
ORIGINAL PAPER - PRODUCTION ENGINEERING

PVT correlations for Pakistani crude oils using artificial neural
network

Muzammil Hussain Rammay1 • Abdulazeez Abdulraheem1

Received: 18 May 2015 / Accepted: 17 January 2016 / Published online: 10 February 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Reservoir fluid properties such as bubble point

pressure, oil formation volume factor and viscosity are very

important in reservoir and petroleum production engi-

neering computations such as outflow–inflow well perfor-

mance, material balance calculations, well test analysis,

reserve estimates, and numerical reservoir simulations.

Ideally, these properties should be obtained from actual

measurements. Quite often, however, these measurements

are either not available or very costly to obtain. In such

cases, empirically derived correlations are used to predict

the needed properties using the known properties such as

temperature, specific gravity of oil and gas, and gas–oil

ratio. Therefore, all computations depend on the accuracy

of the correlations used for predicting the fluid properties.

Almost all of these previous correlations were developed

with linear or nonlinear multiple regression or graphical

techniques. Artificial neural networks, once successfully

trained, offer an alternative way to obtain reliable and more

accurate results for the determination of crude oil PVT

properties, because it can capture highly nonlinear behavior

and relationship between the input and output data as

compared to linear and nonlinear regression techniques. In

this study, we present neural network-based models for the

prediction of PVT properties of crude oils from Pakistan.

The data on which the networks were trained and tested

contain 166 data sets from 22 different crude oil samples

and used in developing PVT models for Pakistan crude

oils. The developed neural network models are able to

predict the bubble point pressure, oil formation volume

factor and viscosity as a function of the solution gas–oil

ratio, gas specific gravity, oil specific gravity, and tem-

perature. A detailed comparison between the results pre-

dicted by the neural network models and those predicted by

other previously published correlations shows that the

developed neural network models outperform most other

existing correlations by giving significantly lower values of

average absolute relative error for the bubble point, oil

formation volume factor at bubble point, and gas-saturated

oil viscosity.

Keywords Artificial neural network � Oil formation

volume factor � Viscosity of oil � Bubble point pressure �
Solution gas oil ratio

List of symbols

API API gravity of oil

Pb Bubble point pressure (psi)

Bob Oil formation volume factor at the bubble point

pressure, RB/STB

lob Viscosity of oil at bubble point pressure, cp

Rs Solution gas–oil ratio, SCF/STB

T Reservoir temperature (�F)
co Specific gravity of oil (water = 1.0)

cg Specific gravity of gas (air = 1.0)

APE Average percent relative error

Er Percent relative error

AAPE Average absolute percent relative error

Emax Maximum absolute percent relative

error = max Erj j
Emin Minimum absolute percent relative

error = min Erj j
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R Correlation coefficient

St. dev Standard deviation

xi Input parameters

i Index for input parameters

Ni Total number of input parameters

j Index for hidden layer neurons

bj Bias for hidden layer neuron j

wji Weights between input and hidden layer

f Tan-sigmoid transfer function

k Index for number of output parameters

bk Bias for output layer

wjk Weights between hidden and output layer

Nh Total number of hidden layer neurons

fL Linear transfer function

n Total number of data points

Introduction

During the last 70 years, engineers developed a significant

number of PVT correlations due to the high importance

empirical correlations for PVT properties in oil and gas

engineering. These correlations are sensitive to the region

and number of data points. PVT correlations accuracy varies

from one region to another. Therefore, significant numbers

of correlations have been developed based on the regional

variation, and it is recommended in the previous studies that

one should use their own region PVT correlation. A brief

overview of the widely used PVT correlation is give below.

Standing (1947, 1977) presented correlations for bubble

point pressure and oil formation volume factor. Standing’s

correlations were based on laboratory experiments carried

out on 105 samples from 22 different crude oils in California.

Katz (1942) presented five methods for predicting the

reservoir oil shrinkage. Vazquez andBeggs (1980) presented

correlations for oil formation volume factor. They divided

oil mixtures into two groups, above and below 30 � API

gravity. More than 6000 data points from 600 laboratory

measurements were used in developing the correlations.

Glaso (1980) developed the correlation for formation vol-

ume factor using 45 oil samples fromNorth Sea hydrocarbon

mixtures. Al-Marhoun (1988) published correlations for

estimating bubble point pressure and oil formation volume

factor for theMiddle East oils. He used 160 data sets from 69

Middle Eastern reservoirs to develop the correlation. Abdul-

Majeed and Salman (1988) published an oil formation vol-

ume factor correlation based on 420 data sets. Their model is

similar to that of Al-Marhoun (1988) oil formation volume

factor correlation with new calculated coefficients.

Labedi (1990) presented correlations for oil formation

volume factor for African crude oils. He used 97 data sets

from Libya, 28 from Nigeria, and 4 from Angola to

develop his correlations. Dokla and Osman (1992) pub-

lished a set of correlations for estimating bubble point

pressure and oil formation volume factor for UAE crudes.

They used 51 data sets to calculate new coefficients for Al-

Marhoun (1988) Middle East models. Al-Yousef and Al-

Marhoun (1993) pointed out that the Dokla and Osman

(1992, 1993) bubble point pressure correlation was found

to contradict the physical laws. Al-Marhoun (1992) pub-

lished a second correlation for oil formation volume factor.

The correlation was developed with 11,728 experimentally

obtained formation volume factors at, above, and below the

bubble point pressure. The data set represents samples from

more than 700 reservoirs from all over the world, mostly

from Middle East and North America.

Macary and El-Batanoney (1992) presented correlations

for bubble point pressure and oil formation volume factor.

They used 90 data sets from 30 independent reservoirs in

the Gulf of Suez to develop the correlations. The new

correlations were tested against other Egyptian data of

Saleh et al. (1987), and showed improvement over pub-

lished correlations. Omar and Todd (1993) presented oil

formation volume factor correlation, based on Standing’s

(1947) model. Their correlation was based on 93 data sets

from Malaysian oil reservoirs. Petrosky and Farshad (1993)

developed new correlations for the Gulf of Mexico.

Kartoatmodjo and Schmidt (1994) used a global data bank

to develop new correlations for all PVT properties. Data

from 740 different crude oil samples gathered from all over

the world provided 5392 data sets for correlation develop-

ment. Almehaideb (1997) published a new set of correlations

for UAE crudes using 62 data sets from UAE reservoirs.

These correlations were developed for bubble point pressure

and oil formation volume factor. The bubble point pressure

correlation of Omar and Todd (1993) uses the oil formation

volume factor as input in addition to oil gravity, gas gravity,

solution gas oil ratio, and reservoir temperature. Saleh et al.

(1987) evaluated the empirical correlations for Egyptian oils.

They reported that Standing’s (1947) correlationwas the best

for oil formation volume factor. Sutton and Farshad (1990a,

b) published an evaluation for Gulf of Mexico crude oils.

They used 285 data sets for gas-saturated oil and 134 data

sets for undersaturated oil representing 31 different crude

oils and natural gas systems. The results show that Glaso

(1980) correlation for oil formation volume factor perform

the best for most of the data of the study. Later, Petrosky and

Farshad (1993) published a new correlation based on the

Gulf of Mexico crudes. They reported that the best per-

forming published correlation for oil formation volume is the

Al-Marhoun (1988) correlation. McCain (1991) published

an evaluation of all reservoir properties correlations based on

a large global database. He recommended Standing’s (1947)

correlations for formation volume factor at and below the

bubble point pressure.
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Al-Fattah and Al-Marhoun (1994) published an eval-

uation of all available oil formation volume factor cor-

relations. They used 674 data sets from published

literature. They found that Al-Marhoun (1992) correla-

tion has the least error for global data set. Also, they

performed trend tests to evaluate the model’s physical

behavior. Finally, Al-Shammasi (1997) evaluated the

published correlations and neural network models for

bubble point pressure and oil formation volume factor

for accuracy and flexibility to represent hydrocarbon

mixtures from different geographical locations world-

wide. He presented a new correlation for bubble point

pressure based on global data of 1661 published and 48

unpublished data sets. Also, he presented neural network

models and compared their performance to numerical

correlations. He concluded that statistical and trend

performance analysis showed that some of the correla-

tions violate the physical behavior of hydrocarbon fluid

properties.

De Ghetto et al. (1994) performed a comprehensive

study on PVT properties correlation based on 195 global

data sets collected from the Mediterranean Basin, Africa,

Middle East, and the North Sea reservoirs. They recom-

mended Vazquez and Beggs (1980) correlation for the oil

formation volume factor. Elsharkawy et al. (1994) eval-

uated the PVT correlations for Kuwaiti crude oils using

44 samples. Standing’s (1947) correlation gave the best

results for bubble point pressure, while Al-Marhoun

(1988) oil formation volume factor correlation performed

satisfactorily.

Hanafy et al. (1997) published a study to evaluate the

most accurate correlation to apply to Egyptian crude

oils. For formation volume factor, Macary and El-Bata-

noney (1992) correlation showed an average absolute

error of 4.9 %, while Dokla and Osman (1992) showed

3.9 %. The study strongly supports the approach of

developing a local correlation versus a global

correlation.

Mahmood and Al-Marhoun (1996) presented an evalu-

ation of PVT correlations for Pakistani crude oils. They

used 166 data sets from 22 different crude samples for the

evaluation. Al-Marhoun (1992) oil formation volume fac-

tor correlation gave the best results. The bubble point

pressure errors reported in this study, for all correlations,

are among the highest reported in the literature. It is also

possible to increase the accuracy by updating the coeffi-

cients of Al-Marhoun correlation, but it is not necessary

that the update correlation captures nonlinear behavior

completely. Therefore, Mahmood and Al-Marhoun (1996)

also recommended new PVT correlations for Pakistani

crude oils and this recommendation is the basis for this

research.

Artificial neural network

Neural networks are composed of simple elements oper-

ating in parallel. These elements are inspired by biological

nervous systems. We can train a neural network to perform

a particular function by adjusting the values of the con-

nections (weights) between elements. Typically, neural

networks are adjusted, or trained, so that a particular input

leads to a specific target output (MathWorks, Inc 2008).

Neural network consists of input and output neurons

(elements) and layers, which are connected by further

neurons and layers known as hidden layer and hidden layer

neurons (Fauset 1996). These neurons are connected in a

highly parallel and distributed way, so that they can map

any nonlinear complex function as shown in Fig. 1. Each

connection in the neural network assigns weights and

layers and are connected by transfer functions. The

response from each neuron is given by

yj ¼ f
XNi

i¼1

wji�xi þ bj

 !
;

where xi are the input parameters, i is the index for input

parameters, Ni is the total number of input parameters, j is

the index for hidden layer neurons, bj is the bias for hidden

layer neuron j, yj is the output of hidden layer neuron j,

wji are weights between the input and hidden layer, f is

the tan-sigmoid transfer functionand

zk ¼ fL
XNh

j¼1

wjk�yj þ bk

 !
:

In this, k is the index for a number of output parameters,

bk is the bias for the output layer, wjk are the weights

between the hidden and output layer, Nh is the total

number of hidden layer neurons, zk are the outputs of the

output layer, and fL is the linear transfer function.

Fig. 1 Generalized ANN model architecture with input, hidden, and

output layer
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The work flow for the neural network design process has

the following primary steps:

• Collect data.

• Create the network.

• Configure the network.

• Initialize the weights and biases.

• Train and validate the network.

• Test and use the network.

In recent years, neural networks have gained popularity

in petroleum applications. Many authors have discussed the

applications of neural network in petroleum engineering

(Kumoluyi and Daltaban 1994; Ali 1994; Mohaghegh and

Ameri 1994; Mohaghegh 1995). Few studies have been

carried out to model the PVT properties using neural net-

works. Gharbi and Elsharkawy (1997) published neural

network models for estimating bubble point pressure and

oil formation volume factor for Middle East crude oils.

Both neural network models were trained using 498 data

sets collected from the literature and unpublished sources.

The models were tested by other 22 data points from the

Middle East. The results showed improvement over the

conventional correlation methods with reduction in the

average error for the bubble point pressure oil formation

volume factor.

Varotsis et al. (1999) presented a novel approach for

predicting the complete PVT behavior of reservoir oils and

gas condensates using artificial neural network (ANN). The

method uses key measurements that can be performed

rapidly either in the laboratory or at the well site as input to

an ANN. The ANN was trained by a PVT study database of

over 650 reservoir fluids originating from all parts of the

world. Tests of the trained ANN architecture utilizing a

validation set of PVT studies indicate that, for all fluid

types, most PVT property estimates can be obtained with a

very low mean relative error of 0.5–2.5 %, with no data set

having a relative error in excess of 5 %. Osman and Al-

Marhoun (2002) developed PVT correlations using ANN

for Saudi crude oils. The models were developed using 283

data sets, which were collected from Saudi Reservoirs.

Gupta (2010) developed PVT correlations using artificial

neural network for Indian crude oils. The models were

developed using 372 data sets, which were collected from

Indian reservoirs. All of the regional ANN PVT correla-

tions outperform the previously published correlations.

Mahmood and Al-Marhoun (1996) presented an evaluation

of PVT correlations for Pakistani crude oils. In this study

(Mahmood and Al-Marhoun 1996), they concluded that

new PVT correlations for Pakistani crude oils are required

and therefore this recommendation and conclusion are the

basis for this research. Moreover due to the previous suc-

cess of ANN in regional PVT correlations, ANN is used as

an algorithm for PVT correlations of Pakistani crude oil.

Data acquisition and analysis

Data used for this work were collected from Mahmood and

Al-Marhoun (1996) publication related to evaluation of

PVT correlations for Pakistani crude oil. In general, this

data set covers a wide range of bubble point pressure, oil

FVF, solution gas/oil ratio, and gas relative density values;

whereas the temperature and oil gravity belong to relatively

higher values attributed to regional trends prevailing in

Pakistani crude oils. Each data set contains reservoir tem-

perature, oil gravity, total solution gas oil ratio, and aver-

age gas gravity, bubble point pressure, oil formation

volume factor at the bubble point pressure, and viscosity at

the bubble point pressure. The data set was randomly

divided into two groups of seen data (70 % of total data)

and unseen data (30 % of total data). Out of a total of 166

data points, 70 % (seen data by ANN) were used for

training, validation, or cross-validation of the ANN mod-

els, the remaining 30 % (unseen data by ANN) were used

to test the model to evaluate its accuracy. For viscosity at

Pb data, 128 data points are available in Mahmood and Al-

Marhoun’s (1996) publication and these are divided in the

same way as bubble point pressure and formation volume

factor at Pb. A statistical description of training (seen) and

test (unseen) data are given in Tables 1 and 2, respectively.

Bubble point pressure artificial neural network
model

The bubble point pressure ANN model consists of four

input neurons or input parameters, which are related to

temperature, specific gravity of gas, API gravity of oil

and solution gas–oil ratio, one hidden layer and one

output neuron related to bubble point pressure. The

hidden layer consists of 12 neurons, which were obtained

after sensitivity runs of the number of neurons from 5 to

50. Tan-sigmoid and linear transfer functions were used

in the hidden and output layer, respectively. The algo-

rithm of ANN model for bubble point pressure is given

below:

Pb ¼ fL
XNh

j¼1

wjk� f
XNi

i¼1

wji�xi þ bj

 ! !
þ bk

 !
:

The above ANN algorithm for bubble point pressure can

also be written in the following way:

ðPbÞN ¼ fL
XNh

j¼1

wjk �
�
f
�
wj1 � ðTÞN þ wj2 � ðcgÞN þ wj3

 

� ðAPIÞN þ wj4 � ðRsÞNÞ þ bj
��

þ bk

!
:
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Subscript N shows the normalized input and output

parameters for ANN model. The bias values are constant

and have a similar concept to constants in linear or

nonlinear regression. The architecture of the ANN model

for bubble point pressure is shown in Fig. 2.

To obtain weights and bias values, training of neural

network was performed by Levenberg–Marquardt back-

propagation algorithm. To avoid local minimum, 5000

multiple realizations with different weight and bias ini-

tialization of training were implemented and the minimum

error realization was selected as the best one. After train-

ing, the optimal weights and bias values were obtained for

bubble point pressure ANN and these are shown in

Table 3.

All input parameters should be normalized in the range

of [-1, 1] before using in the ANN algorithm for bubble

point. The general equation for input normalization is

given below:

Inputnorm ¼ Inputmax � Inputminð Þ x� xminð Þ
xmax � xminð Þ þ Inputmin;

Inputmin ¼ �1;

Inputmax ¼ 1:

The xmax and xmin values (ranges of input parameters)

are given in Table 1. Therefore, the input parameters

should be normalized by using the following equations:

Tð ÞN¼
2 T � 182ð Þ
296� 182ð Þ � 1;

cg
� �

N
¼

2 cg � 0:825
� �

3:444� 0:825ð Þ � 1;

APIð ÞN¼
2 API� 29ð Þ
43:8� 29ð Þ � 1;

Rsð ÞN¼
2 Rs� 92ð Þ
2496� 92ð Þ � 1:

The proposed ANN model gives normalized bubble

point pressure in the range [-1, 1]; therefore for real value

of the bubble point pressure, the output value should be de-

normalized by the following equation:

Output ¼ ymax � yminð Þ Outputnorm � ð�1Þð Þ
ð1Þ � ð�1Þ þ ymin;

where ymax and ymin values (minimum and maximum

bubble point pressures) are given in Table 1. Therefore, the

output parameter should be de-normalized by using

following equation:

Pb ¼
4975� 79ð Þ ðPbÞN � ð�1Þ

� �

2
þ 79:

Oil formation volume factor of the Pb (Bob) ANN
model

The oil formation volume factor of the Pb ANN model

consists of four input neurons or input parameters, which

are related to temperature, specific gravity of gas, API

Table 1 Statistical description of the input and output data used for training and cross-validation

Property Max Min Mean Range St. dev Skewness Kurtosis

Temperature (�F) 296 182 243.87 114 25.96 -0.19 3.68

Specific gravity of gas 3.444 0.825 1.79 2.6192 0.43 0.78 3.73

API gravity of oil 43.8 29 38.64 14.8 3.64 -1.35 4.48

Solution gas–oil ratio (SCF/STB) 2496 92 513.43 2404 433.21 2.40 9.53

Bubble point pressure (psi) 4975 79 988.15 4896 909.96 1.94 7.39

Bob (bbl/STB) 2.92 1.21 1.52 1.70 0.32 2.15 7.99

lob (cp) 0.64 0.21 0.35 0.43 0.08 0.82 3.85

Table 2 Statistical description of the input and output data used for testing

Property Max Min Mean Range St. dev Skewness Kurtosis

Temperature (�F) 296 182 238.12 114 26.55 -0.43 3.69

Specific gravity of gas 2.98 1.061 1.69 1.9192 0.40 1.04 4.07

API gravity of oil 56.5 29 40.05 27.5 3.43 1.66 13.66

Solution gas–oil ratio (SCF/STB) 2249 145 467.84 2104 335.20 3.39 17.68

Bubble point pressure (psi) 2885 104 926.24 2781 574.32 0.74 3.92

Bob (bbl/STB) 1.91 1.20 1.37 0.71 0.14 1.69 6.80

lob (cp) 0.58 0.22 0.36 0.36 0.07 0.62 3.94
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gravity of oil and solution gas–oil ratio, one hidden layer

and one output neuron related to Bob. The hidden layer

consists of 8 neurons, which were obtained after sensitivity

runs of number of neurons from 5 to 50. Tan-sigmoid and

linear transfer functions were used in the hidden and output

layer, respectively. The algorithm of the ANN model for

Bob is given below:

Bob ¼ fL
XNh

j¼1

wjk� f
XNi

i¼1

wji�xi þ bj

 ! !
þ bk

 !
:

The above ANN algorithm for Bob can also be written in

the following way:

ðBobÞN ¼ fL
XNh

j¼1

wjk �
�
f
�
wj1 � ðTÞN þ wj2 � ðcgÞN þwj3

 

�ðAPIÞN þwj4 � ðRsÞNÞ þ bj
��

þ bk

!
:

Subscript N shows the normalized input and output

parameters for ANN model. The bias values are constant

values, which have a similar concept to constants in linear

or nonlinear regression. The architecture of ANN model for

Bob is shown in Fig. 3.

To obtain weights and bias values, training of neural

network was performed by Levenberg–Marquardt back-

propagation algorithm. To avoid local minimum, 5000

multiple realizations with different weight and bias ini-

tialization of training were implemented and minimum

error realization was selected as the best one. After train-

ing, the optimal weights and bias values were obtained for

Bob artificial neural network and these are shown in

Table 4.

All input parameters should be normalized in the range

of [-1, 1] before using in the ANN algorithm for Bob. The

procedure for normalization of input parameters is the

same as of bubble point ANN algorithm.

The input parameters should be normalized using the

following equations for the ANN algorithm of Bob:

Tð ÞN¼
2 T � 182ð Þ
296� 182ð Þ � 1;

cg
� �

N
¼

2 cg � 0:825
� �

3:444� 0:825ð Þ � 1;

APIð ÞN¼
2 API� 29ð Þ
56:5� 29ð Þ � 1;

Rsð ÞN¼
2 Rs� 96ð Þ
2496� 96ð Þ � 1:

The proposed ANN model gives normalized Bob in the

range [-1, 1]; therefore for the real value of Bob, the output

Fig. 2 Architecture of ANN

model for bubble point pressure
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Bob value should be de-normalized by the following

equation:

Bob ¼
2:916� 1:214ð Þ ðBobÞN � ð�1Þ

� �

2
þ 1:214:

Viscosity in the Pb (lob) ANN model

The viscosity in the Pb ANN model consists of four input

neurons or input parameters, which are related to temper-

ature, specific gravity of gas, API gravity of oil and solu-

tion gas–oil ratio, one hidden layer and one output neuron

related to lob. The hidden layer consists of 26 neurons,

which were obtained after sensitivity runs of number of

neurons from 5 to 50. Tan-sigmoid and linear transfer

functions were used in the hidden and output layer,

respectively. It is important to note that the hidden layer

neurons in lob ANN model is higher than the bubble point

and Bob ANN models, because nonlinearity in lob is higher
than bubble point and Bob. The algorithm of the ANN

model for lob is given below:

lob ¼ fL
XNh

j¼1

wjk� f
XNi

i¼1

wji�xi þ bj

 ! !
þ bk

 !
:

Table 3 Weights and bias values for Pb artificial neural network model

Weights between the input layer and the hidden layers (wij)

Hidden layer neurons (j) Input layer neurons (i)

1 2 3 4

1 3.647 0.334 -0.756 -0.098

2 1.448 1.708 2.495 0.248

3 0.671 -1.191 0.348 1.427

4 1.372 0.424 2.842 2.280

5 1.928 -1.584 0.793 2.126

6 -1.201 -2.074 2.223 4.147

7 3.870 0.274 1.113 -0.742

8 5.704 0.027 1.161 0.823

9 -1.226 -0.351 0.102 -0.753

10 -1.892 -3.004 -2.224 3.219

11 3.452 -0.584 -4.716 0.833

12 2.946 0.221 0.344 0.629

Bias values for the hidden layer neurons (bj) Weights between the hidden layer and the output layers (wjk)

Hidden layer neurons (j) Bias (bj) Hidden layer neurons (j) Output one neuron

1 -2.997 1 -0.461

2 -1.726 2 -0.216

3 -0.038 3 0.713

4 -1.939 4 -0.286

5 -0.737 5 -0.342

6 -0.601 6 0.094

7 0.337 7 0.176

8 0.951 8 1.494

9 -0.448 9 -2.163

10 -0.052 10 0.097

11 3.467 11 -0.289

12 0.764 12 -2.737

Bias values for output layer neuron (bk)

Output layer neuron (k) Bias value (bk)

1 -0.73853
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Fig. 3 Architecture of ANN

model for Bob

Table 4 Weights and bias values for Bob artificial neural network model

Weights between the input layer and hidden layers (wij)

Hidden layer neurons (j) Input layer neurons (i)

1 2 3 4

1 -0.497 -0.711 -3.221 -0.921

2 0.432 -0.937 -2.129 -1.487

3 -0.126 -0.343 0.397 -1.908

4 1.298 0.477 -0.511 1.551

5 0.390 -0.720 -0.817 -1.248

6 -1.050 0.276 1.255 0.084

7 -0.090 2.205 -1.897 0.545

8 0.343 1.149 -0.246 -1.184

Bias values for hidden layer neurons (bj) Weights between the hidden layer and output layers (wjk)

Hidden layer neurons (j) Bias (bj) Hidden layer neurons (j) Output one neuron

1 -2.434 1 0.292

2 -2.131 2 -0.550

3 0.369 3 -0.190

4 0.231 4 0.111

5 0.010 5 -0.479

6 0.153 6 -0.487

7 2.702 7 -0.445

8 -1.489 8 -0.266

Bias values for the output layer neuron (bk)

Output layer neuron (k) Bias value (bk)

1 0.07129
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The above ANN algorithm for lob can also be written in

the following way:

ðlobÞN ¼ fL
XNh

j¼1

wjk �
�
f
�
wj1 � ðTÞN þ wj2 � ðcgÞN

 

þ wj3 � ðAPIÞN þ wj4 � ðRsÞNÞ þ bj
��

þ bk

!
:

Subscript N shows the normalized input and output

parameters for ANN model. The bias values are constant

values, which have similar concept to constants in linear or

nonlinear regression. The architecture of the ANN model

for lob is shown in Fig. 4.

To obtain the weights and bias values, the training

of neural network was performed by the Levenberg–

Marquardt back-propagation algorithm. To avoid local

minimum, 5000 multiple realizations with different weight

and bias initialization of training were implemented and

minimum error realization was selected as the best one.

After training, the optimal weights and bias values were

obtained for lob ANN and these are shown in Table 5.

All input parameters should be normalized in the range

of [-1, 1] before using in the ANN algorithm for lob. The
procedure for normalization of input parameters is the

same as of bubble point pressure and Bob ANN algorithms.

The input parameters should be normalized using the

following equations for the ANN algorithm of lob:

Tð ÞN¼
2 T � 188ð Þ
296� 188ð Þ � 1;

cg
� �

N
¼

2 cg � 0:825
� �

3:444� 0:825ð Þ � 1;

Fig. 4 Architecture of ANN

model for lob
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Table 5 Weights and bias values for lob artificial neural network model

Weights between the input layer and hidden layers (wij)

Hidden layer neurons (j) Input layer neurons (i)

1 2 3 4

1 -2.726 -0.166 -1.151 1.073

2 -1.622 1.182 1.594 1.712

3 -0.411 0.958 1.192 -3.193

4 1.075 -1.687 -2.430 0.457

5 1.848 -0.705 3.797 0.385

6 0.611 2.371 -0.584 2.170

7 3.312 -2.249 -1.234 0.703

8 0.768 1.796 -1.852 -2.403

9 -1.349 -3.097 -2.979 -0.231

10 2.278 1.340 1.022 2.054

11 1.923 -1.044 -4.740 -2.367

12 0.197 -1.999 -1.036 -2.363

13 0.988 -2.030 0.646 2.643

14 3.407 0.099 -1.393 -0.452

15 -6.313 -0.699 1.568 0.273

16 1.996 -1.785 -1.515 -0.991

17 -1.904 -1.389 3.804 -1.745

18 -0.044 -0.820 -3.282 -1.124

19 -1.411 -2.296 3.120 -0.946

20 -1.881 -0.526 -1.280 1.368

21 0.297 1.407 -2.016 1.526

22 3.099 1.335 0.788 3.403

23 0.375 -2.754 -1.046 -2.249

24 0.832 1.257 -0.681 3.005

25 2.547 2.403 0.883 0.151

26 1.195 -2.045 -0.810 -1.929

Bias values for the hidden layer neurons (bj) Weights between the hidden layer and output layers (wjk)

Hidden layer neurons (j) Bias (bj) Hidden layer neurons (j) Output one neuron

1 3.663 1 -1.458

2 3.138 2 -0.899

3 -2.524 3 -0.110

4 -2.213 4 -0.526

5 -1.706 5 -3.093

6 -1.486 6 -1.085

7 -0.456 7 0.616

8 -1.073 8 0.675

9 1.836 9 -1.455

10 -0.910 10 0.849

11 -0.984 11 -2.780

12 0.618 12 -0.601

13 -0.274 13 0.693

14 0.611 14 0.668

15 -0.676 15 -3.082

16 0.440 16 1.574
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APIð ÞN¼
2 API� 29ð Þ
43:8� 29ð Þ � 1;

Rsð ÞN¼
2 Rs� 92ð Þ
2496� 92ð Þ � 1:

The proposed ANN model gives normalized lob in the

range [-1, 1]; therefore for real value of lob, output lob
value should be de-normalized by the following equation:

lob ¼
0:636� 0:205ð Þ ðlobÞN � ð�1Þ

� �

2
þ 0:205:

Results and discussion

After training the neural network models for Pb, Bob and

lob, the models become ready for testing and evaluation.

To perform this, the first training data set (seen data) and

the second testing data set, which were not seen by the

neural network during training, were used.

To compare the performance and accuracy of the neural

network model of Pb to other empirical correlations, five

mostly used Pb correlations were selected. These are those

of Standing (1947), Vazquez and Beggs (1980), Glaso

(1980), and Lasater (1958). The statistical results of the

comparison are given in Table 6. The ANN model of Pb

outperforms all these empirical correlations.

To compare the performance and accuracy of the neural

network model of Bob to other empirical correlations, five

mostly used Bob correlations were selected. These are those

of Standing (1947), Vazquez and Beggs (1980), Glaso

(1980), and Al-Marhoun (1988, 1992). The statistical

results of the comparison are given in Table 7. The ANN

model of Bob outperforms all these empirical correlations.

To compare the performance and accuracy of the neural

network model of lob to other empirical correlations, four

mostly used lob correlations were selected. These are those
of Beggs and Robinson (1975), Chew and Connaly (1959),

Khan et al. (1987), and Labedi (1992). The statistical

Table 5 continued

Bias values for the hidden layer neurons (bj) Weights between the hidden layer and output layers (wjk)

Hidden layer neurons (j) Bias (bj) Hidden layer neurons (j) Output one neuron

17 -3.440 17 2.547

18 -0.884 18 1.230

19 -2.512 19 1.188

20 -2.259 20 0.875

21 -2.337 21 -0.070

22 1.967 22 -2.484

23 -3.722 23 -2.013

24 2.317 24 0.697

25 2.251 25 -0.838

26 3.162 26 0.196

Bias values for the output layer neuron (bk)

Output layer neuron (k) Bias value (bk)

1 0.316

Table 6 Statistical comparison of bubble point pressure correlations and proposed bubble point pressure ANN model

Correlations APE AAPE Emin Emax St. dev

Standing (1947) -43.5 49.18 0.43 391.05 68.37

Lasater (1958) -20.61 31.31 0.04 273.65 49.36

Vazquez and Beggs (1980) -52.07 55.31 0.16 403.99 70.3

Glaso (1980) -24.82 32.08 0.04 247 45.64

Al-Marhoun (1988) 27.97 31.5 0.3 81.96 20.24

Pb-ANN testing data (proposed) 1.437 4.425 0.197 34.397 8.151

Pb-ANN all data (proposed) 0.0404 3.5039 0.0005 53.3865 7.6935

Italic values were used to differentiate between proposed algorithm results with the previous published model results
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results of the comparison are given in Table 8. The ANN

model of lob outperforms all these empirical correlations.

The proposed neural network models showed high

accuracy in predicting the Pb, Bob, and lob values, and

achieved the lowest relative error, lowest absolute percent

relative error, lowest minimum error, lowest maximum

error, and lowest standard deviation of relative error.

Conclusion

• A new ANN model was developed to predict the bubble

point pressure, oil formation volume factor at Pb, and

viscosity at Pb. The Pb and Bob models were developed

using 166 published data sets from the Pakistani crude oil

samples. The lob model was developed using 128 pub-

lished data sets from the Pakistani crude oil samples.

• Out of the 166 data points, 70 % were used to train and

cross-validate the ANN models for Pb and Bob, and the

remaining 30 % used to test the accuracy of Pb and Bob

models. Similarly, for the lob model, out of the 128

data points, 70 % were used to train and cross-validate

the ANN model and the remaining 30 % used to test the

lob accuracy.
• The results show that the developed models provide

better predictions and higher accuracy than the pub-

lished empirical correlations and have the capability to

fulfill the need of more accurate correlations for

Pakistani crude oil. The present models provide

predictions of Pb, Bob, and lob with an absolute average

percent error of 4.4250, 0.4975, and 2.99 %, respec-

tively, to unseen (testing) data and correlation coeffi-

cient of 0.99789, 0.997, and 0.97022, respectively, to

unseen (testing) data.
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Appendix 1

See Figs. 5 and 6.

Table 7 Statistical comparison of Bob correlations and the proposed Bob ANN model

Correlations APE AAPE Emin Emax St. dev

Standing (1947) 1.39 2.31 0.05 7.96 2.36

Vazquez and Beggs (1980) 12.84 12.84 5.99 24.83 4.37

Glaso (1980) 3.65 3.88 0.08 12.78 2.23

Al-Marhoun (1988) 2.27 2.34 0.01 13 2.55

Al-Marhoun (1992) 0.76 1.23 0.01 9.09 1.54

Bob-ANN testing data (proposed) -0.062 0.497 0.011 3.488 0.740

Bob-ANN all data (proposed) 0.0197 0.4143 0.0001 5.4211 0.7585

Italic values were used to differentiate between proposed algorithm results with the previous published model results

Table 8 Statistical comparison of lob correlations and the proposed lob ANN model

Correlations APE AAPE Emin Emax St. dev

Beggs and Robinson (1975) -24.43 26.71 2.56 57.16 21.7

Chew and Connally (1959) -3.41 12.21 1.27 25.31 13.62

Khan et al. (1987) 18.6 29.92 1.19 64.8 30.81

Labedi (1992) -29.65 37.53 0.56 268.98 70.04

lob-ANN testing data (proposed) -0.481 2.994 0.034 23.594 5.729

lob-ANN all data (proposed) -0.233 1.570 0.003 23.594 3.515

Italic values were used to differentiate between proposed algorithm results with the previous published model results
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Fig. 5 Cross plots between ANN-predicted and real data
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Fig. 6 Comparison plots

between ANN-predicted and

real data
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Appendix 2

Statistical parameters used in the study are average per-

centage error ‘APE’, average absolute percentage error

(AAPE), average percentage error (APE), correlation

coefficient (R), and standard deviation.

Relative percentage error is defined mathematically as

follows:

Er ¼ X estimatedð Þ � X measuredð Þð Þ
X measuredð Þ �100:

Absolute APE is defined mathematically as follows:

Fig. 6 continued
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AAPE ¼ 1

n

Xn

i¼1

Erj j:

Average percentage error is defined mathematically as

follows:

APE ¼ 1

n

Xn

i¼1

Er:

Standard deviation is defined mathematically as follows:

Std: dev ¼
n
Pn

i¼1 Erð Þ2�
Pn

i¼1 Er
� �2

n2

" #0:5
:

Appendix 3

There were two transfer functions used in the proposed

ANN models. These are tan-sigmoid and linear transfer

functions. Tan-sigmoid function connects input layer neu-

rons to hidden layer neurons. Linear transfer function

connects hidden layer neurons to output layer neurons.

Mathematically, these transfer functions are defined as

follows.

Tan-sigmoid (tansig) transfer function:

f ¼ tansig nð Þ;

tansig nð Þ ¼ 2

1þ e�2n
� 1:

Linear (purelin) transfer function:

fL ¼ purelinðnÞ;
purelin nð Þ ¼ n;

where, n is any real input argument, f the tan-sigmoid

transfer function, and fL the linear transfer function
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