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Abstract
After precipitation, reference evapotranspiration (ETO) plays a crucial role in the hydrological cycle as it quantifies water loss. 
ETO significantly impacts the water balance and holds great importance at the basin level because of the spatial distribution 
of managing water resources. Large scale teleconnection indices (LSTIs) play a vital role by influencing climatic variables 
and can be pivotal in determining ETO and its predictive variables. This study aimed to model and forecast annual ETO in 
Iran’s basins by utilizing LSTIs and employing various machine learning models (MLMs) such as least squares support 
vector machine, generalized regression neural network, multi-linear regression (MLR), and multi-layer perceptron (MLP). 
Initially, climate data from 122 synoptic stations covering six and 30, main and sub basins were collected, and annual ETO 
values were computed using the Food and Agriculture Organization 56 (PMF 56) Penman–Monteith equation. The correla-
tions between these values and 37 LSTIs were examined within lead times ranging from 7 to 12 months. Through a stepwise 
approach, the most influential predictor indices (LSTIs) were selected as input datasets for the MLMs. The findings revealed 
the significant influence of factors such as carbon dioxide (CO2), Atlantic multidecadal oscillation, Atlantic Meridional Mode, 
and East Atlantic on annual ETO. Overall, all MLMs performed well in terms of the Scatter Index during both training and 
testing phases across all sub-basins. Furthermore, the MLP and MLR models displayed superior performance compared to 
other models in the training and testing evaluations based on various assessment metrics.
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Introduction

Shortage of water resources in the agricultural sector is 
widespread, especially in Iran is among the dry and semi-
arid nations. Increasing water demand and limited access 
to water resources turned 75% of Iran into areas with water 
crisis (Hosseinzadeh Talaee et al. 2014). In the agricultural 
management, supplying the water requirements is essential 
to efficiently balance the water use, prevent its excessive 
consumption and access to maximum yield (Tabari et al. 
2012a). The most important part of determining the water 
requirement of plants is references evapotranspiration 
(ETO). Another crucial element of the hydrological cycle 
is ETO that affects energy control between ecosystems and 
the atmosphere (Peterson et al. 1995; Shenbin et al. 2006). 
The significant role of ET in the global climate through the 
hydrological cycle is undeniable.

Accurate estimation of ETO has many applications in 
runoff and crop yield simulation, irrigation canal design 
and water distribution. ETO is an important factor in the 
hydrological cycle along with other climate factors such as 
relative humidity, wind speed, temperature, and radiation 
intensity (Allen et al. 1998). ETO as a climate factor, sig-
nificantly affects energy and water exchange between eco-
system and atmosphere (Shenbin et al. 2006). Fluctuations 
in ETO are also important in water resources planning, 
management, irrigation scheduling, and crop yield (Allen 
et al. 1998; Lopez-Urrea et al. 2006; Wang et al. 2012).

Accurate predictions of evapotranspiration are essential 
in various fields, including irrigation design and planning, 
hydrology, determining crop water requirements, drain-
age design, and water resource allocation (Torres et al. 
2011). These predictions are vital for effective agricultural 
water management, often necessitating ETO (Karbasi et al. 
2023). Predicting ETo has proven to be challenging due to 
numerous unresolved critical issues in Earth System Sci-
ence related to the complexity of ETo (Fisher et al. 2017). 
Failing to forecast evapotranspiration in a timely manner 
can lead to significant harm to crops, agricultural produc-
tivity, ecosystems, ecological balance, and the economy. 
The use of machine learning models for ETo forecasting 
remains one of the least examined hydrological variables 
in existing literature, and the development of machine 
learning approaches for predicting ETo has been relatively 
recent (Ali et al. 2023).

Intensity and rate of ETO are dependent not only to cli-
matic variables (Roderick and Farquhar 2002; Xu et al. 
2015; Cao and Zhou 2019) but also to other factors such 
as biophysical properties of plants and soils (Yuan et al. 
2012) and the natural or abnormal oscillation of large-
scale teleconnection indices (LSTIs) (Sabziparvar et al. 
2011; Dong et al. 2021). Analysis of the fluctuations on 

ET in the 30-year period from 1982 to 2011 on a global 
scale and the effect of the ENSO phenomenon shows that 
there is an increasing linear relationship of 4.6 mm/decade 
in ET and a significant correlation between ENSO and its 
control variables. Besides, precipitation is an indicator of 
leaf area and potential evapotranspiration and the El Nino 
phase increased precipitation, and consequently, evapo-
transpiration (Yan et al. 2013).

On the other hand, LSTIs can also affect ET by affect-
ing climatic components (Tabari et al. 2014a, b; Chai et al. 
2018; Dong et al. 2021). Researchers believe that LSTIs 
have effects on ET through influencing climatic variables 
such as surface temperature (Thirumalai et al. 2017; Hejabi 
2021), rainfall (Helali et al. 2020a, b; 2021a; 2022b; Dai 
and Wigley 2000), water content of soil (Nicolai-Shaw et al. 
2016), wind speed and relative humidity (Hegerl et al. 2015; 
Hurrell et al. 2003). Numerous studies have attempted to 
investigate the effects of these indicators on meteorologi-
cal and hydrological variables (Lyon and Camargo 2009; 
Nazemosadat and Cordery 2000; Helali et al. 2020a), crop 
yield (Heino et al. 2020), evaporation (Martens et al. 2018) 
and evapotranspiration (Tabari et al. 2014a, b; Helali and 
Asadi Oskouei 2021).

Sabziparvar et al. (2011) studied the correlation and effect 
of different phases of ENSO on changing ETO in warm cli-
mates of Iran by considering the correlation scenarios with 
delay and without delay. They showed that in more than 
54% of the studied stations, there is a significant correlation 
between ENSO (SOI) and seasonal ETO fluctuations. Tabari 
et al. (2014a) examined the statistical relationship between 
Arctic Oscillation index (AO) with monthly and annual ETO 
revealed a noteworthy link in several areas of their study area 
specifically in the areas with a delay of 5 months. In another 
study in Iran (Tabari et al. 2014b), the winter ETO of most 
of the regions showed an inverse relationship with the North 
Atlantic Oscillation (NAO).

Chai et al. (2018) in China showed that seasonal and 
annual ETO always has significant correlations with AO, 
NAO, PDO, and ENSO indices with different lag times. 
According to Chen et al. (2018), the main factor affecting 
the ET of evergreen needle leaf forests in North America 
varies in different climates. For example, temperature and 
concentration of carbon dioxide are the most important fac-
tors in all climates, while radiation in Mediterranean/subarc-
tic climates and soil temperature in hot summer climates of 
continental regions are the most dominant. Fang et al. (2018) 
proposed ENSO and Nino1.2 as suitable predictive indices 
of regional ET. The results of Dong et al. (2021) show that 
ETO in China in the period 1961–2017 has experienced three 
different trends, and in the third period from 1997 onward, 
it was significantly increasing. Also, they examined the cor-
relation between ETO and large-scale teleconnection indices 
concluding high potential of predicting annual ETO by AO, 



Applied Water Science          (2024) 14:219 	 Page 3 of 19    219 

AMO, and South China Sea summer indices. The authors 
mentioned that the effect of those indices on ETO arises from 
their effects on climatic factors.

Le and Bae (2020) investigated the global evaporation 
response to the main climatic patterns in the base and future 
climates of CMIP5. They found that the ENSO, IOD, and 
NAO were the main drivers of evaporation in the tropi-
cal Pacific, western part of the tropical Indian Ocean, and 
near North Atlantic Europe, respectively. Furthermore, 
land evaporation was less sensitive to LSTIs than oceanic 
regions. They also showed that the spatial effect of LSTIs on 
global evaporation in 1906–2000 compared to 2006–2100 
was less significant for ENSO and more so for IOD and 
NAO. According to the literature review, it has been found 
that the relationship between LSTIs and ET was conducted 
for limited stations (Tabari et al. 2014a), specific climates 
(Sabziparvar et al. 2011) and with limited LSTIs (Dong 
et al. 2021). Helali and Asadi Oskouei (2021) showed that 
the widest spatial distribution of significant correlation fre-
quency of Monthly ETO with LSTIs belongs to the CO2 for 
every lag period and every month that was examined up 
until November and December. Additionally, their study’s 
findings showed that, for lag durations ranging from 0 to 
12 months of monthly ETO, LSTIs and CO2 can exhibit a 
strong association.

Karbasi et al. (2023) employed the time-varying filter-
based empirical mode decomposition (TVF-EMD) tech-
nique alongside four machine learning models: bidirectional 
recurrent neural network (Bi-RNN), multi-layer perceptron 
(MLP), random forest (RF), and extreme gradient boosting 
(XGBoost), to forecast weekly ETO. The results showed that 
the TVF-BiRNN model provided the highest accuracy at 
both the Redcliffe and Gold Coast stations, achieving cor-
relation coefficients (R) of 0.9281 (RMSE = 3.8793 mm/
week, MAPE = 9.20%) and 0.8717 (RMSE = 4.1169 mm/
week, MAPE = 11.54%), respectively. Mandal and Chanda 
(2023) identified LSTM as the best model for real-time pre-
dictions, achieving an R2 of 0.847 and a mean absolute error 
(MAE) of 0.474 mm/day for 28-day ahead forecasting. Fol-
lowing LSTM, the random forest (RF) model showed the 
next best performance, attaining an R2 of 0.722 and an MAE 
of 0.635 mm/day, using ERA5 datasets as input.

Granata et al. (2024) employed innovative algorithms, 
namely the Multilayer Perceptron-Random Forest (MLP-RF) 
Stacked Model and the Correlated Nystrom Views (XNV), 
to predict ETo. The MLP-RF Stacked Model achieved excel-
lent performance for the 60-day forecasting horizon, with a 
Kling-Gupta Efficiency (KGE) of 0.98 and a Mean Absolute 
Percentage Error (MAPE) of 8.36%. Lee et al. (2024) uti-
lized a hybrid system combining K-Best selection (KBest), 
multivariate variational mode decomposition (MVMD), and 
machine learning (ML) models for forecasting daily evapo-
transpiration (ETo) at twelve stations in California, covering 

1-, 3-, 7-, and 10-day horizons. The results demonstrated 
that the hybrid models significantly outperformed standalone 
models.

Major studies on evapotranspiration has been focused 
on the trend (Tabari et al. 2012a,b; Dinpashoh et al. 2011; 
Nouri and Bannayan 2019; Rahman et al. 2019; Cao and 
Zhou 2019) and the impact of LSTIs with limited stations 
and specific climates of Iran (Tabari et al. 2014a,b; Sabzipar-
var et al. 2011). It has also been shown that there is a kind of 
relationship between LSTIs and the evaporative component 
in Iran and the world, which is mainly at station (Sabziparvar 
et al. 2011; Miralles et al. 2013; Dong et al. 2021) and basin 
(Helali and Asadi Oskouei 2021) scales. Meanwhile, the 
study and simulation of evapotranspiration based on LSTIs 
using MLMs can be an important and vital decision in water 
resources planning, especially at the basin scale as a method 
of decision support system (Helali and Asadi Oskouei 2021). 
The MLMs have been used to predict precipitation in a num-
ber of studies based on LSTIs (Cayan et al. 1999; Kim et al. 
2020; Lee and Julien 2016; Hartman et al. 2016), some of 
them obtained satisfactory results (Helali et al. 2021b). Pre-
vious studies suggested that the use of LSTIs as precipitation 
predictor variables for machine learning models (MLMs) 
had a good performance (Hartman et al. 2016; Helali et al. 
2021a, 2023; Li et al. 2017; Helali and Asadi Oskouei 2021), 
in most of which neural network models led to more reliable 
results. Within the field of artificial intelligence, machine 
learning provides in-depth understanding of intricate non-
linear data structures (Helali et al. 2023). The literature on 
hydro climatology and weather forecasting is quickly uti-
lizing machine learning (Adnan et al. 2017; Granata 2019; 
Helali et al. 2022b; Kalu et al. 2023). Lately, machine learn-
ing approaches have been used to predict evapotranspiration 
(Zhao et al. 2019; Adnan et al. 2017) and evapotranspiration 
based on teleconnection signals (Liu et al. 2018; Xu et al. 
2019). However, no studies have been conducted on the use 
of LSTIs as a predictor of evapotranspiration with different 
MLMs. Thus, the efficiency of different MLMs in predict-
ing and modeling the annual ETO in Iran was evaluated. 
Since the allocation of water resources to different sectors 
of agricultural, industrial and drinking water consumption 
is conducted at basin scale, it is necessary to discuss water 
resources from the perspective of the basin with different 
spatial scales (Hosseinzadeh Talaee et al. 2014). Hence, the 
study was conducted in the basin and sub-basin scales.

The purpose of this investigation is threefold. First, we 
aim to develop and apply machine learning models to fore-
cast ETO using a meteorological dataset and large-scale tel-
econnection indices. This will involve utilizing input data 
from 1990 to 2010 and testing the models on data from 2011 
to 2019. The second objective is to identify the most effec-
tive LSTIs on ETO within the study basins. Lastly, the third 
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objective involves conducting a thorough statistical analysis 
of model performance through key statistical parameters.

Data and methodology

Study area

Iran, spanning an area of 1,648,000  km2, is situated of 
southwest Asia (Fig. 1). It comprises six and 30 main and 
sub-basins with average precipitation below global annual 
(Biabanaki et al. 2013; Salehi et al. 2019). Characterized 
as one of the most mountainous nations worldwide, Iran 
features rough mountain ranges in the west and north, such 
as the Alborz and Zagros, respectively, which divide various 
basins or plateaus (Hoseinzadeh Talaee et al., 2014). The 
strategic locations of these mountain ranges have led to the 
formation of extensive deserts, such as the Lut and Kavir 
deserts, significantly influencing Iran’s climate. While the 
north experiences a Mediterranean and humid climate, the 
majority of the country witnesses arid or semi-arid condi-
tions (Tabari et al. 2012a, b), with a notable annual potential 
evapotranspiration rate.

To prepare the data for this study, we first collected all 
data from synoptic stations across Iran through the Iranian 
Meteorological Organization (https://​data.​irimo.​ir/). Many 
of these stations were established in recent years, result-
ing in relatively short data records suitable for analysis. 

We assessed the number of missing values for each station 
during the recording periods, ensuring they adhered to an 
acceptable threshold of 10% or less (Aguilar et al. 2003; 
Bazrafshan and Cheraghalizadeh 2021). We then selected 
the stations with the longest data records and the lowest 
levels of missing data, ensuring they provided good spatial 
coverage for the case study. Based on these criteria, we uti-
lized meteorological data from 122 synoptic stations with 
consistent records from 1990 to 2019 to calculate annual 
ETO for six main basins and 30 sub-basins in Iran (Fig. 1).

The highest and lowest annual ETO are 2272.3 and 
851.5 mm per year in the Hamoon-Hirmand (HAH) and 
Haraz-Sefidroud (HAS) sub-basins, respectively (Table 1) 
(Helali et al. 2022b).

Using the meteorological data acquired from the synoptic 
stations (i.e., the average daily temperature data, wind speed, 
saturated vapor pressure, actual vapor pressure, and sunshine 
hours), ETO at 2 m above the ground surface were calculated 
by Food and Agriculture Organization 56 (PMF-56) Pen-
man–Monteith equation (Allen et al. 1998):

where, G and Rn are the soil heat flux density and net radia-
tion (MJ/m2/day), respectively. Ta denotes the average daily 
temperature (ºC) and U2 represents the wind speed (m/s). 
es and ea specify the saturated and actual vapor pressure 

(1)ETo =
0.408

(
Rn − G

)
+ �900∕Ta + 273U2

(
es − ea

)

Δ + �
(
1 + 0.34U2

)

Fig. 1   Geographical location of 
the study area (Iran), synoptic 
stations, and the basins and 
sub-basins

https://data.irimo.ir/
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(kPa), respectively. ∆ (kPa) is the slope of the vapor pres-
sure curve and γ (kPa) is the Psychrometric constant. In this 
study, G was assumed to be negligible due to its small size 
over annual period and was considered as zero. Rn was esti-
mated by FAO-56 method (Allen 2000) using minimum and 
maximum temperatures, sunshine hours, and vapor pressure 
for all stations. It worth noting that a double-mass curve 
analysis (a graphical method) was used to control the qual-
ity of climate data showing the homogeneity amongst the 
datasets (Kohler 1949).

Large‑scale teleconnection indicators

Previous researches across Iran have investigated the effect 
of LSTIs, including indicators related to Sea Surface Tem-
peratures (SSTs), North Atlantic Oscillation (NAO), El 
Nino Southern Oscillation (ENSO) and Arctic Oscillation 
(AO) on climate variables (Ahmadi et al. 2015; Helali et al., 

2023; Ahmadi et al. 2019) and ETO (Sabziparvar et al. 2011; 
Tabari et al. 2014a). From the National Oceanic and Atmos-
pheric Administration of the United States (NCEP/NCAR) 
website, 37 different types of LSTIs were downloaded for 
the current research. The information about these indices 
has been presented in Table 2. These indices were used as 
predictors for annual ETO modeling.

Selection of predictive indices and performance 
metrics

In large-scale applications that involve vast datasets, the 
need for efficient methods is paramount. As a result, opti-
mizing predictive variables has become crucial to eliminate 
redundant and less impactful data, thus boosting perfor-
mance speed and accuracy. To achieve this, the correlation 
matrix and Pearson correlation approach were applied to 

Table 1   Characteristics and annual ETO of the study Basins

Main Basin Abbreviation Sub Basin Abbreviation Area (Million ha) Elevation (m) Annual ETO

Caspian Sea 1-CS Aras ARZ 4.099 1336.5 1132.5
Atrak ATR​ 2.699 453.1 1225.4
Haraz-Sefidroud HAS 1.1 216.2 851.5
Qarasu-Gorgan QAG 1.325 282.4 1083.4
Qarasu-Haraz QAH 1.884 601.4 933.5
Sefidroud SFR 5.961 1556.0 1288.1
Talesh Rivers TLS 0.696 75.0 865.5

Persian Gulf and 
Oman Sea

2-PG Bandarabas-Sedij BDA 4.068 407.0 1457.8
Great Karoun GKR 43.6 1154.1 1623.8
Helleh HLL 1.98 446.8 1817.6
Jarahi-Zohreh JAZ 3.842 656.2 2020.9
Kal-Mehran KAM 5.757 733.8 1852.2
Karkheh KRK 5.011 1040.4 1596.7
Mand MND 4.387 1217.2 1552.2
South Balouchestan SBL 4.379 334.01 1715.8
West Border WSB 3.889 1183.1 1482.3

Urmia Lake 3-UL Urmia Lake URL 5.272 1530.9 1324.3
Central Plateau 4-CP Abarkouh-Sirjan ABS 5.357 1897.4 1646.9

Central Desert CTD 22.418 1452.5 1536.3
Daranjir Desert DJD 4.767 2022.2 1761.8
Gav Khouni GKH 3.988 1878.2 1410.3
Hamoon-Jazmorian HAJ 6.352 1034.5 2064.1
Lut Desert LUD 19.499 1372.4 1973.1
Siahkouh Desert SKD 4.706 1745.7 1823.5
Salt Lake STL 9.135 1662.5 1331.4
Tashk-Bakhtegan-Maharlou TBM 2.944 1858.2 1498.8

East Boundary 5-EB Hamoon-Hirmand HAH 3.189 1007.2 2272.3
Hamoon-Meshkil HAM 3.343 1197.0 1817.6
Khuf Desert KHD 3.208 1515.6 1489.7

Qara Qom 6-QQ Qaraqom QRQ 4.421 1172.6 1132.5
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assess the relationships among the 37 factors (namely, the 
teleconnection indices and ETO) in order to identify and rank 
the most important indices in the research field. The formu-
lation of the Pearson correlation coefficient (R) is explained 
by Eq. (2).

In this context, xi represents the independent values 
(observations), while yi signifies the dependent variables 
(predictions), where the means of the independent and 
dependent variables are denoted by x ̄ and ȳ, respectively. 
The R ranges between − 1 (reflecting a perfect negative 
correlation) and 1 (indicating a perfect positive correlation 
between the variables). The datasets, comprising 37 indices 
with lead times of 7–12 months, were input into the model 
using the step-by-step approach. This methodology enabled 
us to establish the significant relationship between predictive 
indices and the likelihood of precipitation events. Based on 
the stepwise process, the three variables with the highest 
R2, were subsequently determined to be the most influential 
indices for the annual ETO.

In assessing the precision of the modeling and fore-
casting, four evaluation metrics were employed the of 

(2)R =

n∑
i=1

�
xi − x

��
yi − y

�
��

xi − x
�2�

yi − y
�2

determination’s coefficient (R2), root mean square error 
(RMSE), mean absolute error (MAE), and scatter index 
(SI) during both the training and testing stages, as detailed 
below (Ma and Iqbal 1984; Willmott and Matsuura 2006; 
Li et al. 2013; Behar et al. 2015):

In the equations above, M represents the estimated data, 
O signifies the observation, n refers to number of data, and 
O ̅ denotes the average of the observation data. According 

(3)R2 =

⎡⎢⎢⎢⎢⎢⎣

n∑
i=1

�
Oi − O

��
Mi −M

�

��
n∑
i=1

�
Oi − O

�2�
Mi −M

�2
�

⎤⎥⎥⎥⎥⎥⎦

2

(4)
RMSE =

�
1

n

n∑
i=1

�
Oi −Mi

�2

O

(5)MAE =
1

n

n∑
i=1

||Mi −Mo
||

(6)SI =
RMSE

O

Table 2   Teleconnection index lists for the suggested study area

Row Teleconnec-
tion index

Definition Row Teleconnection index Definition

1 AMM Atlantic meridional mode 20 POL Polar/Eurasia patterns
2 AMO Atlantic multidecadal oscillation 21 QBO Quasi biannual oscillation at 30 hPa
3 AO Arctic oscillation 22 SCN Scandinavia index
4 CO2 Carbon dioxide concentration 23 SFlux Solar flux
5 EA East Atlantic 24 SOI Southern Oscillation Index
6 EAWR​ East Atlantic-West Russian 25 SSPOT Sun Spot
7 IOD Indian oceanic dipole 26 SST Sea surface temperature
8 MEI Multi ENSO index 27 SST1.2 SST in Niño 1.2 regional
9 NAO North Atlantic oscillation 28 SST3 SST in Niño 3 regional
10 Niño1.2 Extreme Eastern Tropical Pacific SST 29 SST3.4 SST in Niño 3.4 regional
11 Niño3 Tropical Pacific SST 30 SST4 SST in Niño 4 regional
12 Niño3.4 East central tropical Pacific SST 31 SSTas SST in 4 regions of Niño
13 Niño4 Central tropical Pacific SST 32 SSTs SST in all Niño regional
14 NP North Pacific Index 33 TNA Tropical North Atlantic
15 NTA North Tropical Atlantic SST Index 34 TNA-TSA Tropical North Atlantic and Tropi-

cal South Atlantic
16 ONI Oceanic Nino Index 35 TNI Trans-Nino index
17 PDO Pacific Decadal Oscillation 36 TNIi ith TNI
18 PNA Pacific North American 37 TSA Tropical South Atlantic
19 POI SST Differ of East Pacific from West Pacific WHWP Western Hemisphere Warm Pool
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to the metrics, ideal models exhibit R2 values approaching 
1, while low MAE and RMSE values are close to zero. The 
effectiveness of the SI statistic in modeling is categorized 
as follows (Li et al. 2013):

Prediction models

Machine learning models (MLMs) are advanced methods 
known for their capacity in data mining and training for 
prediction. The prediction process in MLMs involves train-
ing and testing phases. In this study, four different MLMs 
including multi linear regression (MLR), least squares 
support vector machine (LSSVM), multi-layer perceptron 
(MLP), and generalized regression neural network (GRNN) 
were used to predict annual ETO in Iran’s sub-basins.

Three key reasons for selecting these methods are: (1) 
Simplicity and User-Friendliness: These methods are acces-
sible and easy for researchers to implement, (2) Hardware 
Requirements: They do not demand high-performance hard-
ware, promoting broader usability, and (3) Previous Appli-
cations: Many studies have effectively used these methods 
in various contexts, especially in ETO forecasting, enabling 
easier comparison with other research results.

To identify key predictive indices, the datasets were split 
randomly into 70% training samples and 30% testing sam-
ples, along with relevant predictive indices for input into 
the four MLM algorithms. Each model produced three final 
outputs from 30 iterations. Brief descriptions of the models 
follow below.

Generalized regression neural network

Within the realm of MLM models, artificial neural networks 
(ANN) aim to replicate the structures and functions of bio-
logical neural networks, mirroring the information process-
ing abilities of the human brain (Seyedzadeh et al. 2020; 
Duan et al. 2013). Neurons in an ANN consist of two com-
ponents, weights and activation functions. Input variables 
are weighted upon reaching neurons, and the result is fed 
into the activation function to generate the final output. Gen-
eralized regression neural network (GRNN), probabilistic 
structure and radial basis function (RBF), serves as a NN 
algorithm for modeling dependent variables in regression 
functions, avoiding the local minima issue encountered by 
other models (Cigizoglu 2005). Unlike traditional ANNs, 
GRNN operates as a 3-layer NN with the matching the 

(7)if

⎧
⎪⎪⎨⎪⎪⎩

SI < 0.1..............Excellent

0.1 < SI < 0.2.......Good

0.2 < SI < 0.3.......Fair

SI > 0.3..............Poor

dimensions of input and output vectors in input and output 
layers, respectively. Unlike ANNs, the middle layer neuron 
count in GRNN is determined by the measured data during 
modeling steps (Araghinejad 2014). Equation (3) defines 
the Gaussian function in the neural network’s middle layer.

where, ‖‖Xr − Xt
‖‖ calculates Euclidean distance between the 

real time vector of predictors (Xr) and the observed vector 
of predictors for the tth neuron (Xt). h is the spread parameter 
representing the spread of radial basis function and adjust 
function for the best fitness. Generally, h value is equal to 
1.0. The larger h will result in the smoother approximate 
function while, the smaller h will closely fit the adjust func-
tion (Araghinejad 2014).

The value (Yr) of GRNN model (forecasted annual ETO) 
for the vector of predictors (Xr) is measured based on a ker-
nel function of the normal performance function outputs [f 
(Xr,t)] depicted in Eq. (4) (Modaresi et al. 2018a):

in which, Tt and n are the measured data of forecasted vari-
ables and the number of data, respectively.

Multi‑layer perceptron

Multi-layer perceptron (MLP) is a popular type of artificial 
neural network characterized by a feed-forward network 
structure comprising at least three layers—the input layer, 
hidden layer, and output layer (Gholami Rostam et al. 2020). 
Within the hidden layer, the neurons are configured based on 
the weights and biases, aiming to minimize the root mean 
square error (RMSE) to enhance the model’s performance 
(Widiasari et al. 2018). Equations 5 and 6 (Araghinejad 
2014) show that the neurons in the intermediate and output 
layers use linear and sigmoid functions, respectively:

The Weight (w) and bias (b) are computed as the inputs of 
the neurons through wjxj + bj, where j = 1, 2, …, m, by setting 
the optimal values in each neuron and by the calibration of 
the model. The network was trained and calibrated using 
the Feed Forward Back Propagation (FFBP) technique to 

(8)
f
(
Xr, t

)
= e−[I(t)]

2

I(t) = ‖‖Xr − Xt
‖‖ × 0.8326∕h

t = 1, 2, ..., n

(9)
Yr =

1
n∑
t=1

f
�
Xr, t

�
n�
t=1

�
f
�
Xr, t

�
× Tt

�

(10)f (x) = x

(11)f (x) =
1

1 + e−𝛼x
.........𝛼 > 0
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produce the best prediction. Every iteration (epoch) involves 
the minimization of the error function (Araghinejad 2014):

The simulation error for the ith training pair is indicated 
by ei in the error function of E, while the total number of 
training pairs is defined by nc.

Least squares support vector machine

Structural risk minimization is used by machine learning 
techniques such as LSSVM to lower model errors (Dibike 
et al. 2001; Cristianini and Shawe-Taylor 2000), while alter-
native approaches such as artificial neural networks (ANN) 
rely on principles of risk (Seyedzadeh et al. 2020). The 
LSSVM strategy utilizes linear equations within its predic-
tion algorithm (Suykens and Osipov 2008), enhancing per-
formance through the utilization of proper kernel functions 
(Seyedzadeh et al. 2020; Modaresi et al. 2018b). In LSSVM, 
for the feature space of Xt ∈ Rm, a nonlinear function of ϕ 
(predictors) and Y(Xt) ∈ R (target) is defined as specified by 
Suykens et al. (2002).

where, w is the weight and b are the bias of the regression 
function which are determined by minimization of the fol-
lowing function:

here, e and γ are error and the regularization parameter, 
respectively, to fit the approximation function.

(12)E =
1

nc

nc∑
i=1

e2
i

(13)Y
(
X
t

)
= w

T
.�
(
X
t

)
+ b

(14)

Min
w,b,ei

j(w, e) =
1

2
wTw +

�

2

n∑
t=1

e2
t

S.t ∶ Tt = wT
�
(
Xt

)
+ b + et

t = 1, 2, ..., n

Multi‑linear regression

The reliability of a regression model may diminish when 
only a limited number of variables are selected. This study 
used the multi-linear regression (MLR) method to forecast-
ing ETO by developing a regression function (Kim et al. 
2020). Utilizing 28 years of data to model and forecast for 
the current investigation, seasonal datasets were employed 
along with a regression function (Y) featuring three inde-
pendent variables, as outlined below:

where Y is the response (annual ETO), α0, α1, α2, α3 repre-
sent the coefficients, Xi are the highly correlated predictors 
(LSTIs), and ε determines the residual of models.

The structural characteristics of the four MLMs are pre-
sented in Table 3 and their schematic views are shown in 
Fig. 2A, 2B, 2C, and 2D, respectively.

Results

The most important LSTIs affecting annual ETO

The most effective LSTIs on ETO in the basins are listed in 
Table 4. According to the results, in most main basin and 
sub-basins, the CO2 index was the best indicator for predict-
ing the annual ETO, followed by the AMO, AMM and EA 
with lead-times of 7–12 months. The results were mainly 
in agreement with the study by Helali and Asadi Oskouei 
(2021) examining the correlation of LSTIs and ETO on a 
monthly scale. However, some other indices have consider-
able influence on ETO in some other basins.

Evaluation of MLMs for ETO modeling

Average of all basins

The correlation between observed and modeled annual ETO 
is presented in Fig. 3. It showed the appropriate scattering 

(15)Y = �0 + �1X1 + �2X2 + �3X3 + �

Table 3   The features of various 
studied MLMs

Characteristics GRNN MLP LSSVM MLR

Train function Newgrnn Levenberg–Mar-
quardt algorithm

Gaussian Rand-
omize 
selec-
tion

Algorithm Gradient decent Tangent sigmoid RBF MSE
Predictors Teleconnection indices
Target Annual ETO
Datasets ratio in train and test 70%:30%
Data division function Randomize selection
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Fig. 2   The MLMs flowchart used for the study (A: GRNN; B: MLP; C: LSSVM; D: MLR)
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of the observed and modeled ETO around the 1:1 line by all 
MLMs with R2 equal to 0.95, 0.99, 0.62 and 0.78 for MLR, 
MLP, GRNN and LSSVM, respectively. The results indicate 
the superiority and accuracy of the two MLP and MLR mod-
els. In the train and test phases of the evaluation (Table 5), 
the RMSE and MAE values in the MLR and MLP models 
were lower than other models. Table 5 also show that R2 of 
the MLP model had the highest value in the train and test 
phases (0.9 and 0.64, respectively). According to NSE cri-
teria, MLP and LSSVM models performed more accurately 
in train and test phases. The SI criterion indicated that the 
performances of all models were excellent. In general, MLP 
and MLR models exhibited a high accuracy in annual ETO 
prediction.

Main basins

The correlation between the modeled and observed annual 
ETO in the main basins are presented in Fig. 4. The evalua-
tion metrics also are provided in Table 6. Analyzing the real 
and modeled data time series reveals a reasonable scattering 

Table 4   The most important predictors of annual ETO in the studied basins

Main Basin Sub Basin V1 V2 V3 R2 Main Basin Sub Basin V1 V2 V3 R2

CS ARZ CO2 AMO EAWR​ 0.76 PG WSB CO2 AMO EA 0.73
ATR​ AMO SCN CO2 0.71 UL URL CO2 AMO NAO 0.82
HAS AMO CO2CO2 POL 0.79 CP ABS CO2 AMM PDO 0.73
QAG CO2 AO POL 0.86 CTD CO2 AMO NAO 0.76
QAH AMO CO2 SOI 0.71 DJD CO2 AMM PDO 0.77
SFR AMM AMO CO2 0.72 GKH CO2 EA AO 0.75
TLS CO2 AMO POI 0.81 HAJ CO2 PDO AMO 0.77

PG BDA AMO CO2 NAO 0.80 LUD AMO AMM NAO 0.71
GKR CO2 PDO AO 0.71 SKD AMO AO NAO 0.65
HLL CO2 AMO EA 0.71 STL CO2 AMO EAWR​ 0.78
JAZ CO2 EAWR​ NAO 0.719 TBM CO2 EA SSPOT 0.70
KAM CO2 EA AO 0.66 EB HAH CO2 WP AMM 0.74
KRK AMO CO2 EA 0.73 HAM EA AMO CAR​ 0.75
MND CO2 EA EAWR​ 0.78 KHD EAWR​ IOD SSPOT 0.66
SBL PNA Nino 1.2 POI 0.68 QQ QRQ CO2 TNA-TSA PDO 0.69
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Fig. 3   Correlation between observed and modeled ETO (average of 
basins) for four machine learning models

Table 5   Evaluation of different 
MLMs in training and testing 
phases

Model Step RMSE MAE R2 NSE SI

MLR Train 64.64 52.16 0.74 0.76 0.04
Test 62.91 52.04 0.35 0.45 0.04

MLP Train 38.90 27.83 0.90 0.89 0.03
Test 75.45 60.30 0.64 0.42 0.05

GRNN Train 52.19 40.51 0.81 0.74 0.03
Test 79.35 64.71 0.53 0.31 0.05

LSSVM Train 43.19 33.90 0.88 0.87 0.03
Test 74.90 61.48 0.61 0.48 0.05



Applied Water Science          (2024) 14:219 	 Page 11 of 19    219 

around the 1:1 line, although it is less for the main basins 
of Central Plateau (CP) and Urmia Lake (UL). This result 
can be considered due to climatic diversity and geographical 
distribution of the basins and also the high amount of annual 
ETO in these basins. Evaluation metrics in Caspian Sea (CS) 
basin show the lowest value for RMSE and MAE and high-
est value of NSE by MLP in training phase (27.6, 19.8 and 
0.88 mm, respectively) and by MLR in testing step (45.9, 
37.5 and 0.5 mm, respectively). The highest values of R2 
belong to LSSVM for both training and testing phases. The 
value of SI (less than 0.1) demonstrates the excellent quality 
of all models. According to these results, MLP and MLR 
models can be considered as the best model in predicting 

the annual ETO of the Caspian Sea basin (CS) (Table 6). 
In the Persian Gulf-Oman Sea (PG), the metrics prove that 
both MLP and MLR models have appropriate performance. 
The minimum MAE and RMSE’s values in the training and 
testing obtained by these two models. The highest R2 values 
in the training and testing phases belong to the MLP model 
(0.91 and 0.63, respectively), and the highest NSE index 
in the training and testing phases belong to the MLP and 
MLR. In terms of the SI, the excellent performance of all 
models was confirmed in the two phases. In summary, in the 
Persian Gulf-Oman Sea (PG) basin, the MLP and MLR have 
the best performance for ETO modeling. In the Urmia Lake 
(UL) basin, the lowest values of RMSE and MAE obtained 
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Fig. 4   Modeled and observed annual ETO at the basin scale for different MLMs
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for MLP and MLR models, while based on R2 and NSE 
indices, the LSSVM model is more accurate than others. On 
the other hand, the SI indicates the excellent performance of 
all models for both training and testing phases. The overall 
result shows the superiority of the LSSVM model over other 
models. The results obtained in the Central Plateau (CP) 
basin highlighted that the lowest values of RMSE and MAE 
in the training phase belong to the GRNN model and in the 
testing phase belongs to the MLR and GRNN models; how-
ever, based on the R2 and NSE indices, the MLP model has 
a better performance. The SI index also shows the excellent 
quality of all models. In general, the MLP model performs 
better in the CP basin than other models. In the East Bound-
ary (EB) basin, the results are similar to Caspian Sea (CS) 
basin, except for highest R2 which have seen for MLP model 
(0.90 for training phase and 0.62 for testing phase) The SI 
index shows the excellent quality of all models, and in gen-
eral the output of both MLP and MLR models is better than 
the other two models. In the Qara Qom (QQ) basin, the accu-
racy of GRNN model in training and testing phases was bet-
ter than other models. It shows the lowest values of RMSE 
and MAE and the highest values of R2 and NSE. According 
to SI criteria, excellent performance of all models used in the 
training and testing phases have also been proven.

Summarizing the results obtained in the main basin shows 
that the annual ETO modeling based on LSTIs with the help 
of different MLMs is reliable. However, depending on the 
basins, the models perform differently. Due to the high cli-
matic and geographical diversity in the main basins, it is 
necessary to examine the efficiency of MLMs in the sub-
basin scale, which is discussed in the next section.

Sub‑basins

Comparison between observed and modeled ETO based on 
four MLMs are shown in Fig. 5. The data scattering around 
the 1:1 line is appropriate in all models. However, the vari-
ability of the data around the line varies in different sub-
basins, as lower variabilities have observed in the ARZ, 
HAS, SFR, TLS, BDA, HLL, JAZ, KRK, WSB, URL, CTD 
and STL. The results of evaluation metrics of the MLMs in 
training and testing phases are shown in Fig. 6. Based on 
these results, the MLMs perform differently in sub-basins. 
Unlike more efficient and less error-prone models of more 
complex models in the training phase, models with a simpler 
structure such as MLR show less error in the testing phase. 
Based the R2, it can be concluded that the best models are 
MLP and LSSVM models. Besides, based on NSE index, 

Table 6   Statistical criteria for comparing the models in the train and test phases

Main Basin Model Step RMSE MAE R2 NSE SI Main Basin Model Step RMSE MAE R2 NSE SI

CS MLR Train 40.4 32.5 0.79 0.80 0.04 CP MLR Train 72.8 58.8 0.73 0.75 0.05
Test 45.9 37.5 0.28 0.50 0.04 Test 69.4 57.6 0.35 0.55 0.04

MLP Train 27.6 19.8 0.89 0.88 0.03 MLP Train 45.5 33.0 0.88 0.87 0.03
Test 59.2 47.7 0.53 0.17 0.05 Test 79.5 63.9 0.71 0.58 0.05

GRNN Train 40.6 32.6 0.77 0.68 0.03 GRNN Train 43.4 32.6 0.88 0.84 0.03
Test 57.5 47.1 0.55 0.32 0.05 Test 81.8 67.0 0.65 0.43 0.05

LSSVM Train 31.6 24.5 0.88 0.87 0.03 LSSVM Train 46.8 37.3 0.88 0.87 0.03
Test 51.7 41.6 0.56 0.46 0.05 Test 79.8 65.1 0.67 0.55 0.05

PG MLR Train 66.9 54.0 0.71 0.73 0.04 EB MLR Train 85.9 68.2 0.78 0.77 0.04
Test 63.1 52.5 0.39 0.43 0.04 Test 89.1 70.8 0.60 0.50 0.04

MLP Train 36.9 26.2 0.91 0.90 0.02 MLP Train 51.9 35.5 0.90 0.89 0.03
Test 76.6 60.3 0.63 0.37 0.05 Test 107.3 86.2 0.62 0.44 0.05

GRNN Train 66.3 52.5 0.75 0.65 0.04 GRNN Train 68.0 52.2 0.82 0.76 0.03
Test 86.0 69.6 0.39 0.14 0.05 Test 129.6 110.6 0.35 0.20 0.07

LSSVM Train 43.3 33.5 0.87 0.87 0.03 LSSVM Train 70.7 56.2 0.84 0.83 0.03
Test 79.9 66.2 0.58 0.43 0.05 Test 100.5 81.2 0.55 0.45 0.05

UL MLR Train 49.6 40.2 0.85 0.86 0.04 QQ MLR Train 96.2 78.8 0.55 0.62 0.07
Test 49.9 40.7 0.21 -0.07 0.04 Test 77.7 68.0 0.28 0.37 0.05

MLP Train 32.7 24.3 0.92 0.91 0.02 MLP Train 50.4 33.2 0.90 0.90 0.03
Test 56.0 47.1 0.74 0.51 0.04 Test 112.3 87.2 0.58 0.54 0.08

GRNN Train 49.3 37.0 0.81 0.75 0.04 GRNN Train 34.5 24.8 0.95 0.94 0.02
Test 57.2 43.1 0.65 0.49 0.04 Test 71.2 59.0 0.64 0.54 0.05

LSSVM Train 33.2 26.3 0.91 0.91 0.02 LSSVM Train 47.9 38.0 0.87 0.87 0.03
Test 56.3 47.8 0.72 0.59 0.04 Test 105.9 88.4 0.46 0.20 0.07
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MLP and LSSVM models have the best performance. The 
SI index also shows the reliable performance of all models 
used in the train and test phases in all sub-basins.

It should be noted that the effect of LSTIs on annual 
ETO can be due to their effect on important evapora-
tive stimuli such as surface temperature, rainfall, water 
content of soil, relative humidity and wind speed (Sun 
et al. 2016; Thirumalai et  al. 2017; Hejabi 2021; Dai 

and Wigley 2000; Nicolai-Shaw et al. 2016; Hegerl et al. 
2015; Hurrell et al. 2003). However, more studies are 
needed from dynamic and synoptic meteorology point 
of views (Helali et al. 2021a). One of the advantages of 
using LSTIs as predictor variables of annual ETO is being 
predictable and having timely data available and linking 
it to future time steps.

Fig. 5   Modeled and observed ETO at sub-basin scale four different MLMs
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Discussion

Trends and investigation of evapotranspiration have been 
studied in various regions of the world based on different 
views and models (Brutsaert and Parlange 1998; Roderick 
and Farquhar 2002; Zhang et al. 2011; Liu et al. 2011; 
Tabari et al. 2012a,b; Yang et al. 2017; Dinpashoh et al. 
2018; Nouri and Bannayan 2019; Le and Bae 2020). Gen-
erally, the significant increases or decrease in ETo domi-
nated in the different regions of the world (Hobbins et al. 
2004; Shenbin et al. 2006; Dinpashoh et al. 2011, 2018; 
Tabari et al. 2012a; Hosseinzadeh Talaee et al. 2014; Xu 
et al. 2015; Rahman et al. 2019; Le and Bae 2020). There-
fore, investigating, modeling and predicting evapotranspi-
ration in historical and future periods is very important 
(Yan et al. 2013; Liu et al. 2018; Chai et al. 2018).

The use of more complex models such as machine learn-
ing models in modeling of hydrological and climatic vari-
ables (Amirmoradi et al. 2015; Modaresi et al. 2018a,b; 
Kim et al. 2020) such as evapotranspiration has also been 
the subject of many studies (Adnan et al. 2017; Fang et al. 
2018; Zhao et al. 2019; Granata 2019; Kalu et al. 2023). 
The results of these studies have shown the efficiency of 
these models in accurate modeling with less uncertainty. 
Large scale teleconnection indices fluctuations and their 
correlation with hydrological and climatic variables offer 
a viable strategy for forecasting precipitation (Cayan et al. 
1999; Skeeter et al. 2019; Ahmadi et al. 2019; Gholami Ros-
tam et al. 2020; Irannezhad et al. 2021), evapotranspiration 
(Dong et al. 2021; Sabziparvar et al. 2011; Miralles et al. 
2013; Yan et al. 2013; Tabari et al. 2014a,b; Fang et al. 2018; 
Xu et al. 2019; Helali and Asadi Oskuei, 2021), frost (Muller 
et al. 2000; Scaife et al. 2008; Maryanaji et al. 2019; Helali 
et al. 2022a) and Wood Decay Hazard (Helali et al. 2021c) 
amounts and anomalies.

The use of large-scale teleconnection indices as predict-
ing variables of evapotranspiration through machine learn-
ing models will be a new aspect in climatic and hydrological 
studies (Dai and Wigley 2000; Nicolai-Shaw et al. 2016; 
Helali et al. 2020a, b, 2021a, 2023; Kalu et al. 2023). Most 
of the studies conducted in this case have focused on sta-
tion data (Sabziparvar et al. 2011; Biabanaki et al. 2013; 
Yan et al. 2013; Tabari et al. 2014a,b; Lee and Julien 2016; 
Modaresi et al. 2018a,b; Fang et al. 2018; Ahmadi et al. 
2019; Xu et al. 2019; Gholami Rostam et al. 2020; Kim 
et  al. 2020). The importance of hydrological studies is 
mainly focused on the catchment area (Helali et al. 2020a, 
2021a, b; 2022b). Therefore, in the present study, the con-
nection between indices of large-scale teleconnection and 
evapotranspiration were analyzed using different machine 
learning models at the basin and sub-basin scales of Iran. 
Previous studies show that in different parts of the world, the 

influence of large scale teleconnection indices on evapotran-
spiration is diverse according to the region. In some warm 
climates in Iran, Sabziparvar et al. (2011) demonstrated a 
substantial link between ETo and ENSO. Xu et al. (2019) 
showed that within the three change patterns of annual ETo 
and climate oscillations in China, there were only a few 
discontinuous lower timeframe bands. Tabari et al. (2014a) 
showed that significant correlations between annual ETo and 
the corresponding AO index are quite rare, and the differ-
ences between the ETo values during the extreme AO phases 
and the long-term average ETo values were found to be sig-
nificant only at three out of the 41 study stations. Tabari 
et al. (2014b) found that the winter ETo had negative cor-
relations with the NAO index, with a time lag from 0 to 
6 months. Helali and Asadi Oskouei (2021) show that the 
highest positive correlation monthly ETo and large scale 
teleconnection indices belongs to the indices TSA, NTA, 
CO2, TNA, and AMO while the indices MEI and SST3.4 
have the largest negative correlation at varying lag dura-
tions. The results show that at the basin and sub-basin scales 
are significant correlations between annual ETo with carbon 
dioxide (CO2), Atlantic Multidecadal Oscillation (AMO), 
Atlantic Meridional Mode (AMM) and East Atlantic (EA). 
The reason for the difference between the results obtained 
in this study and the previous studies can be due to the dif-
ferent spatial scales (station-based vs basin-based). Helali 
et al. (2020a; 2021a, b; 2022b) indicated that the influence 
of large scale teleconnection indices on precipitation fluc-
tuations on basin scale had different results compared to 
station-based studies. According to research by Modaresi 
et al. (2018a) on monthly streamflow forecasting in linear 
and nonlinear situations, ANN performs best in linear con-
ditions, with LS-SVR, GRNN, and KNN ranking next, in 
that order. However, under nonlinear situations, KNN, ANN, 
and GRNN models trail LS-SVR in terms of performance. 
The results obtained in the current study indicated that both 
complex and simple models had very accurate in modeling 
annual ETo. These results can be justified considering the 
geographical and climatic diversity of the studied basins 
(Helali et al. 2021a, b; 2022b). Moreover, MLP and MLR 
models were mainly superior to other models in the train-
ing and testing phases based on different evaluation metrics.

Satellite images are highly effective for modeling, as 
they produce vast amounts of data that can be transformed 
into valuable information when processed correctly. To 
manage large data volumes (big data), it is essential to use 
robust models that can effectively analyze the variable of 
interest within this data set. Currently, machine learning 
algorithms are becoming increasingly significant due to 
their ability to make faster predictions with lower errors 
when handling big data (Shang et al. 2023). These algo-
rithms consist of mathematical rules and procedures that 
enable computer systems to learn from data and enhance 
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their performance on specific tasks without explicit pro-
gramming (dos Santos et al. 2024). In related study, the 
findings from dos Santos et al. (2024) revealed that the 
Bayesian regularized neural networks (BRNN) model 
achieved R2 and RMSE values of 0.73 and 1.10, respec-
tively, while the XgbLinear (extreme gradient boosting—
linear method) model had values of 0.74 and 1.25 for these 
metrics, showing the best overall performance.

Conclusions

In this study, an attempt has been made to evaluate the rela-
tionship between LSTIs on the annual ETO across Iran. To 
achieve this aim, different MLMs have been used for ETO 
modeling by applying the LSTIs as predictor variables. The 
results showed that the most important predictors of annual 
ETO belong to CO2 index, followed by AMO, AMM, and EA 
indices with lead-times of 7–12 months, which are some-
what consistent with obtained results by Helali and Asadi 
Oskouei (2021). The results showed that the efficiency of 
different MLMs varies in training and testing phases at dif-
ferent spatial scales. The scattering plots of the observed and 
modeled data illustrated that all MLMs in all spatial basin 
scales perform well. However, the evaluation of statistical 
criteria in the training and testing phases is different. Gener-
ally, at the main basin scale, the performance of MLP, MLR 
and LSSVM is better than GRNN. However, it should be 
noted that the performance of ETO modeling at the main 
basin scale due to high climatic and geographical diversity 
cannot be reliable. Therefore, it is necessary to examine the 
modeling at the sub-basin scale. The results showed that 
the ETO modeling using the MLMs have led to more reli-
able results in the ARZ, HAS, SFR, TLS, BDA, HLL, JAZ, 
KRK, WSB, URL, CTD and STL sub-basins. The evalua-
tion metrics indicated that the MLMs perform differently in 
each sub-basins; thus, a certain model cannot be suggested 
for all sub-basins. For future studies, it is suggested that in 
order to analyze the dynamics and physics of the effect of 
LSTIs on ETO, limited indices with a physical-based are 
used. It is also necessary to link LSTIs with ETO on seasonal 
and monthly scales as well as the stages in which the most 
evapotranspiration occurs in order to evaluate the long-term 
performance of these indices. In this case the effect of short-
term and long-term LSTIs on ETO can be analyzed. It seems 
that the clustering of the stations based on ETo regime and 
examining its relationship with the large-scale teleconnec-
tion indices can provide useful results (Helali et al. 2023).
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