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Abstract The latest intelligent fields include intelligent

well completions capable of collecting downhole data,

which allow the operator to selectively control completion

intervals throughout the life of a reservoir. Performance

can be monitored and optimized in real time and operations

can be adjusted remotely using downhole equipment. To

quantify and develop this potential, we deigned an algo-

rithm-based system which is capable of optimizing intel-

ligent well control to decide on whether or not to utilize

intelligent well technology. Simulated annealing algorithm

was used for obtaining an optimum control strategy and

determining an operation that maximizes the net present

value (NPV). In this article, we used more than 4,000

simulation runs which were performed automatically in a

reservoir simulator to optimize a cyclic production scenario

with intelligent well completions. The intelligent wells

were equipped with on/off inflow control valves in each

zone, which were opened and closed sequentially to max-

imize the oil rate while not exceeding limits for water

production. The results show that the application of

simulated annealing algorithm for optimization of intelli-

gent well technology culminates in an increase in the NPV

through 14 % increase in cumulative oil production and a

significant reduction in water production.

Keywords Intelligent wells � Smart wells � Intelligent
completions � Optimization � Layered reservoirs �
Simulated annealing � NPV � Control strategy � Cyclic
production

Abbreviations

BHP Bottomhole pressure

Cum Cumulative

CYC Cyclic

conv. Conventional production scenario

G Gas

ICV Inflow control valve

intelligent Intelligent production scenario

IW Intelligent well

Lim Limit

Max Maximum

md Millidarcy

Min Minimum

NPV Net present value

O Oil

S Saturation

SA Simulated annealing

SAGD Steam-assisted gravity drainage

SG Solution gas

T Temperature

V Vertical

W Water

wcut Water cut

W.O. Workover
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Introduction

Intelligent well technology

An intelligent well is defined as an advanced well equipped

with intelligent completion technology. An intelligent well

completion is a system equipped with sensors and special

valves installed on the production tubing, which provides

the operator with continuous monitoring and adjustment of

fluid flow rates and pressures, as displayed in Fig. 1.

The principle that underlies the use of flow control

valves in horizontal wells is the imposition of an additional

pressure drop, usually proportional to flowrate squared

(Addagio-Guevera and Jackson 2008), that equalizes the

uneven drawdown along the lateral to promote a more

uniform fluid front movement. A considerable degree of

flexibility is achieved to control each branch or section of a

well independently. Since intelligent wells offer a major

advance in well technology, there is a critical and growing

need for a strategy to justify the appropriate deployment of

this technology.

Intelligent well technology has been the subject of many

studies which intended to obtain standard methodologies

for calculating its advantages, (Robinson 1997; Holmes

et al. 1998; Greenberg 1999; Yeten and Jalali 2001; Val-

vatne et al. 2003), which explain the control strategy of

these devices as well as their operating principles. These

benefits include improved reservoir management (Brouwer

et al. 2001; Kharghoria et al. 2002; Glandt 2005) (e.g.

production from layered reservoirs, thin oil rims and

multiple reservoir compartments, managing water/gas

coning in wells, preferable sweep efficiency during EOR,

auto gas lift etc.), reservoir diagnostics and formation

evaluation (Glandt 2005) (flow profiling in horizontal

wells, downhole production testing), and more efficient

cleanup/flowback of complex wells (Al-Khelaiwi et al.

2009).

They can also be used to selectively shutoff production/

injection from/into the different completion intervals.

‘‘Proactive’’ control strategy often outperforms ‘‘reactive’’

control strategy, which means reacting after production/

injection changes are observed in wells. A previous pub-

lication reported improved recoveries ranging between 0.2

and 1.2 % of STOIIP for intelligent horizontal wells

completed in a channelized reservoir (Ebadi and Davies

2006a).

All the above-mentioned studies manifest the consider-

able benefits of intelligent well systems, drawing the con-

clusion that updated methodologies are vital to ensure the

optimum control for these wells. Changing configuration in

reaction to unexpected events is considered to be an

important advantage of an intelligent well. For example, an

Fig. 1 Schematic intelligent

well completion, showing

packers, inflow control valves,

hydraulic and electric control

lines
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early water breakthrough in a completed zone can be

mitigated by shutting off or choking down. On the other

hand, shutting off the watered zone would require a

workover in a conventional well, which results in

increasing costs and a halt in production. Moreover,

reopening a zone, after it has been shutoff, is usually not

technically feasible. As a result of the additional flexibility

presented by inflow control valves (ICV), intelligent well

technology is able to significantly influence the net present

value (NPV) of a development project.

Controlled commingled production is also accomplished

by an intelligent well drilled through separate reservoir

zones (Jalali et al. 1998). As an alternative, the well can be

used to sequentially produce the reservoir zones with the

flexibility to open and close whenever required. Tern field

constitutes a quintessential example of such a sequential

production scenario with intelligent wells, as described by

Akram et al. (2001).

Intelligent well production optimization

The objective of optimizing the management of an oil

reservoir is to devise production strategies that are eco-

nomically more beneficial. However, high costs associated

with such strategies in well operations, particularly in

offshore reservoirs, may make some of these optimization

operations unfeasible, leading to a suboptimal reservoir

management process. This is exactly where the intelligent

well concept stands out as an effective alternative.

The problem of optimizing the valve operation in

intelligent wells has been investigated in the literature by

adopting classical optimization methods such as gradient

descent, conjugate gradient or nonlinear conjugate gradient

methods (Yeten et al. 2002; Kharghoria et al. 2002).

The initial objective of this work is to develop an

optimized methodology capable of providing an economic

comparison between the use of conventional wells and

intelligent wells. These comparisons provide the managers

with a helpful device to decide whether or not to use

intelligent wells in an oil production project. Furthermore,

an optimum control of the valve operations in intelligent

well systems based on simulated annealing algorithm is

proposed in this study. The optimum well control by

intelligent well technology is acquired via using flow

control valves and pressure sensors. The main goal of our

optimization is to develop a control strategy for adjusting

the valves configurations existing in intelligent wells so

that we are able to maximize reservoir production under

some criteria.

The reservoir developers and managers have expressed

increasing interest in newly developed optimization pro-

cesses for intelligent well completions. As a result, diverse

research methodologies have been proposed to apply

optimization methods to intelligent well technology to

balance production along the wellbore length, control water

breakthrough, and ensure early economic oil production.

Brouwer et al. (2001) proposed an optimization process

based on a basic algorithm, which involved shutting well

segments with the highest productivity indexes and adding

the production from these segments to another well seg-

ment to balance production along the wellbore length.

Optimal control theory has also been utilized to improve

water production control and oil recovery (Brouwer and

Jansen 2002; Dolle et al. 2002). Gai (2001) proposed an

optimization method for controlling flow in a dual lateral

intelligent well system. He integrated the inflow perfor-

mance relationship with valve performance relationship to

optimize the valve settings. Subsequently, Yeten et al.

(2004) developed Gai’s work (2001) and proposed a con-

jugate gradient algorithm for optimizing the control of a

fixed number of on/off valves located in a single well.

Meum et al. (2008) have used non-linear predictive control

to optimize intelligent well production.

Various approaches to optimize the positions of the

ICVs and the valve’s flow cross-sectional area have been

published recently. Network/system models have been

used by some authors to optimize the valve aperture for

fixed well configuration. These models were used in

combination with optimization algorithms like sequential

quadratic programming for application in wells for maxi-

mizing hydrocarbon recovery during the field’s decline

period (Elmsallati and Davies 2005). Other techniques of

intelligent well optimization that have been used so far are

based on reservoir simulation. These include placing ICVs

in different well/reservoir geometries with varying reser-

voir drive mechanisms (Ebadi and Davies 2006b).

Stochastic methods are also capable of determining the

global minima (in theory) but require longer computational

durations. Gradient-based algorithms tend to get restricted

to local minima though they are more computationally

efficient. Applications of these methods range from maxi-

mizing oil recovery from simple single well models

(Kharghoria et al. 2002) to complex channel-type reser-

voirs (Yeten et al. 2002, 2004).

Stone et al. (2010, 2011) have worked on the optimi-

zation of ICVs for SAGD but the technique could be

translated to any well. Doublet et al. (2009) formulated a

constrained optimization problem as an augmented

Lagrangian saddle point problem.

Dilib et al. (2012) optimized a closed-loop strategy

using a base case model, and then tested against unex-

pected reservoir behavior by adjusting a number of

uncertain parameters in the model. They found that closed-

loop feedback control yields positive gains in NPV for the

majority of reservoir behaviors investigated, and higher

gains than the open-loop strategy since closed-loop control
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can also yield positive gains in NPV even when the res-

ervoir does not behave as expected. Datta-Gupta et al.

(2010) proposed an approach that is computationally effi-

cient and suitable for large field scale. They used stream-

lines to analytically compute the sensitivity of the arrival

times with respect to well rates.

More recently, Ghosh and King (2013) used simulated

annealing algorithm in conjunction with a commercial

reservoir simulator to maximize an objective function that

captures the mean and variance in the well’s estimated

value to determine the optimal placement of ICVs and their

inflow settings. However, they just applied their approach

in a set of simple conceptual black oil reservoir models

with a single producing horizontal well.

As mentioned above, the problem of optimizing intel-

ligent wells with classical optimization methods is widely

addressed in the research papers found in the literature.

However, if the number of optimization variables increases

owing to a large number of valves or wells, the optimiza-

tion problem becomes quite complex and difficult to be

tackled using classical optimization methods. That is why

the development of robust control techniques to identify

the optimal ICV settings is still an area of active research,

particularly in the case of application of direct search

methods. Hence in this paper, for the first time, we have

proposed and analyzed the application of simulated

annealing algorithm as the optimization method for the

design and operation of intelligent well completions in a

real offshore oil reservoir model unlike previous studies, in

which simple conceptual reservoir models (Ghosh and

King 2013) or synthetic bottom water drive model was

used (Kharghoria et al. 2002).

Simulated annealing

Simulated annealing (SA) is an effective and predominant

optimization algorithm used to solve non-linear optimiza-

tion problems. SA is a numerical optimization technique

based on the principles of thermodynamics. The method

was independently described by Kirkpatrick et al. (1983),

which is an adaptation of the Metropolis–Hastings algo-

rithm, published in a paper by Metropolis et al. (1953). The

algorithm in this paper simulated cooling of material in a

heat bath, which is a process known as annealing.

If we heat a solid past melting point and then cool it, the

structural properties of the solid depend on the rate of

cooling. Large crystals will be formed if the liquid is

cooled slowly enough. However, if the liquid is cooled

quickly, the crystals will contain imperfections. The

annealing algorithm simulates the cooling process by

gradually lowering the temperature of the system until it

converges to a steady, frozen state.

SA approaches the problems similar to using a bouncing

ball that can bounce over function from optimum to opti-

mum. The algorithm starts at a high ‘‘temperature’’ where

the temperature is an SA parameter that mimics the effect

of a fast moving particle in a hot object like a hot molten

metal, thereby permitting the ball to make very high

bounces and being able to bounce over function to access

any optimum. As the temperature is made relatively colder,

the ball cannot bounce so high and it is constricted by

relatively smaller ranges of movement.

In this work, since we are trying to maximize NPV, our

objective function for minimization is aptly described by

‘‘-NPV’’. We define probability distributions of the two-

directional parameters. These distributions are called gen-

erating distributions since they generate possible optimums

or states we are to explore. We define another distribution,

called the acceptance distribution, which depends on the

difference of objective function of the present generated

optimum and the last saved lowest optimum. The accep-

tance distribution decides probabilistically whether to stay

in a new lower optimum or to bounce out of it. All the

generating and acceptance distributions depend on

temperatures.

SA algorithm

The algorithm starts from a valid solution and randomly

generates new states for the problem and calculates the

associated NPV function. Simulation of the annealing

process starts at a high fictitious temperature. A new state

is randomly chosen and the difference in NPV function is

calculated. If (Current_NPV - New_NPV) B0, i.e., the

NPV is higher, then this new state is accepted. This forces

the system toward a state corresponding to a local or a

possibly a global optimum. To get out of a local optimum,

Initialization (Current_solution,Temperature)
Calculation of the Current_NPV 
LOOP
New_State
Calculation of the new_ NPV 
IF (Current_ NPV - New_ NPV) ≤ 0  THEN
Current_State= New_State
ELSE

IF >)
T

NPVNew_ -NPV_tnerruC(Exp  Random(0,1) 

THEN
-- Accept
Current_State = New_State
ELSE
-- Reject
Decrease the Temperature
EXIT When NPV tolerance < $MM 1
END LOOP

Fig. 2 Simulated annealing algorithm
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an increase of the -NPV function is accepted with a cer-

tain probability. The simulation starts with a high tem-

perature. This makes the left hand side of Eq. (1) close to 1.

Exp
Current NPV� New NPV

T

� �
ð1Þ

Hence, a new state with a larger NPV has a high probability

of being accepted. The whole algorithm is illustrated in

Fig. 2. For example, starting from state i, as presented in

Fig. 3, the new state k1 is accepted, but the new state k2 is

only accepted with a certain probability. The probability of

accepting aworse state is high at the beginning and decreases

as the temperature decreases. For each temperature, the

system must reach equilibrium and a number of new states

must be tried before the temperature is reduced typically

about 10 %. It has been shown that the algorithm is able to

find the global optimum without getting stuck in a local

optimum under certain conditions (Kirkpatrick et al. 1983).

Hybrid optimization system for valve control

In this paper, we have proposed a new methodology for

assessing and increasing the benefits of application of

intelligent wells as well as a helpful device to decide

whether or not to use intelligent wells in an oil production

project.

Our proposed system has three proven capabilities:

first, evaluating the viability of intelligent well comple-

tion application; second, optimizing the operation of on/

off valves based on a control strategy; and third, deter-

mining an optimal configuration for the operation of

valves. Figure 4 introduces a block diagram showing the

modules of our proposed system. Our designed workflow

manager is capable of generating data files, controlling

simulations and optimizations and post-processing simu-

lation results.

The module for optimizing valve control in intelligent

wells

This module generates possible control solutions leading to

an optimal configuration for the operation of valves by

means of SA algorithm. These solutions represent valve

control strategies at certain intervals during the production

period. Each solution is sent to the objective function

module (explained in ‘‘Objective function module’’), where

its NPV will be calculated using a reservoir simulator. The

function of this module is to find the optimal configuration

for a particular set of valves at specified time intervals

during simulation period, which results in the highest NPV

value. This is the main module of our proposed system,

which is able to work properly under any configuration of

on/off valves.

Simulator representation of intelligent wells

A more effective well model for reservoir simulation can

be built by dividing the wellbore into segments. An alter-

native name for this approach is multisegment well mod-

eling, which reflects that the wellbore fluid conditions are

calculated in their own finite-difference grid analogous to

the conditions in the reservoir. Meanwhile each of them

has its own set of strongly coupled main variables. An

exemplary implementation of this approach in a commer-

cial blackoil simulator and its application to model two

types of advanced wells were described by Holmes et al.

(1998). Figure 5 shows how a multilateral well is repre-

sented by a network of such segments constructing a tree

structure. Segments that represent perforated lengths of the

well have connections to the reservoir. These segments are

represented by an inflow performance relationship similar

to conventional wells.

Other segments represent unperforated lengths of the

tubing. In addition, flow-control devices like on/off valves

Fig. 4 Main modules of the proposed optimization system

Fig. 3 Selection of a new state in simulated annealing [adapted from

Kirkpatrick et al. (1983)]
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are modeled considering the pressure-loss characteristics of

the devices, as depicted in Fig. 6.

Objective function module

The dominant role of this module is to evaluate each

solution proposed by the module for optimizing valve

control. This module receives the solutions generated by

the optimization process and imports them into the res-

ervoir simulator, which models the production profile.

On the basis of that production profile, this module

performs the NPV calculation for each solution

generated.

Case study

We used a real layered reservoir model with a cross section

as displayed in Fig. 7. The main characteristic of the res-

ervoir is its segmentation into two separate main produc-

tive layers. The upper main layer consists of nine zones,

and the lower main layer consists of seven zones with

dissimilar permeability and porosity. Three deviated pro-

duction wells were recommended by an expert to penetrate

both layers.

Reservoir and well model

The main feature of this reservoir model is the existence of

two main layers with dissimilar permeability, which are

isolated by shale barriers represented by a transmissibility

equal to zero.

Three deviated production wells were used in this

model. A 100 % water-saturated region exists in the

deepest part of this reservoir which forms a strong aquifer.

An initial average water saturation value of 0.30 was

considered for the remaining regions in the reservoir. The

structure and distribution of fluids in this reservoir are

displayed in Fig. 7.

Geometry and grid

This reservoir model has real characteristics and its

porosity and permeability are described by maps. The

reservoir consists of 33 9 22 9 25 corner-point grids.

Table 1 gives further details on the model geometry and

grid properties and dimensions of the full model are sum-

marized in Table 2.

Reservoir rock and fluid properties

Relative permeability and capillary pressure data are given

in Table 3. Net/Gross was set equal to unity for all layers.

Oil and water properties were taken directly from the res-

ervoir fluid analysis model (see Table 4). Other required

aquifer properties were taken from the neighboring simu-

lation grid.

Fig. 5 A multisegment well model showing the grid cells intersected

by the wellbore

Fig. 6 Modeling intelligent

completions by a multisegment

well model
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Production scenarios

Conventional completion

Controlling the sequence of production events during

simulation of each of the two production scenarios

(including conventional and intelligent) was the main role

of the workflow management software. The conventional

scenario was constructed based on sequentially perforating

and plugging each of the two zones (see the flowchart in

Fig. 8). Production from a layer continued until either a

critical maximum economic value for water cut (wcutmax)

was exceeded or a lift die-out occurred.

Intelligent completion

As the requisites for the intelligent scenario, an on/off

ICV for each productive sublayer as well as permanent

three-phase flow measurement equipment was consid-

ered. The intelligent production strategy for a non-com-

mingled flow was to cycle through the oil-containing

layers, as displayed by a schematic flowchart in Fig. 9.

Fig. 7 X–Z cross section of the

reservoir model showing

saturation distribution in

different layers

Table 1 Layer properties

Main

layers

Thickness

(ft)

Number of

simulation

sublayers

Average

porosity

(%)

Absolute

permeability

(md)

Upper 61 9 18 24

Lower 49 7 20 28

Table 2 Geometrical and grid properties of the full model

Property Value

Model dimensions (ft) 27,060 9 17,952 9 240

Reference depth (ft) 10,990

Grid dimensions (ft) 33 9 22 9 35

Number of active gridblocks 13,794

Reservoir area (acre) 4,025

Table 3 Water–oil relative permeability and capillary pressure

Sw Krw Krow Pcow (psia)

0.3 0 0.62 2.52

0.364 0.0088 0.48 1.26

0.478 0.02 0.27 0.7

0.592 0.043 0.105 0.63

0.706 0.105 0.04 0.4

0.82 0.36 0 0

Table 4 PVT data

Property Value Units

Gas stock tank density 0.0635 lb/ft3

Gas FVF at Pb 1.21 RB/MSCF

Gas viscosity at Pb 0.0186 cp

Oil stock tank density 55.6 lb/ft3

Oil bubble point pressure 2,755 psia

Oil GOR at Pb 0.44 MSCF/STB

Oil FVF at Pb 1.28 RB/STB

Oil viscosity at Pb 0.72 cp

Water stock tank density 62.4 lb/ft3

Water FVF at Pr 1.0018 RB/STB

Water viscosity at Pr 0.95 cp

Water compressibility at Pr 3.2E - 6 Psi-1

Reference pressure of Pr = 5,700 psia
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After starting production from the upper layer, the ICVs

in that layer were closed when the water cut exceeded a

critical medial value (wcutlim). This value is below the

critical maximum economic value for water cut (wcut-

max). A low value was initially assigned to wcutlim so

that production would switch to the next layer as soon as

water breakthrough occurred. After completion of a

cycle, which is equivalent to production from both oil-

containing layers, the critical medial water cut values

(wcutlim) were increased by an optimized amount of

water cut increment. This sequential cyclic process

continued until the critical values reached the economic

maximum (wcutmax).

Economic parameters

Two operating constraints were considered: (1) a maxi-

mum water cut of 40 % and (2) a minimum allowed

bottom-hole pressure (BHP) of 3,500 psia. The economic

parameters listed in Table 5 were used to compute the

incremental NPV of the conventional and intelligent

scenarios.

Results and discussion

This section presents the results obtained from our opti-

mization system for valve control of intelligent wells in a

reservoir with real characteristics.

Cumulative production

The path followed by SA algorithm for finding the opti-

mum results, i.e. the highest oil and the lowest water

cumulative production is illustrated in Fig. 10. This figure

clearly indicates how SA algorithm manages to configure

Table 5 Economic parameters used to calculate NPV

Parameter Amount Unit

Oil price 100 $/STB

Water treatment costs 7 $/STB

Drilling and completion costs 10 $MM/WELL

Intelligent control system costs 3 $MM/ICV

Workover costs 2 $MM/W.O.

Fig. 8 The flowchart for conventional production Fig. 9 The flowchart of the control algorithm for intelligent produc-

tion. Critical values of water cut are incrementally increased in every

cycle until their maximum economic value is reached
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ICV settings to achieve optimum results for the objective

function of NPV.

Figure 11 compares the cumulative oil production in the

conventional and intelligent wells. The figure clearly shows

that application of the intelligent system has increased the

cumulative oil production. The difference between the

conventional and the intelligent runs is positive with a

magnitude of 22.17 MMSTB, which represents an increase

of 13.92 % compared to the conventional case.

Figure 12 depicts a favorable decrease in cumulative

water production; the difference between the conventional

and the intelligent run is negative with a magnitude of 5.3

MMSTB, which manifests a decrease of 31.89 % in

cumulative intelligent water production in comparison with

the conventional case. Table 6 displays the cumulative

production results for both intelligent and conventional

scenarios. The intelligent production scenario looks very

propitious. Application of the intelligent scenario resulted

in a significant increase in cumulative oil production and a

decrease in cumulative water production. Production and

economic results to compute the NPV of the two scenarios

are also given in Table 6, showing an added value of $MM

2265 in NPV.

The results given in Table 6 indicate that the increased

cumulative oil production was the most effective factor

contributing to the improved NPV. The remaining added

value was owing to the decreased water production and the

reduced intervention and workover costs. Due to the rela-

tively low water treatment costs, the contribution of

reduced water production to the incremental NPV is not as

huge as increased cumulative oil production effect.

In Fig. 13, intelligent cumulative oil production and

water cut (solid lines) are compared to conventional

cumulative oil production and water cut (dotted and dashed

lines, respectively) at the uppermost well connection.

Cumulative oil production through the intelligent produc-

tion is approximately 1 MMSTB higher than the conven-

tional production from the same connection. This is

achieved through optimizing water production control and

delaying water breakthrough for more than 11 years, as

depicted conspicuously in Fig. 13.

Production rates

The acceleration in production occurs because a single,

gradual, and decreasing conventional production from an

Fig. 10 The path followed by SA algorithm for finding the optimum

results, i.e. the highest oil and the lowest water cumulative production

Fig. 11 An increase of 22.17 MMSTB in cumulative intelligent oil

production

Fig. 12 A 5.3 MMSTB decrease in cumulative water production

through intelligent production
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individual layer is replaced by a cyclic sequential intelli-

gent production from both layers throughout the production

time (see Fig. 14).

In conventional production, water-invaded connections

are required to be plugged by several workovers (the circle

in Fig. 14). Moreover, switching producing intervals in the

conventional case requires workover operations, i.e. a plug

needs to be installed and the well needs to be re-perforated.

However, there are no required workovers for the intelli-

gent case since it is the role of ICVs to control the pro-

duction in all sublayers. When the critical value of water

cut exceeds, the intelligent well is shut-in instantly; how-

ever, for a conventional well, a proper reaction usually

takes much longer which causes higher water production

rates and subsequent inevitable workover operations. Fur-

thermore, the water production plots (Figs. 15 and 16)

demonstrate that switching was triggered by reaching the

critical value for the water cut. This act of cyclic switching

production has been able to control water production sig-

nificantly (see the circles in Fig. 15) and delay water

breakthrough for several years.

Conclusions

In this paper, we modeled and developed a consolidated

integrated system for optimizing valve control in intelligent

well systems. Simulated annealing, along with a commer-

cial reservoir simulator, was used to model the optimiza-

tion process. An algorithm-based system was designed

which was capable of optimizing intelligent well control to

sustain decision-making on whether or not to utilize

intelligent well technology. The system was enabled to

exploit a commercial reservoir simulator as a simulation

engine, which has specific controls for intelligent well

completions.

The obtained results indicate that the use of intelligent

well completions is significantly profitable because the

increase in NPV was highly significant. Increased cumu-

lative oil production was the most effective factor con-

tributing to the improvement in NPV. The remaining added

value was owing to the decreased water production and

reduced intervention and workover costs, which are con-

sidered favorable outcomes, especially in offshore reser-

voir development.

Fig. 13 Cumulative oil production and water cut by the intelligent

production (solid lines) compared to cumulative oil production and

water cut by the conventional production (dotted and dashed lines,

respectively) at uppermost well connection

Fig. 14 Production acceleration through frequent switching of on–off

ICVs

Table 6 Simulation results for intelligent and conventional scenarios

Case NPV ($MM) Revenue ($MM) Cost ($MM) Cum. W (MMSTB) Cum. SG (MMMSCF) Cum. O (MMSTB)

IW-CYC 18,015 18,142 127.24 11.32 80.37 181.42

Conventional 15,750 15,925 174.34 16.62 70.55 159.25

% Difference 14.38 13.92 -27.02 -31.89 13.92 13.92
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Production acceleration and an increase in ultimate

recovery are other advantages of producing in a cyclic

sequential process. In such a production, the layers are not

abandoned forever when a water cut has been reached;

instead, they are given the opportunity to go through a

pressure build-up. Meanwhile, the water cone is provided

with the chance to retreat while the other layers are being

produced.

Our concrete results clearly indicate that a global

optimization algorithm such as SA can function as a

robust and easy-to-use decision support tool not only for

determining the feasibility, but also for optimizing the

application of intelligent well systems in a given

reservoir.
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