

Conclusions

A new mixer-viscometer was developed to characterize

both settling and non-settling slurries. The geometry of this

device is specifically important because it helps in sus-

pending particles while minimizing vortex formation. The

device was successfully calibrated using Newtonian and

non-Newtonian liquids.

Couette analogy concept was used to develop mathe-

matical models defining the equivalent diameter, shear rate

and shear stress in terms of measurable parameters for the

helical ribbon impeller. A new analytical methodology to

simplify the relationship between the shear rate and the

measured parameters was proposed. The equivalent diam-

eter was used to define the power number and Reynolds

number. An inverse line proved to be an important tool in

identifying laminar flow data points on the power curve.

The dependence of the equivalent diameter on fluid

rheology is weak and may be neglected for practical pur-

poses. The shear rate coefficient was found to be a weak

function of the fluid rheology and system geometry above

the flow behavior index of 0.4. Metzner and Otto method

gave the best shear coefficient and shear stress coefficient

match when results were compared to Anton Paar

rheometer (MCR 301). Therefore, shear coefficient and

shear stress coefficient for this device were determined

using average values from the Metzner and Otto method.

Testing a Power-Law fluid on the device showed

excellent agreement with Anton Paar rheometer (MCR

301) measurements. The calibrated device can be used for

any fluid rheology and not limited to the rheology of the

fluid used to calibrate it. Also, using this device does not

require prior knowledge of the fluid rheology of the sample

to be characterized. We expect the developed device will

help in charactering systems with solids.
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