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Abstract
Dam breach floods pose significant threats to downstream areas, necessitating accurate prediction of inundation scenarios 
to mitigate potential damage. This paper presents a novel methodology for hydrodynamic modeling of dam breach floods, 
leveraging a comprehensive approach that integrates satellite imagery, unmanned aerial vehicles (UAVs), and Google Earth 
Engine (GEE) to forecast downstream inundation scenarios. Specifically, UAVs were utilized to generate high-resolution 
Digital Elevation Models (DEMs) of the flood-affected areas, ensuring precise representation of topography in the model. 
The approach incorporates Cartosat DEM data for catchment modeling, while NASA's Global Precipitation Measurement 
mission data, integrated with GEE, facilitated accurate estimation of rainfall in ungagged catchment areas. Furthermore, 
the Hydrological Engineering Center-Hydrological Modeling System was employed for rainfall-runoff simulation and flood 
hydrograph derivation, followed by application of the HEC River Analysis System (RAS) for hydrodynamic modeling under 
dam breach conditions. This integrated modeling approach was applied as a case study of Banaskantha district, Gujarat, India. 
The outcome was the generation of scenario maps based on HEC-RAS results, which include flood extent, water depth, and 
flow velocity, highlighting downstream areas affected by flooding. Validation of the hydrodynamic dam breach model perfor-
mance was conducted using actual field measurements and simulated results, employing statistical analysis methods including 
Support Vector Regression (SVR) and linear regression to determine coefficient of determination (R2), Root-Mean-Square 
Error, and Mean Absolute Error of observed and simulated data. The coefficient of determination (R2) values for measured 
and simulated flow (0.91) and water level (0.86) calculated using SVR demonstrate strong correlation between observed 
and simulated values. This integrated study of hydrodynamic modeling in data-scarce areas aids in accurate estimation of 
future probable flooding in downstream areas in the event of a dam break, underscoring the potential of advanced surveying 
and modeling techniques in flood assessment and management. Ultimately, this integration of technologies aims to enhance 
community resilience and mitigate socioeconomic costs associated with dam breach floods.
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Introduction

The history of water storage through the construction of 
dams extends back to ancient civilizations, marking the 
origins of humanity's efforts to harness and manage water 
resources (Desta and Belayneh 2020). Over time, the 
importance of dams has grown exponentially, evidenced 
by the proliferation of hundreds of dams worldwide, each 
serving a multitude of socioeconomic and environmental 
purposes (Darji et al. 2024). These structures play crucial 
roles in providing essential services such as irrigation, 
drinking water supply, hydropower generation, recrea-
tional opportunities, and flood control (Patel et al. 2024). 
However, despite their numerous benefits, the failure of 
dams can lead to catastrophic dam breach floods, result-
ing in extensive loss of life and property damage, par-
ticularly in densely populated areas (Derdous et al. 2015; 
Boussekine and Djemili 2016; Wang et al. 2016; Berghout 
and Meddi 2016).

The scale of dam infrastructure globally is stagger-
ing, with over 800,000 dams distributed across various 
regions. Among these, approximately 57,000 are classi-
fied as major dams, with India ranking third behind the 
USA and China in terms of large dam ownership (Dhiman 
and Patra 2019). This widespread distribution underscores 
the critical need for robust flood management strategies to 
mitigate the potential consequences of dam failures. While 
dams have historically played vital roles in water manage-
ment, instances of dam failures have been relatively sparse 
in documented history, with notable examples including 
the Machchu II dam failure in 1979 and the Kaddam dam 
overtopping disaster in 1958 (Zagonjolli 2007).

In response to the potential hazards posed by dam 
breaches, the focus has shifted towards improving flood 
management practices, including developing Emergency 
Action Plans (EAPs) and implementing effective warning 
systems (Pandya and Thakor 2013; Patel et al. 2017). Such 
proactive measures are crucial for minimizing the loss 
of life and property damage associated with dam breach 
floods. Dam breach inundation studies play a pivotal role 
in assessing the safety risks posed by dams, estimating 
downstream losses, and prioritizing maintenance activities 
(Gallegos et al. 2009; Pandya and Thakor 2013).

To facilitate accurate prediction of dam breach scenar-
ios and downstream inundation, a range of hydrological 
and hydrodynamic models have been developed. These 
models, including the Hydrological Engineering Cent-
er's HEC-HMS and HEC-RAS, as well as advanced 2D 
models like MIKE2 and MIKE11, provide valuable tools 
for simulating flood events and assessing their potential 
impacts (Zhang et al. 2019; Darji et al. 2021b, 2022). 
Recent advancements in modeling techniques have further 

enhanced flood prediction capabilities through the integra-
tion of remote sensing technologies and high-resolution 
data sources (Abdessamed and Abderrazak 2019).

In particular, the integration of unmanned aerial vehi-
cles (UAVs), Google Earth Engine (GEE), and satellite 
imagery has revolutionized flood forecasting accuracy and 
urban flood management strategies (Yalcin 2019; Darji et al. 
2021a; Patel and Pandya 2021). These technologies enable 
the creation of detailed flood risk maps, evacuation plans, 
and hazard assessments, empowering communities to better 
prepare for and respond to flood events (Sahoo and Sreeja 
2017; Juliastuti and Setyandito 2017).

This study aims to leverage modern hydrodynamic sur-
veying and modeling approaches, incorporating UAVs, 
GEE, and satellite imagery, to predict downstream inunda-
tion scenarios resulting from dam breach floods. By utilizing 
HEC-RAS-based 2D hydrodynamic modeling coupled with 
high-resolution Digital Terrain Models (DTMs) and topo-
graphical data obtained from UAVs, the research endeavors 
to enhance flood prediction accuracy and urban flood man-
agement strategies.

Study area

The study area selected for investigation is the catchment 
area of Rel River in the Banaskantha district of Gujarat, 
India. We focus on analyzing the breach of the Jetpura dam 
(latitude: 24°39′42.73′′ N, Longitude: 72°17′15.71′′ E) using 
the data of the 2017 dam breach flash flood (Fig. 1). The 
catchment area of the Rel River spans 442 km2 and is situ-
ated between latitudes 24°50′ N and 24°75′ N, and longi-
tudes 72°00′ E and 72°45′ E. Notably, the lowest point in 
the region lies near Dhanera taluka and Dhanera city, close 
to the mouth of the Rel River.

Characterized as a data-scarce region, the Rel River pos-
sesses only one river gauge and rain gauge within its entire 
catchment area. The river's width measures approximately 
280 m at the Road Bridge and 180 m at the Railway Bridge. 
Notably, the riverbed slope from the upstream of the rail-
way bridge to the downstream of the causeway location is 
estimated to be about 1 in 500. The upper catchment of the 
Rel River exhibits a steep topography, contributing to flash 
flooding downstream. Normally the Rel River catchment is 
not affected by natural floods except in the year 2015 where 
a flood was recorded 273 m3/s. However in the year 2017 
catastrophic flood of 3355 m3/s was recorded due to part of 
the sudden break of the Jetpura dam.

This dam is a masonry cum Earth Dam spans a total 
length of 1240 m (comprising 1155.50 m of an earthen dam 
and 84.50 m of a masonry dam) and a height of 10 m. The 
dam's catchment area measures 99.71 km2, with a gross 
storage capacity of 25.02 lakh M3. Notably, heavy rainfall 
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exceeding 50 mm/hour on July 24, 2017, led to the breach 
of the 210 m earthen part of Jetpura dam, triggering a flash 
flood downstream.

Overview of the 2017 Jetpura dam breach 
disaster

The 2017 Jetpura dam breach, triggered by heavy rainfall 
on July 24th, unleashed a devastating flood across the Rel 
River catchment, inundating numerous villages and the city 
of Dhanera with an average water depth ranging from 2.5 to 
3 m (Fig. 2a). The catastrophic event resulted in significant 
human and economic losses, as reported by the Times of 
India (https://​en.​wikip​edia.​org/​wiki/​2017_​Gujar​at_​flood), 
with approximately 72 fatalities, the loss of 81,609 cattle 
(Fig. 2b, c), and property damage estimated at 2.72 billion 
USD across Banaskantha, Patan, and Kachchh districts. 
Dhanera bore the brunt of the flood, experiencing the high-
est level of inundation compared to other cities in the Banas-
kantha district.

The flood's impact extended beyond loss of life and 
property. Over 370 roads, including vital national and state 
highways, were submerged, disrupting vehicular traffic. The 
damage to transportation infrastructure was substantial, with 
estimated losses of 12.91 million USD for national highways 
and 33.57 million USD for state highways. The disruption 
also affected rail travel, with 11 out of 20 Mumbai-Delhi 
train services canceled due to track damage near Palanpur. 
Additionally, 915 GSRTC bus trips were canceled in north-
ern districts.

The scale of the disaster necessitated a large-scale evacu-
ation effort, with more than 113,000 individuals relocated 
to safety. The financial toll of the disaster was significant, 
with losses estimated at 2.32 billion USD for agricultural 
production and land, 953.17 million USD for damaged high-
ways and roads, and additional demands for the restoration 
of irrigation facilities and public infrastructure, totaling 
over 2.19 billion USD. Despite these efforts, comprehensive 
data on flood extent, damage assessment, and affected areas 
remained elusive, underscoring the urgent need for advanced 
modeling techniques to better understand flood dynamics 
and aid in future mitigation planning.

Fig. 1   Study area representing the location of Rel River watershed, Jetpura dam, and Dhanera city

https://en.wikipedia.org/wiki/2017_Gujarat_flood
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In response to the Jetpura disaster, this study proposes 
the integration of hydrodynamic modeling with cutting-edge 
remote sensing technologies, including satellite imagery, 
unmanned aerial vehicles (UAVs), and Google Earth Engine 
(GEE), to assess dam breach floods and predict downstream 
inundation scenarios. By leveraging these tools, we aim to 
enhance flood risk assessment, improve disaster response 
strategies, and minimize the impact of similar catastrophic 
events in India and beyond.

Methodology

The study commenced with the selection of the Rel River 
watershed, followed by an exhaustive compilation of mete-
orological and satellite data to gain comprehensive insights 
into the prevailing environmental conditions. In this area 
large-scale topographic maps were not available, there-
fore a high-resolution Digital Elevation Model (DEM) was 
generated using unmanned aerial vehicles (UAVs). Sub-
sequently, HEC-HMS hydrological modeling techniques 
were employed to generate runoff flow hydrographs of the 
upstream catchment area of the dam. These data were used 
as input in the 2D HEC-RAS hydrodynamic model for dam 
breach analysis. Different flood scenario maps were gener-
ated to visualize and analyze probable downstream flood 
areas (Fig. 3). Finally, to evaluate the performance of the 
model, statistical measures were employed, including Sup-
port Vector Regression (SVR) and linear regression (LR) 
(Table 1).

Data collection and generation

River gauge data collection

River gauging is vital for understanding river behav-
ior, particularly during flood events. In this study, river 

discharge and water level data were collected from a gauge 
station located at the NH168A bridge in Dhanera city. 
These data, obtained from the Dhanera Taluka Panchayat 
and the Dhanera Road and Building Department, offered 
insights into the flow dynamics of the Rel River during the 
2017 flood event. For instance, on July 24, 2017, at 10:00 
am, the maximum discharge recorded was 3335 m3/s, with 
a corresponding river level of RL 135 m (Fig. 4).

DEM‑CARTOSAT

Digital Elevation Models (DEMs) are crucial for hydro-
logical modeling, providing information on terrain eleva-
tion. The CARTOSAT-1 DEM, developed by the Indian 
Space Research Organization (ISRO), was utilized in this 
study. With a spatial resolution of 10 m, CARTOSAT-1 
data covered the Rel River catchment area (Fig. 5). These 
data were essential for delineating flood-prone areas and 
understanding topographic features influencing flood prop-
agation. Despite limitations such as cloud cover, CAR-
TOSAT-1 DEM offered high accuracy compared to other 
DEM sources.

Soil map creation

Soil characteristics play a significant role in hydrological 
processes, affecting water infiltration rates and runoff pat-
terns. A soil map at a 1:50000 scale was generated using 
data from various sources, including the Ahmedabad agri-
cultural department, the National Resources Information 
System (NRIS), and the National Bureau of Soil Survey 
and Land Use Planning. This map classified soils into five 
different textures, providing insights into soil–water inter-
actions within the study area (Fig. 6).

Fig. 2   a Dhanera city market under the flood up to 2–3  m, b cattle 
(cow) died in flood 2017 (The Times of India), c NDRF team rescued 
the flood susceptible people from the low-lying areas. (Photographs 

retrieved from https://​times​ofind​ia.​india​times.​com/​city/​ahmed​abad/​
flood-​fury-​hits-​gujar​at-​25000-​people-​evacu​ated/​artic​leshow/​59744​
404.​cms)

https://timesofindia.indiatimes.com/city/ahmedabad/flood-fury-hits-gujarat-25000-people-evacuated/articleshow/59744404.cms
https://timesofindia.indiatimes.com/city/ahmedabad/flood-fury-hits-gujarat-25000-people-evacuated/articleshow/59744404.cms
https://timesofindia.indiatimes.com/city/ahmedabad/flood-fury-hits-gujarat-25000-people-evacuated/articleshow/59744404.cms
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Fig. 3   Methodology flow chart, phase-1: data collection, phase-2: hydrological modeling, phase-3: generation of high-resolution DEM, phase-4: 
hydrodynamic modeling
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Land use and land cover maps creation

Land cover types influence surface runoff and infiltra-
tion rates, impacting flood dynamics. Sentinel-2 satellite 
data, with its multi-spectral capabilities, were employed to 
generate a land cover map of the research region (Fig. 7). 
Supervised classification techniques were applied using the 
maximum likelihood algorithm in the Sentinel Application 
Platform (SNAP). Additionally, toposheets and Google 
Earth imagery were utilized to refine the classification accu-
racy. The resulting land use and land cover map provided 
crucial information for hydrological modeling and flood risk 
assessment.

Rainfall data generation from Google Earth Engine

Precipitation data, crucial for understanding the dynamics 
of water movement, are often measured in millimeters or 
inches. Within our research area, two rain gauge stations, 
Bapla and Dhanera, provide valuable rainfall observations. 
The Bapla station, located near the Gujarat-Rajasthan bor-
der on the upstream side of the catchment, contrasts with 
the Dhanera station, which is positioned downstream at 

the Prathmik Arogya Kendra in Dhanera. Unfortunately, 
observed rainfall data for the 2017 event are not available 
for the Bapla gauge. However, daily rainfall records for 
this event were obtained from the Dhanera gauge, sourced 
from the Gujarat State Water Data Center (GSWDC). Daily 
rainfall data, though informative, may not be adequate for 
detailed modeling of rainfall-runoff dynamics, especially 
individual events. To supplement these records and enable 
more robust analysis, we utilized near-real-time rainfall 
monitoring techniques. Leveraging NASA's Integrated 
Multi-satellite Retrievals for GPM (IMERG) half-hourly 
data, derived from a combination of ground-based and air-
borne instruments, we achieved higher temporal resolution 
in rainfall measurements. This advanced dataset supports the 
validation of satellite-based retrieval algorithms, ensuring 
the accuracy of the precipitation inputs.

Additionally, the Global Satellite Mapping of Precipita-
tion (GSMaP) offers estimates of global hourly rain rates at a 
resolution of 0.1 × 0.1 degrees. Drawing from this resource, 
we accessed NASA-GPMaP hourly rainfall data for the Rel 
River catchment area using Google Earth Engine (GEE). 
This dataset was instrumental in simulating runoff model 
and assessing the precision of the modeling outcomes. By 

Table 1   Data collection with 
their sources

Sr. no Particulars Source

1 Rainfall data State Water Data Center and NASA GPM
2 River gauge data State Water Data Center
3 Digital elevation model Indian Space Research Organisation
4 Land use data Sentinal-2 data
5 Soil data National Resources Information System (NRIS)
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Fig. 5   CARTOSAT DEM of Rel River catchment

Fig. 6   Soil classification map of Rel River catchment
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integrating these high-resolution precipitation datasets, we 
enhance the accuracy and reliability of the hydrodynamic 
modeling efforts, ultimately improving understanding of 
dam breach floods and downstream inundation scenarios.

High‑resolution DEM generated from UAV survey

To acquire detailed topographic information essential for 
accurate hydrodynamic modeling, a high-resolution survey 
was conducted using a DJI Phantom4 Pro RTK unmanned 
aerial vehicle (UAV). Operating with automatic flight capa-
bilities at an altitude of 130 m above ground level, the UAV 
covered the target area with an 80% overlap to ensure com-
prehensive image capture.

Equipped with a digital, 4 K-resolution FC300X camera 
mounted on its lower section, the UAV provided high-quality 
imagery for mapping purposes. With a 20-megapixel sensor, 
2.8 mm focal width, and RGB band functionality, the cam-
era delivered detailed visual data suitable for precise terrain 
modeling. Operating in both manual and automatic modes, 
it ensured flexibility and efficiency in image acquisition.

A total of 9222 aerial photographs were acquired during 
the UAV survey, covering an area of 10 km2 encompass-
ing Dhanera city. To enhance the accuracy of the resulting 
DEM, field surveys were conducted to mark Ground Control 
Points (GCPs) across the study area. These reference points 
facilitated precise georeferencing and alignment of the aerial 
imagery.

Subsequent data processing was conducted using PIX4D-
mapper software, involving three key stages: initial process-
ing, point cloud and mesh generation, and final processing. 
In the initial phase, key point extraction algorithms identi-
fied distinctive features within the aerial images, forming 
the basis for subsequent analysis. Through the utilization 
of point cloud and mesh tools, the dataset underwent densi-
fication, resulting in the generation of additional tie points 
aimed at augmenting spatial resolution and detail.

In the final processing stage, a high-resolution DEM of 
the area was generated, capturing intricate terrain features 
with exceptional accuracy. The resulting DEM served as a 
vital component in hydrodynamic modeling endeavors, pro-
viding detailed elevation data crucial for simulating flood 
scenarios and assessing downstream inundation risks.

Fig. 7   Land use classification map of Rel River catchment
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By integrating the UAV-derived high-resolution DEM 
with existing CARTOSAT data, a comprehensive elevation 
model of the Rel River basin was produced. This combined 
dataset forms the foundation for hydrodynamic modeling 
efforts, enabling precise analysis and prediction of dam 
breach floods and associated inundation scenarios with con-
fidence and accuracy.

Modeling

The hydrological and hydrodynamic dam breach model was 
developed utilizing the data collected from various sources, 
including rainfall records, topographic surveys, and other 
relevant data sources. The model was then calibrated and 
validated with historical flood data from the 2017 event.

Hydrological modeling

Advancements in hydrological studies across various disci-
plines, including computer science, geographic information 
systems (GIS), and remote sensing, have been bolstered by 
the support of universities, research centers, and organiza-
tions invested in the hydrological field. These collective 
efforts have yielded significant progress, leading to the 
creation of hydrological computer programs and models. 
Furthermore, these advancements have facilitated the acces-
sibility of enhanced and current databases encompassing 
basin characteristics, watercourses, and the factors that exert 
influence within these systems (Abdelkarim et al. 2019).

For hydrological simulation in this study, the HEC-HMS 
software package, a freeware tool developed by the US Army 
Corps of Engineers, was employed. This modeling approach 
relies on a lumped conceptual model, utilizing physical sub-
basin characteristics and hydrological data as inputs.

HEC-HMS comprises three modules: basin, meteoro-
logical, and control models, providing a comprehensive 
framework for hydrological analysis. During the simula-
tion of runoff in the Rel River catchment for the 2017 flash 
flood event, the catchment was divided into two sub-basins 
to facilitate accurate modeling (Fig. 8). "River140" repre-
sents a river segment automatically generated by HEC-HMS 
modeling software.

To estimate precipitation loss and evaluate direct runoff, 
the Soil Conservation Service Curve Number (SCS-CN) 
method was utilized. This method is referred to as Type II, 
and it is the most widely used (Abdelkarim et al. 2019). This 
method, as documented by (Elfeki et al. 2016; Vojtek and 
Vojteková 2016; Darji et al. 2022), and (Zhang et al. 2020), 
calculates precipitation loss based on the Curve Number 
(CN) value. The CN value, ranging from 0 to 100, reflects 
the runoff potential of the area: Lower values indicate lower 
runoff potential, while higher values indicate increased run-
off potential.

The selection of this method was informed by its effec-
tiveness in similar hydrological studies. By employing the 
SCS-CN method, accurate modeling of runoff dynamics 
in the Rel River catchment was achieved, contributing to 
the comprehensive assessment of flood risk and mitigation 
strategies.

According to Subramanya (2013), λ is 0.3 for Indian envi-
ronmental conditions.

The direct runoff (Q) and net rainfall for the catchment 
can be determined using initial abstraction (Ia), average pre-
cipitation (P), and potential maximum retention (S) values 
in the following equation

Runoff occurs only when rainfall exceeds Ia, therefore 
Q = 0 when precipitation is lower or equal to initial abstrac-
tion (P ≤ λS). The rainfall loss was calculated using Eqs. 1, 
2, and 3 of the SCS-CN approach. Weighted curve numbers 
for each subbasin were calculated using a land cover and soil 
map (Cronshey et al. 1985; Subramanya 2013). The base 
flow was overlooked because it was small in comparison 
with the severe precipitation that occurred during flash flood 
episodes. Other physical properties estimated with the HEC 
GeoHMS included stream length, slope, elevation, centroi-
dal location, and longest flow path. The control specification 
specifies the start and end times of the simulation, as well 
as the time step (Liu et al. 2021). The flood hydrographs for 
both basins were used as input data to perform hydrody-
namic modeling.

Hydrodynamic dam breach modelling

The HEC-RAS 6.1, a widely used hydrodynamic model 
developed by the US Army Corps of Engineers, can per-
form one-dimensional (1D), two-dimensional (2D), and 
coupled 1D-2D hydraulic calculations of water surface 
profiles in various natural and constructed channel network 
configurations (Lastra et al. 2008; Bout and Jetten 2018; 
Jha and Afreen 2020; Naeem et al. 2021; Darji and Patel 
2024). For the 2017 dam breach flood event (July 24, 2017), 
a two-dimensional 2D dam breach unsteady flow simulation 
of HEC-RAS based on 2D diffusive wave equations was 
validated for the Gujarat Rel River watershed. Under dam 
breach unsteady flow, the upstream border is a discharge 
hydrograph generated from hydrological modeling and 

(1)S =
25400

CN
− 254

(2)Ia = �S

(3)Q =

(
P − Ia

)2

P − Ia + S
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storage of the reservoir, whereas the downstream bound-
ary is normal depth. The overtopping dam breach criteria 
include a variety of factors important for determining the 
probable consequences of a breach event. These criteria 
include the type of dam and its geometry (height, width, 
slope, and elevation), which all influence breach develop-
ment and subsequent water flow. Additionally, parameters 
like the initial breach size, growth rate, and formation time 

are critical for understanding the evolution of the breach 
during flooding, location of the breach along the dam struc-
ture, inflow conditions from reservoir levels, and upstream 
flow rates. This overtopping dam breach parameters were 
examined using news, field surveys, and Google Photos 
for simulation. The model calculates discharges and stages 
for all interior sites. Additionally, Manning's roughness (n) 
values for the model domain were determined using LULC 

Fig. 8   Basin model created by HEC-GeoHMS
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data. HEC-RAS version 6.1 solves unsteady flow simula-
tions using diffusion wave equations (Quirogaa et al. 2016).

where h is water depth in meters, p and q are the specific 
flow in the x and y direction (m2 s−1), n is the surface eleva-
tion in meters, g is the acceleration due to gravity, n is the 
Manning resistance, q is the water density (kg m−3), sxx, syy, 
and sxy are the components of the effective shear stress, and 
f is the Coriolis (s−1).

The HEC-RAS model generates elevation of water level, 
depth of water, velocity of water, rating curves, hydraulic 
parameters, and flood visualizations. This generated map 
will help to prepare the emergency action plans to decide 
flood conditions.

Model performance

To determine the accuracy of the HEC-RAS simulation, a 
Support Vector Regression (SVR) and linear regression (LR) 
technique was used to compare observed and simulated data 
at the Dhanera bridge gauge station.

Linear regression

LR is a statistical method used to model the relationship 
between a dependent variable Y and independent variables 
x1, x2, x3 …… xn. The model assumes a linear relationship 
between the variables and seeks the best-fitting linear equa-
tion that predicts the dependent variable's value using the 
independent variables. The equation representing LR is as 
follows:

where Y is a dependent variable, x is an independent vari-
able, m is the slope of the regression line, and c is the 
y-intercept. During model training, the approach reduces 
the residual sum of squares (RSS) or mean squared error 
(MSE) between observed and predicted values by using opti-
mization techniques such as ordinary least squares (OLS). 
LR models are frequently evaluated using measures like 
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Root-Mean-Squared Error (RMSE), R-squared, and Mean 
Absolute Error (MAE).

Support Vector Regression

Support vector machines (SVMs) are intelligent computa-
tional models used for classification and regression analy-
sis. Regression analysis identifies correlations between the 
dependent variable Y and independent variable X. A kernel 
function is used to map the relationship and explain how esti-
mated Y differs from computed values (Fig. 9) (Darji et al. 
2023). The SVR model is formulated as a convex optimiza-
tion problem, aiming to minimize the regularization term 
1

2
||W| |2 subject to the constraints |Yi− < W,Xi > +B| ≤ 𝜀 

for all i. Introducing slack variables (�i)and(�
∗

i
) To handle 

infeasible constraints, the optimization problem becomes:

subject to the constraints:

where W is hyperplane orientation, B is intercepted, C is the 
penalty parameter controlling the trade-off between maxi-
mizing the margin and minimizing the classification error, 
(�i)and(�

∗

i
) is slack variables, ε is the epsilon-insensitive loss 

function parameter, and n is the numbers of samples.
To determine the best model, SVR models with radial basis 

function (RBF) kernels are developed and trained with vari-
ous regularization parameter C values. The performance of 
each model is evaluated using the Root-Mean-Squared Error 

(8)
�
min

1

2
‖W‖2

�
+

�
C

n�

i=1

(�i + �∗
i
)

�

Yi − ⟨W,Xi⟩ + B ≤ � + �i for all i

⟨W,Xi⟩ + B − Yi ≤ � + �ifor all i

�i, �
∗

i
≥ 0

Fig. 9   Regression analysis using Support Vector Regression (adapted 
from Darji et al. 2023)
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(RMSE). The RMSE values for various C values are plotted 
to show how the value of C impacts the model's performance. 
In addition, the final SVR model with the best-performing C 
value is used to estimate water levels, and the model's accuracy 
is assessed using the RMSE, Mean Absolute Error (MAE), and 
R-squared. Finally, a scatter plot is constructed to compare the 
observed and anticipated water levels, along with an ideal fit 
line, which provides information about the model's accuracy.

Mean Absolute Error (MAE)  Mean Absolute Error (MAE) has 
been used to analyze the performance of the observed and 
simulated data. The difference between the simulated value 
and the observed value is calculated by:

Here, ⊚i shows the observed value; ⊚ shows the simulated 
value.

Root‑Mean‑Square error (RMSE)  Root-Mean-Square Error 
(RMSE) represents the standard deviation of the residu-
als. RMSE is commonly used in hydrology, forecasting, and 
regression analysis to verify experimental results.

where i is the variable, n represents data points, ⊚i repre-
sents observed value, and ⊚ represents simulated value.

R‑squared (R.2)  R-squared provides insight into the propor-
tion of variance in the observed data explained by the model. 
It is calculated using the formula:

where ⊚i represents the observed value, ⊚ represents the 
simulated value, and ○ represents the mean of the observed 
values.

By comparing observed and simulated flow values, the 
study aims to provide useful insights into the dependability 
and accuracy of the HEC-RAS model in modeling flood events 
and predicting flow dynamics in the Rel River.

Results

In this section, the outcomes of simulating the 2017 dam 
breach flood event within the Rel River catchment are pre-
sented. Various parameters including flood depth, water 

(9)MAE =
1

n

n∑

i=1

||⊚i −⊚||

(10)RMSE =
1

n

√√√√
n∑

i=1

(
⊚i −⊚

)2

R = 1 −

∑n

i=1

�
⊚i −⊚

�2

∑n

i=1

�
⊚i −○

�2

surface level, velocity, arrival time, duration, and flood 
inundation were meticulously simulated. The innova-
tive approach offers distinct advantages over conventional 
hydrodynamic modeling techniques. Firstly, it facilitates 
the acquisition of high-resolution data crucial for develop-
ing precise hydrodynamic models. Secondly, it harnesses 
the capabilities of Unmanned Aerial Vehicles (UAVs) to 
gather supplementary data, thereby enhancing model accu-
racy. Additionally, it harnesses the computational power of 
Google Earth Engine (GEE) to process hourly rainfall data, 
further refining result accuracy.

The model operates within a 2D environmental frame-
work, incorporating flood hydrographs upstream and normal 
depths downstream. The flood hydrograph is meticulously 
crafted through hydrological modeling, employing the Soil 
Conservation Service Curve Number (SCS-CN) approach 
within the HEC-HMS model. Validation through simulating 
the dam breach scenario corroborates the 2017 flood event.

The findings demonstrate the effectiveness of the pro-
posed approach in forecasting downstream inundation sce-
narios. Model accuracy was rigorously assessed utilizing 
SVR such as the coefficient of determination (R2). The R2 
values obtained for predicted water depths stand at 0.86, 
indicative of a strong correlation between predicted and 
observed values.

Hourly rainfall generated from GEE

Hourly rainfall for 2017 events on July 23, 24, and 25 was 
derived from NASA-GPM satellite data using the Google 
Earth Engine. Figure 10 shows that the greatest rainfall 
value of 57.727 mm occurred on July 24, 2017, at 05:00 
a.m. These hourly rainfall data were used to simulate runoff, 
yielding an accurate hourly flood hydrograph for hydrody-
namic modeling.

UAV‑based high‑resolution digital elevation model 
(DEM)

A total of 9222 photographs were captured using a DJI 
Phantom4 Pro RTK through automatic flight operations, 
maintaining an altitude of 130 m above ground level. These 
images were captured with an 80% overlap, covering a 
sprawling 10 km2 area. To ensure comprehensive coverage 
and accuracy, the entire area was divided into four zones 
for detailed picture analysis within Pix4D mapper software. 
This meticulous process generated a comprehensive dataset 
comprising a point cloud, a Digital Surface Model (DSM), 
and a Digital Terrain Model (DTM).

Upon completion of the processing phase, the four indi-
vidual DTMs were seamlessly merged to create a unified, 
high-resolution DEM of the Dhanera city region, as depicted 
in Fig. 11. The DSM and DEM derived from the UAV 
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imagery exhibit impressive resolutions of 3.6 × 3.6 centim-
eters and 10 × 10 cm, respectively.

After the creation of the high-resolution DEM, adjust-
ments were made to the datum, transitioning from ellipsoid 
height to geoid height. This meticulous correction process 
ensures alignment and compatibility with existing geospatial 
data standards. The resulting combined DEM, augmented by 
the integration of data from the CARTOSAT DEM, served 
as a pivotal tool in enhancing hydrodynamic simulation 
accuracy and precision.

Flow hydrograph generated from hydrological 
modeling

Flood hydrographs provide a visual representation of how 
a drainage basin reacts to precipitation events. In this study, 
flood hydrographs were meticulously crafted utilizing 
the Soil Conservation Service Curve Number (SCS-CN) 
approach within the HEC-HMS model. This approach 
enabled the modeling of the response of both the main Rel 
River and one of its major tributaries to the rainfall patterns 
observed during the 2017 event (Fig. 12).

The HEC-HMS model was employed to generate hydro-
graphs for two distinct basins: W370 representing the main 
river basin, and W360 representing a significant tributary. 
These basins were characterized by unique Curve Number 
(CN) values, reflecting their land cover, soil characteristics, 
and impervious surfaces. Specifically, the weighted curve 
numbers calculated for W370 and W360 were 71.67 and 
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Fig. 10   Hourly rainfall derived from NASA-GPM satellite data with the help of Google Earth Engine period from July 23, 2017, to July 26, 
2017

Fig. 11   10 cm * 10 cm high-resolution DEM of Dhanera city gener-
ated from UAV survey technique



	 Applied Water Science (2024) 14:187187  Page 14 of 25

73.01, respectively, indicating a moderately high runoff 
potential within these catchments.

The resulting flood hydrographs depicted peak flow 
rates of 5838 m3/s for basin W370 and 4069 m3/s for basin 
W360. These values underscore the significant flow dynam-
ics within these hydrological systems during the 2017 event. 
Importantly, these flood hydrographs served as critical 
upstream boundary conditions for subsequent hydrodynamic 
simulations, providing essential input parameters for mod-
eling downstream inundation scenarios with greater accu-
racy and precision.

Hydrodynamic assessment of dam breach flooding

In this study, we conduct a comprehensive assessment of 
the 2017 flood event utilizing 2D hydrodynamic modeling 
of dam breach unsteady flow. The simulation spans from 
July 23, 2017, at 20:00 to July 24, 2017, at 23:00, capturing 
critical temporal and spatial dynamics of the flooding event. 
Key parameters such as water depth, velocity, surface eleva-
tion, and inundation area are extracted from the simulation 
results, providing valuable insights into the extent and sever-
ity of the flooding.

Furthermore, we focus on the breach analysis of the 
Jetpura dam, employing a 2D framework within the HEC-
RAS 6.1 simulation model. The dam's storage capacity is 

reported to be 25.02 lakh m3, with a high flood level reach-
ing 252.50 m RL. Through rigorous investigation, including 
consultation with local residents and verification via satellite 
imagery, it was confirmed that the dam breach occurred over 
a span of 210 m within a 10 min on July 24, 2017, around 
07:00 a.m.

These validated parameters are subsequently utilized 
for the simulation work. By integrating data obtained from 
various sources, including Google Earth imagery, we gener-
ate detailed maps depicting water surface elevation, depth, 
velocity, and inundation areas using ArcMap. This compre-
hensive approach allows us to accurately assess the impact 
of the dam breach, providing critical information for disaster 
mitigation and management efforts.

Water Depth The analysis reveals significant variations 
in water depth across the affected areas. Notably, within the 
dam storage vicinity, depths peak at 12 m (Fig. 13), while 
certain stretches of the river exhibit depths ranging from 7 to 
8 m. Extensive inundation, covering approximately 24 km2, 
is characterized by depths between 1 and 1.5 m. Out of the 
total area of 126 km2, 21.6 km2 and 15.4 km2 experience 
inundation depths of 1.5–2 m and 2 to 2.5 m, respectively. 
This detailed depth information serves as a cornerstone for 
developing emergency evacuation strategies, providing cru-
cial insights for decision-makers.
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Fig. 12   Flood hydrograph of watershed W370 and W360 starting from 23rd July 20:00 to 25th July 22:00 of 2017 event
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Water Inundation The inundation map derived from the 
dam break simulation delineates a total inundated area of 
126 km2 (Fig. 14). The onset of the deluge is marked by 
inundation at Mewada village at 00:00 h on July 24, 2017, 
followed by subsequent inundation events. Rampura Mota 
village succumbs to flooding by 01:00 h on the same day, 
while Nagala, Rajoda, Malotra, and Sera villages witness 
inundation by 4:00 p.m. On July 24, 2017, Dhanera was 
completely submerged by 8:00 p.m., with Sankad, Jorapura, 
Dhakha, and Rampura villages experiencing inundation by 
11 a.m. This chronological inundation progression is invalu-
able for decision-makers in formulating evacuation plans and 
issuing timely notifications to mitigate potential fatalities.

Water Surface Elevation Fig. 15 illustrates water surface 
elevations relative to the main sea level. This mapping pro-
vides crucial data for understanding the spatial distribution 
of floodwaters and assessing potential risks to infrastructure 
and communities.

Velocity of Flow Analysis of flow velocities, as depicted 
in Fig. 16, highlights significant variations in flow dynam-
ics. Upstream regions exhibit higher velocities, reaching 

5–6.5 m/s, while downstream velocities range from 1.5 to 
2.5 m/s. The average water velocity ranges from 1 to 2 m 
per second, providing essential information for assessing the 
intensity and speed of floodwaters across different sections 
of the river.

Model performance evaluation

To assess the effectiveness of the model, we conducted a rig-
orous LR and SVR analysis comparing observed and simu-
lated flow and water level data obtained from the Dhanera 
bridge. The results of this analysis provide valuable insights 
into the model's accuracy and reliability in predicting flood 
dynamics. Mean Absolute Error (MAE), Root-Mean-Square 
Error (RMSE), and R-Square (R2) were used to identify the 
performance of the HEC-RAS model.

Comparison between observed and simulated water level

To compare observed and simulated water levels, the LR 
and SVR techniques were used. A comparison of LR and 

Fig. 13   Maximum water depth map derived from 2D hydrodynamic dam breach modeling
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SVR for observed and simulated water levels indicates sig-
nificant differences in model performance. In the initial 
analysis, the SVR model's Root-Mean-Square Error (RMSE) 
was minimized at a C value of 1000 (Fig. 17), suggesting a 
significant agreement between observed and simulated water 
levels. LR provides a Root-Mean-Square error (RMSE) of 
2.78 m, suggesting a modest amount of prediction inaccu-
racy; however, SVR drastically reduces the RMSE to 0.28 m, 

displaying greatly increased accuracy in forecasting water 
levels.

Similarly, the R-square score for LR is 0.82, indicating a 
decent fit of the model to the data, whereas SVR has a higher 
R-square of 0.86, indicating greater explanatory power and 
capacity to capture the variance in observed water levels. 
Furthermore, the Mean Absolute Error (MAE) for LR is 
calculated to be 2.75 m, but SVR obtains a significantly 

Fig. 14   Water inundation scenario starting from 24th July 00:00 to 11:00 of 2017 event derived from 2D hydrodynamic dam breach modeling
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lower MAE of 0.2 m, demonstrating its greater accuracy in 
forecasting water levels with less average absolute discrep-
ancies between observed and simulated values. A scatter 
chart based on LR and SVR of observed and simulated water 
levels graphically demonstrates the model's performance 
(Fig. 18a and b). Overall, SVR is better than LR by pro-
viding a good correlation between observed and simulated 
water levels at the Dhanera bridge gauge station (Fig. 19).

Comparison between observed and simulated water flow

The comparison of actual and simulated flow using LR and 
SVR provides light on the effectiveness of both methods for 
modeling water flow at the Dhanera bridge gauge station. 
The SVR model's Root-Mean-Square Error (RMSE) was 
minimized at a C value of 100 (Fig. 20), suggesting a signifi-
cant agreement between observed and simulated water flow.

The linear regression approach produced a Root-Mean-
Square Error (RMSE) of 652.71, but SVR performed 
better with an RMSE of 254.09. This shows that SVR 

provided a more accurate description of the observed 
flow than linear regression. Linear regression achieved 
an R-squared score of 0.87, whereas SVR had a slightly 
higher R-squared of 0.91. The coefficient of determina-
tion (R-squared) reflects the proportion of the variation 
in the dependent variable that is predictable from the 
independent variable. This suggests that SVR captured a 
greater share of the variability in the observed flow data, 
showing a higher goodness of fit than linear regression. 
Furthermore, while calculating the Mean Absolute Error 
(MAE), which evaluates the average absolute difference 
between observed and predicted values, linear regres-
sion had an MAE of 494.35, but SVR had a significantly 
lower MAE of 180.75. This means that SVR produced 
flow closer to the observed values on average, demon-
strating its higher accuracy at the Dhanera bridge gauge 
station (Fig. 21a and b). A scatter chart based on linear 
regression and SVR of observed and simulated water 
levels graphically demonstrates the model's performance 
(Fig. 22).

Fig. 15   2D hydrodynamic dam breach modeling simulated water surface elevation map
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Discussion

Flood control, assessment, and management are complex 
endeavors, exacerbated by the multifaceted nature of flood 
events influenced by various climatic and geographic fac-
tors. The integration of advanced technologies and mode-
ling techniques has revolutionized flood risk measurement, 
enhancing effectiveness and efficiency in flood manage-
ment (Flood Risk Discussion Paper 2019). For instance, 
(Matgen et al. 2007) utilized Synthetic Aperture Radar 
(SAR)-derived flood coverage maps and precise topo-
graphic data to generate detailed water depth maps for the 
River Alzette in Luxembourg, showcasing the potential of 
remote sensing in flood modeling.

Similarly, (Borah et al. 2018) employed SAR data to 
delineate inundation zones in Kaziranga National Park, 
demonstrating the applicability of remote sensing in 
identifying vulnerable areas prone to flooding. Moreover, 
(Pathan et al. 2022a) effectively utilized 2D HEC-RAS-
based hydrodynamic modeling to simulate various flood 
scenarios, providing valuable insights for flood risk man-
agement and mitigation planning.

The significance of data resolution, particularly the mesh 
grid size, cannot be overstated in flood simulation models 

(Pathan et al. 2022b). A finer mesh grid ensures model sta-
bility and accuracy, enhancing the reliability of flood pre-
dictions. Additionally, (Trambadia et al. 2022) leveraged 
open-source data, including SRTM and ALOS DEMs, for 
1D hydrodynamic modeling, emphasizing the importance 
of utilizing diverse data sources for comprehensive flood 
analysis.

However, the computational demands associated with 2D 
hydrodynamic models pose challenges, limiting their appli-
cation to scenarios requiring real-time forecasts or extensive 
simulations (do Lago et al. 2023). To address this, emerging 
technologies such as deep learning and conditional genera-
tive adversarial networks (cGAN) offer promising avenues 
for predicting floods in areas with variable border condi-
tions, leveraging large datasets for accurate modeling (do 
Lago et al. 2023).

Furthermore, continuous simulation approaches, as advo-
cated by (Acuña and Pizarro 2023), provide flood managers 
with comprehensive time series data, augmenting traditional 
flood statistics with detailed temporal insights. This holistic 
approach enables a deeper understanding of flood dynam-
ics, facilitating proactive measures for flood mitigation and 
response. In this study comparison between observed and 
simulated data was made using SVR and LR for simulating 

Fig. 16   Velocity map derived from 2D hydrodynamic dam breach modeling
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water level and water flow dynamics; the results highlight 
the superior performance of SVR in terms of accuracy 
metrics such as RMSE, R-squared, and MAE. The lower 
RMSE and MAE values, coupled with the higher R-squared 
value, indicate that SVR provides more accurate and reliable 
results of flow dynamics compared to linear regression. This 
underscores the importance of leveraging advanced mode-
ling techniques like SVR, particularly in data-scarce regions, 
to improve flood management practices.

Recent advancements in machine learning and data 
assimilation techniques have further elevated the efficacy 
of flood risk assessment. Techniques such as Support Vector 
Regression (SVR) and Artificial Neural Networks (ANNs) 
have shown significant promise in predicting flood events 
with high accuracy (Rezaeianzadeh et al. 2014; Pradhan 
et al. 2020). SVR, for instance, excels in handling nonlinear 
relationships in hydrological data, providing robust predic-
tions of water levels and flow dynamics (Khan and Couli-
baly 2006). On the other hand, the integration of ANNs with 
hydrological models has enabled more nuanced simulations, 
capturing the complexity of flood processes more effectively 
(Mosavi et  al. 2018). Additionally, ensemble modeling 
approaches that combine multiple machine learning algo-
rithms have emerged as powerful tools, offering enhanced 

predictive performance and uncertainty quantification (Darji 
et al. 2023). These methodologies are particularly beneficial 
in regions with limited data availability, where traditional 
models may struggle. Moreover, the synergy between remote 
sensing technologies and machine learning frameworks has 
opened new avenues for real-time flood monitoring and early 
warning systems, thereby significantly improving the resil-
ience of flood-prone communities (Singh et al. 2023). Such 
interdisciplinary approaches underscore the critical role of 
continuous innovation and collaboration in advancing flood 
management practices and mitigating the adverse impacts 
of flooding.

In light of these advancements, the proposed approach 
in this study, integrating high-resolution satellite imagery, 
UAVs, and Google Earth Engine, represents a significant 
stride forward in flood modeling (Flood Risk Discussion 
Paper 2019). By leveraging cutting-edge technologies 
and innovative modeling techniques, it holds promise for 
enhancing flood risk assessment, management, and mitiga-
tion strategies. However, ongoing research and collaboration 
are essential to address existing challenges and fully harness 
the potential of these advancements in safeguarding com-
munities against the devastating impacts of flooding.

Fig. 17   RMSE for different C values in SVR for water levels
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Fig. 18   Comparison of observed and simulated water level at Dhanera bridge gauge station using a linear regression, b SVR
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Fig. 19   Model performance of 
observed and simulated water 
level using linear regression 
and SVR
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Fig. 20   RMSE for different C values in SVR for water flow
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Fig. 21   Comparison of observed and simulated water flow at Dhanera bridge gauge station using a linear regression, b SVR
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Conclusion

An integrated novel approach to hydrodynamic modeling 
of dam breach floods, incorporating satellite imagery, 
Unmanned Aerial Vehicles (UAVs), and Google Earth 
Engine (GEE), holds significant promise for enhancing the 
capability to forecast downstream inundation scenarios, 
especially in data-scarce regions. The findings of this study 
underscore the high accuracy and potential real-world appli-
cability of the proposed approach, laying the foundation for 
its integration into flood risk assessment and management 
practices.

The utilization of DJI Phantom 4 Pro and Pix4D Map-
per technology in the UAVs survey demonstrated its effi-
cacy in providing high-resolution DEMs for urban areas, 
facilitating precise flood modeling and mitigation planning 
efforts. Additionally, the integration of NASA Global Pre-
cipitation Measurement (GPM) data has proven invaluable 
in obtaining rainfall information for runoff studies, par-
ticularly in regions where data scarcity poses a challenge.

Furthermore, the employment of 2D HEC-RAS-based 
hydrodynamic modeling has empowered decision-makers 
to simulate floods in a two-dimensional space, enabling 
the creation of decision-making maps encompassing criti-
cal parameters such as water surface height, flood inunda-
tion extent, and flood velocity. These maps serve as indis-
pensable tools for comprehensive flood risk assessment 
and management strategies.

In conclusion, this study underscores the pressing need 
to integrate advanced modeling approaches into flood 
management practices, not only for dam breach events but 
also for natural floods. By utilizing an integrated approach 
that incorporates satellite data, Unmanned Aerial Vehicles 
(UAVs), and Google Earth Engine (GEE), we can develop 

more resilient and adaptive flood mitigation strategies to 
address the increasingly complex and unpredictable hydro-
logical challenges we face. It is essential to emphasize that 
this study focused on a single dam, limiting the general-
izability of the findings. Future research should aim to 
expand the scope to encompass multiple dams and diverse 
geographical settings to further refine and validate the pro-
posed approach. Continued research efforts and collabora-
tion are imperative to enhance our collective capacity to 
safeguard communities from the devastating impacts of 
flooding and ensure sustainable flood management prac-
tices in the face of climate change.
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