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Abstract
The ubiquitous presence of MPs in water bodies presents an escalating concern, as these minuscule plastic particles could 
ultimately reach humans via the drinking water supply. This study explores the efficacy and underlying mechanisms of remov-
ing PE and PVC MPs using Abelmoschus esculentus seeds (commonly known as okra), a natural and environmentally benign 
coagulant. Through experiments conducted under varying conditions—such as pH level, coagulant dosage, MP concentration, 
and EC—using the standard method and a Jar test apparatus, the sedimentation rate was assessed. ZP analysis revealed that 
charge neutralization and bridging cause pivotal in enhancing the removal efficiency of MPs. FESEM and FTIR analyses 
corroborated the formation of new bonds during the interaction between the MPs and the okra seed-based coagulant. The 
findings indicate that the optimal parameters for PVC removal were a coagulant dosage of 70 mg/L, a pH of 10, and an MP 
concentration of 20 mg/L, achieving a removal efficiency of 80.11%. Conversely, for PE, the maximum removal efficiency 
of 64.76% was realized at a coagulant dosage of 70 mg/L, a pH of 3, and an MP concentration of 20 mg/L. Abelmoschus 
esculentus seeds offer a practical and eco-friendly option, potentially substituting chemical coagulants, to efficiently elimi-
nate MPs from aquatic environments.
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Abbreviations
PS	� Polystyrene
PVC	� Polyvinyl chloride
MPs	� Microplastics
EC	� Electrical conductivity
ZP	� Zeta potential
FESEM	� Field emission scanning electron microscopy
FTIR	� Fourier transform infrared
NOAA	� National oceanic and atmospheric 

administration
PAHs	� Polycyclic aromatic hydrocarbons

Introduction

Plastic has become an integral part of modern society, with 
its affordability and durability making it a material of choice 
across various industries (Frias and Nash 2019). This ubiq-
uity has led to the current era being dubbed the “Age of 
Plastics” (Zahmatkesh Anbarani et al. 2024). However, the 
excessive and indiscriminate use of plastic compounds has 
led to substantial environmental challenges, causing wide-
spread pollution and ecosystem degradation globally. Plastic 
production and disposal processes emit hazardous chemi-
cals, contaminating soil, water, and air. These contaminants 
threaten wildlife, destabilize ecosystems, and endanger 
human health by polluting food chains (Donuma et al. 2024; 
Yari et al. 2024).

Through mechanical, chemical, and biological decompo-
sition processes, plastics break down into micron-scale and 
nano-scale particles, collectively known as MPs (Bai et al. 
2024; Bajt 2021; Klein et al. 2018). According to NOAA, 
MPs are defined as plastic particles with a diameter of less 
than 5 mm (Jahanpeyma and Baranya 2024). These MPs 
can originate from primary sources, such as industrial pro-
duction, or secondary sources, where larger plastic items 
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degrade over time (Chaudhry and Sachdeva 2021). Once 
liberated or detached from their initial plastic products, 
MPs can navigate through watercourses and disperse across 
a wide array of environments. These include oceans, waste-
water treatment facilities, coastal regions, marine sediments, 
surface waters, freshwater ecosystems, and even glacial 
landscapes in the Arctic and Antarctic (Barari and Bonyadi 
2023; Zahmatkesh Anbarani et al. 2023b; Zhou et al. 2024).

Their small size and large surface area (Enfrin et al. 
2020; Yang et al. 2019) allow them to adsorb a range of 
hazardous compounds, including PAHs, cyanide (Bonyadi 
et al. 2012), pesticides (Pirsaheb et al. 2013), antibiotics 
(Li et al. 2018; Lotfi Golsefidi et al. 2023), polychlorinated 
biphenyls (Pathak et al. 2020), and heavy metals (Bai et al. 
2022; Zafarzadeh et al. 2021). This capability underscores 
the potential risk MPs pose to both terrestrial and aquatic 
ecosystems, as well as human health, due to their capacity to 
accumulate and concentrate these harmful substances. The 
ingestion or inhalation of MPs by marine organisms (Bot-
terell et al. 2019; Egbeocha et al. 2018) and even humans has 
raised significant ecological and health concerns. MPs have 
the unique capability to permeate cell membranes across 
various organs, leading to disruptions in the normal func-
tioning of critical biological systems. These pollutants affect 
the digestive, respiratory, nervous, and endocrine systems, 
potentially leading to systemic disruptions (Esmaeili Nas-
rabadi et al. 2023). In the digestive system, MPs can cause 
physical damage and alter the intestinal microbiome, impact-
ing digestion and potentially leading to secondary poisoning 
from adsorbed toxins. Respiratory issues arise from inhala-
tion of MPs, inducing inflammation and oxidative stress in 
the lungs, which can progress to chronic obstructive pulmo-
nary disease COPD and other respiratory conditions (Barari 
et al. 2024). The nervous system may also be affected indi-
rectly through systemic inflammation and oxidative stress, 
though direct links to neurological effects are still emerging. 
Endocrine disruption occurs due to MPs’ interference with 
hormone production and metabolism, leading to a range of 
health issues, including thyroid dysfunction and reproduc-
tive disorders (Bajt 2021; Kim et al. 2021; Shi et al. 2023).

Research indicates the presence of MPs in both surface 
water and sediment samples from various rivers across 
Iran, notably in the Zayandeh-rud River, where 588 items 
per kilogram of dry weight were detected (Behmanesh et al. 
2023; Rami et al. 2023). Moreover, MPs have been identified 
in the effluent of wastewater treatment plants, specifically 
in District 22 of Tehran, averaging 2.15 MPs particles per 
(Feizi et al. 2022). Among the various types of MPs found 
in water bodies, PS and PVC are of particular interest, as 
their densities are similar to that of natural water (Almujally 
et al. 2024; Fernández-González et al. 2022; Lee et al. 2021). 
Freshwater ecosystems have been increasingly recognized 

as an important source of MPs in the oceans, warranting 
greater attention (Lee et al. 2021).

Removal of pollutants from aquatic environments 
employs a variety of methods, including membrane reac-
tors (Mishra et al. 2022), rapid sand filtration (Bayo et al. 
2020), photocatalysis, absorption (Padervand et al. 2020), 
and coagulation processes such as flocculation (Gao and 
Liu 2022; Ma et al. 2019b). Biological treatments involv-
ing organisms like algae (Esmaili et al. 2023; Nasoudari 
et al. 2023) and yeasts (Anbarani et al. 2023; Mazloomi et al. 
2021) are also utilized. A notable observation from reviews 
indicates the successful removal of PS particles from water 
using polyaluminum chloride as a coagulant (Li et al. 2021; 
Liu et al. 2022).

The imperative to maintain environmental equilibrium, 
protect public health, and preserve the integrity of the 
food chain has propelled the investigation and adoption of 
natural coagulants as a compelling alternative to chemical 
options (Nasrabadi et al. 2023b). The use of natural, sustain-
able coagulants, such as starch, okra (Badawi et al. 2023) 
cellulose (Yu et al. 2016; Zhu et al. 2015), pectin (Ibarra-
Rodríguez et al. 2017), chitosan (Badawi et al. 2023), lignin 
(Couch et al. 2016), plant gum (Shahadat et al. 2017) and 
microbial flocculants (Zahmatkesh Anbarani et al. 2023a), 
has shown promising results in addressing this issue. In the 
present study, the highest removal efficiency of PE MPs was 
achieved at 84% using C. vulgaris (Eydi and Bonyadi 2023). 
The okra (Abelmoschus esculentus) plant from the Malva-
ceae family is known as gumbo or lady’s fingers (Sayyad 
et al. 2024). The plant has a straight stem, covered with webs 
and a height of 0.5 m, sometimes 2 m. Okra seed is rich in 
carbohydrates, tanen and contains a large amount of water-
soluble polysaccharides that can create very high viscosity 
in low concentrations (Yu et al. 2024). Okra polysaccharide 
is an acidic polysaccharide and consists of galactose, rham-
nose and galactonic acid. The polysaccharide content in okra 
seed extract is responsible for its viscous texture and exhibits 
promising coagulation properties. This suggests the pres-
ence of active sites capable of effectively adsorbing colloids 
during the coagulation-flocculation process (Agarwal et al. 
2001). These features render it a highly appealing choice 
for the removal of diverse pollutants, including MPs, from 
aqueous solutions (Chung et al. 2018; Lanan et al. 2021). 
In a study, okra polysaccharide removed 87% of MPs from 
water samples (Bhuju 2020). Okra seed is an effective coag-
ulant to remove turbidity (Fahmi et al. 2014). The ability of 
okra polysaccharides to form strong bonds with particles 
makes them a promising natural and sustainable solution for 
various particle removal applications, including wastewater 
treatment (Oladoja 2015).

Considering the numerous benefits of okra, it becomes 
crucial to utilize okra seeds for the removal of MPs such as 
PS and PVC. The main goal is divided into two objectives: 
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(1) to clarify the underlying coagulation mechanisms that 
facilitate the efficient removal of PVC and PS MPs, and 
(2) to thoroughly investigate the impact of various opera-
tional factors, such as pH, coagulant dosage, MP concen-
tration, and EC, on the overall removal efficiency of these 
contaminants.

Materials and methods

Chemicals and reagents

Chemicals with a purity level of 95%, including sodium 
hydroxide, hydrochloric acid, sodium chloride, and sodium 
sulfate, were procured from Merck, Germany. Additionally, 
Whatman filter paper with a pore size of 0.45 microns was 
sourced from Merck, Germany.

Preparation of microplastics

The PS MP used in this experiment was purchased in the 
form of transparent granules from Mashhad Tos Polymer 
Company. The PS granules were ground and sieved to obtain 
particles smaller than 100 µm. PVC MPs with a size of less 
than 85 µm were obtained from Mashhad Tos Polymer Com-
pany. To minimize potential interference and ensure proper 
contact between okra particles and MPs, the raw okra seeds 
were washed with distilled water. Subsequently, the materi-
als were dried for 12 h at 60 °C. The resulting MPs were 
then stored in a sealed container, protected from moisture 
and light, in a dark environment.

Preparation of okra seed

Okra was bought from a market in Mashhad. Iran. The 
seeds were manually removed from the pods. The seeds 

underwent a thorough cleansing process using laboratory-
distilled water to eliminate contaminants such as stones, 
plant debris, and dust, which may affect their integrity 
and quality. Following the washing step, the cleaned 
seeds were subsequently dried in an oven at 60 °C for 6 h 
(Fig. 1). After drying, the seeds were ground into a powder 
and were passed through a 400 µm sieve for granulation.

Coagulation experiments

Various parameters were considered to evaluate the removal 
efficiency of PVC and PS MPs by okra seeds. These param-
eters included the initial concentration of MPs (20, 50, 
100 mg/L), the dose of okra seed (10, 40, 70 mg/L), the 
pH levels (3, 7, 10), and EC (0.05, 2500–5000, > 5000 mS/
cm). The removal process was conducted using the jar 
test method (Richmond, VA 23228) at room temperature 
(25 ± 2 °C). The stirring speed was set to 150 rpm for 3 min, 
followed by 20 rpm for 20 min. Afterward, the suspension 
was transferred to a decanter funnel, and the formed flocs 
were allowed to settle undisturbed for a duration of 1 h. Fol-
lowing the settling period, the liquid above the settled flocs 
was filtered, and the filtrate was subsequently dried at 60 °C 
for a period of 24 h. The final weight of the filter paper was 
subtracted from the initial weight to determine the weight 
of the remaining MPs. The removal efficiency of MPs was 
calculated using the following formula:

where M1 represents the initial weight of MP before the 
removal process, M2 represents the weight of MP on a What-
man filter after the removal process, and W represents the 
mass of MP (Eydi Gabrabad et al. 2024).

(1)R (%) =
M

1
−M

2

W
× 100%

Fig. 1   a raw okra cut into pieces, b dried okra seeds
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Characteristics and measurements

The MPs and flocs that precipitated in the lower layer were 
collected for characterization. FTIR (FTIR/NIR FRONTIER 
model) was used to identify the functional groups present 
on the surfaces of okra seeds, MPs, and the bio-based floc-
culants. FESEM (Carl Zeiss model, Germany) was employed 
to investigate the surface morphology of the samples under 
study. ZP (Oxford model connected to a JEOL-JSM-5600 
SEM) was used to measure the surface charge and the 
amount of repulsion or attraction of the samples under study.

Statistical data analysis

The number of tests was determined employing a single-
factor experimental design. Within each trial, one variable 
was altered while the remaining variables were held constant 
at their optimal levels. Subsequent data analysis was con-
ducted utilizing SPSS version 22.0. ANOVA was executed to 
evaluate sample differences, applying a minimal significant 
difference criterion (P-Value < 0.05).s

Result and discussion

Effect of double‑layer compression

To elucidate the coagulation mechanism, it is imperative to 
investigate the process of charge neutralization during coag-
ulation. ZP assesses the electrostatic dispersion process and 
serves as an indicator of particle stability. It is influenced by 
several parameters, such as pH, solution conductivity, and 
particle concentration. Table 1 displays the ZP values of the 
MPs utilized in the coagulation experiments, as well as the 
ZP of the supernatant following the reaction. ZP values for 
PVC and PS were obtained as − 79.6 and − 78 mV, respec-
tively. After coagulation, the ZP of PVC at alkaline pH was 

− 52.4 mV, whereas under acidic conditions, the ZP of PS 
was approximately − 54.5 mV. The addition of okra seeds 
into the suspension diminishes the repulsive force acting 
between the particles, facilitating the formation of bio-based 
flocculants. As a result, these flocs gradually settle due to 
their heightened density, indicating the potential of okra 
seeds to impact the settling and subsequent removal of PVC 
and PS particles from the environmen (Zhang et al. 2021). 
The charge of the colloidal particles and the absolute value 
of the ZP of the MPs both decreased as a result of this pro-
cess, indicating charge neutralization and the compression 
of the electrical double layer of the MPs (Zhang et al. 2021). 
The final ZP in the PVC-okra seed system was closer to zero 
potential than that in the PS-okra seed system, illustrating 
that the charge neutralization in the PVC-okra seed system 
was more effective.

The presence of electrostatic repulsion between the MPs 
and the negatively charged coagulant indicates that charge 
neutralization is not the sole dominant mechanism at play. 
Most polyelectrolytes, like okra seeds, have hydrogen atoms 
that are covalently attached to a more electronegative atom 
or group such as carboxylic, amide, amine, and hydroxyl 
and can form hydrogen bonds with other electronegative 
atoms that have alone pair of electrons (Tosif et al. 2021). 
The availability of a large number of hydroxyl groups (polar 
agent) in the galactone chain increases the absorption of 
these polymers on the surface of the pollutant particles and 
also increases the bridging action between the pollutant 
(Koul et al. 2022). In addition, a mixture of polysaccharides 
such as galactomannan and galactan isolated from tannin 
seeds, cactus, Nirmali and Strychnos potatorum have the 
ability to reduce turbidity (Dwarapureddi and Saritha 2016; 
La Mer 1966). Furthermore, the decrease in electrophoretic 
mobility after the reaction in Table 1, can be related to the 
efficiency of the coagulation processes for MP removal 
(Martic et al. 2022). An efficient coagulation process can 
effectively agglomerate MPs and lead to a decrease in their 
electrophoretic mobility (Azizi et al. 2023).

Effect of adsorption

In addition to charge neutralization and bridging, adsorption 
plays a crucial role in the coagulation process. As shown 
in Fig. 2, the joint morphology of MPs and loaded flocs 
in the PVC + okra seed system was analyzed by FESEM. 
Based on Fig. 2a, it can be observed that PVC exhibits a 
non-uniform surface with spherical chains, along with sig-
nificant valleys and grooves. These surface characteristics of 
PVC are advantageous (Suganya et al. 2016), as they provide 
a substantial surface area and active sites for adsorption. 
This enables PVC to effectively carry other particles and 
pollutants (Ren et al. 2021). Yu et al. (2020) demonstrated 
that PVC may possess a higher number of adsorption sites 

Table 1   Zeta potential of okra seed, PVC and PS MPs before and 
after coagulation

Sample name Zeta potential Electrophoretic 
mobility

PVC − 79.6 mV − 0.000619 cm2/
Vs

PS − 78 mV − 0.000606 cm2/
Vs

okra seed − 49 mV − 0.000380 cm2/
Vs

PVC + okra seed − 52.4 mV − 0.000406 cm2/
Vs

PS + okra seed − 54.5 mV − 0.000423 cm2/
Vs
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compared to other MPs due to its rough surface and internal 
wrinkles (Yu et al. 2020).

As shown in Fig. 2b, the okra structure looks spongy and 
compact, and this porosity is caused by transverse connec-
tions. This porous structure prepares minimal matrix space, 
enabling the ingredients to be incorporated more efficiently 
into the tablet (Zaharuddin et al. 2014). As depicted in 
Fig. 2c, the flocs formed after the elimination process con-
sist of a combination of okra seeds and PVC particles. The 
entanglement and accumulation of MPs and okra seeds are 
evident, signifying the adsorption and bridging of MPs by 
okra seed cells (Khan et al. 2023). The interaction between 
the pores and gaps present in okra seed particles and the 
uneven surface of MPs results in the formation of larger 
flocs. Consequently, these flocs settle at an accelerated rate 
due to their increased size and weight (Fahmi et al. 2014). 
In conclusion, the adsorption of PVC onto the okra particles 
as well as the bridging effect of the okra seed contributes 
to the effective coagulation and sedimentation of the MPs.

From Fig. 3d, it can be observed that PS particles have 
irregular cracks on their surfaces (Kurniawan et al. 2023; 
Zhou et al. 2021). Figure 3f presents the FESEM image 

depicting the coagulation of PS particles post-treatment with 
okra seeds. The image clearly demonstrates the entangle-
ment and accumulation of the MP particles and okra. This 
visual evidence indicates the effective adsorption and bridg-
ing of the PS MPs by the okra seed (Zhou et al. 2021). The 
interaction between the porous and spongy structure of the 
okra seed and the uneven surface of the PS MPs appears to 
be a key factor driving the coagulation process. Also Kurni-
awan et al. (2023) stated that the irregular cracks of PS par-
ticles lead to an increase in the contact surface with polymer 
particles. (Kurniawan et al. 2023; Wang et al. 2024).

FTIR analysis was used to investigate the chemical com-
position and interactions between the PVC and the okra 
seeds. According to Fig. 4, the FTIR spectrum of the okra 
seeds reveals the presence of several functional groups that 
contribute to the coagulation mechanism. The broad peak 
observed at 3423.140 cm−1 indicates the presence of aro-
matic sugar groups with O–H as the main functional group 
(Zaharuddin et al. 2014). These hydrophilic O–H groups act 
as active sites, facilitating the binding of colloidal particles 
and metal ions (Di Bernardo and Dantas 1993). The peak at 
2927.64 cm−1 corresponds to the C–H stretching vibrations 

PVC

Okra seed

Fig. 2   FESEM of a PVC, b okra seed and c bio-based flocculants
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PS

Okra seed

Fig. 3   FESEM of a Ps and b Bio-based flocculants

Fig. 4   FTIR spectrum of PVC, okra seed and bio-based flocculants
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of the methyl and methylene groups present in the cellu-
lose and hemicellulose components, such as galactose and 
rhamnose (Zaharuddin et al. 2014). Additionally, the peak 
at 1631.102 cm−1 is attributed to the C=O stretching vibra-
tions of carboxylic acids, esters, and amides, indicating the 
possible attachment of N, N-methylene bisacrylamide to the 
okra structure (Rahman et al. 2018). The presence of these 
functional groups suggests that the okra seeds possesses 
the necessary characteristics to effectively interact with and 
coagulate the PVC MPs (Wang et al. 2023).

In the infrared spectrum related to PVC in Fig. 4, a promi-
nent peak is observed at 3669.81 cm−1, which corresponds to 
the stretching vibrations of the O–H hydrogen bond (Lu et al. 
2022). Additionally, peaks at 2974.57 and 2912.97 cm−1 are 
attributed to the C–H stretching vibrations, while the peak at 
1331.18 cm−1 is associated with the C–Cl stretching vibra-
tions (Wu et al. 2014). Figure 4 indicates that the peak corre-
sponding to the O–H groups decreased to 3408.73 cm1. Fur-
thermore, the CH2 asymmetric stretch exhibits a significant 
decrease, measuring 2918.183 cm−1, compared to the peak 
observed prior to the removal process (He et al. 2023). The 
peak at 1639.183 cm−1 is related to amine groups in okra, 
which reduce the repulsive force between PVC particles. 
The peak corresponding to the O–H group decreased from 

1446.121 to 1434.48 cm−1. This reduction may be attrib-
uted to the formation of flocs caused by the adsorption of 
PVC on okra. When okra is adsorbed on PVC, the molecules 
interact with chlorine atoms in PVC, leading to a peak shift 
from 833.11 to 827.24 cm−1. The appearance of C–H and 
O–H groups after the adsorption process shows that okra 
molecules are connected to PVC through hydrogen bonding 
(Atugoda et al. 2020). Hydrophilic groups, the cellulose and 
hemicellulose components, and the carbonyl amide groups 
in the okra seed play a crucial role in the coagulation of the 
PVC MPs (Kim et al. 2020). Amide, amine, carbonyl, and 
methylene groups play a crucial role in charge neutraliza-
tion and point flocculation mechanisms during coagulation-
flocculation processes (Chum 2020; Magalhães et al. 2021).

The FTIR spectrum of the PS in Fig. 5 shows promi-
nent peaks around 3438.10 and 2915.9 cm−1 are attributed 
to –OH and C–H stretching vibration, respectively. The 
peak in the region of 1745.143 cm−1 is related to the C=O 
group (da Silva et al. 2008). The peak at 1602.169 cm−1 
was attributed to the C=C stretching band. The presence 
of absorption peaks at 906.45, 753.91, and 533.89 cm−1 is 
related to C–H bending band, C–H stretching band, and C–H 
stretching band, respectively. The peaks at around 841.91 
and 753.91 cm−1 corresponded to the substitution of the 

Fig. 5   FTIR spectrum of PS and Bio-based flocculants
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benzene ring (Fang et al. 2010; Zhou et al. 2021). After 
the elimination process in Fig. 5, the peak corresponding to 
O–H groups in Fig. 5 was reduced to 3426.33 cm−1. In the 
obtained spectrum, the asymmetric stretching of CH2 has 
increased to 2936.44 cm−1, indicating a significant change 
compared to the peak observed prior to the removal pro-
cess. Additionally, the peak associated with the C=O group 
has decreased from 1493.08 to 1449.44 cm−1. This reduc-
tion in intensity could be attributed to the formation of clots 
resulting from the adsorption of PS on okra. The peak at 
1631.02 cm−1 is related to the amine groups in okra, which 
can reduce the repulsive force between the PS particles and 
contribute to the bridging between the particles, which is 
responsible for the coagulation-flocculation process (Ma 
et al. 2022). The benzene ring’s substituted group, which 
is characteristic of PS, exhibited weak absorption peaks at 
752.46 and 829.49 cm−1. These peaks decreased follow-
ing the coagulation process (Zhou et al. 2021). Also, the 
presence of polysaccharides in okra has been shown to help 
in bridging between particles, which is responsible for the 
coagulation-clotting process (Kim et al. 2020). Functional 
groups like the hydroxyl, the carbonyl, and the amine in the 
okra seed play a crucial role in the coagulation of the PS. 
Fard et al. (2021) highlighted that polysaccharides, proteins, 
carbonyl, carboxyl, and hydroxyl groups facilitate the bridg-
ing mechanism in coagulation processes (Fard et al. 2021). 
Similarly, another study emphasized the importance of 
amine, carboxyl, and hydroxyl groups in the charge neutrali-
zation mechanism during coagulation processes (Igwegbe 
et al. 2021).

Effect of effective factors on coagulation

Effects of pH on removal efficiency

After investigating the coagulation mechanism, the study 
also examined the impact of experimental conditions on the 
removal efficiency of MPs. The pH of the solution has a 
critical effect on the removal of MPs through coagulation 
and controls the surface charge of the particles (Han et al. 
2020). Hence, it is crucial to elucidate the influence of pH 
on the removal efficiency. Figure 6 illustrates the removal 
efficiencies of PVC and PS MPs by the okra seed at various 
pH levels. In the PVC-okra seed system when the initial pH 
increased from 3 to 10, the removal efficiency of PVC was 
increased to 63.45% and the removal efficiency of PS is at 
an initial pH level of 3 about 59.8%, while those in the con-
trol groups without okra seed were 32.1 and 23.6%, respec-
tively. These indicated that okra seed played an important 
role in the MPs removal. Throughout all stages of testing, 
the removal efficiency of PVC consistently outperformed 
that of PS. Studies have shown that PVC is more suscepti-
ble to electrochemical deposition and flotation, with lower 

electrical resistivity, making settling easier (Wu et al. 2014). 
Statistical analysis demonstrated a significant correlation 
between the removal efficiency of MPs and pH for both PVC 
and PS (P-value < 0.003 and P-value < 0.02, respectively). 
Theoretically, at low pH levels, H + ions compete with 
organic ligands and active compounds from okra, thereby 
limiting their ability to establish bonds with the MPs (Kim 
et al. 2020). Conversely, at pH values above the isoelectric 
point, where surface charges are neutralized, the net charge 
of the MPs becomes negative, causing the polymer chains 
to expand. This expansion facilitates a bridging mechanism 
between the particles, promoting their removal. In general, 
the swelling of okra seed mucilage increases as the pH level 
rises. This phenomenon can be attributed to the enhanced 
ionization of the -COOH groups present in the mucilage at 
higher pH values. Consequently, there is a slight improve-
ment in the removal efficiency of MPs in alkaline conditions 
compared to acidic conditions (Elkhalifa et al. 2021).

Moreover, it has been observed that the average size of 
flocs formed in alkaline conditions is larger compared to 
acidic conditions (Khan et al. 2023). This larger floc size is 
more favorable for effective sweep and sedimentation pro-
cesses. Azizi et al. (2023) found that the rate of PS MPs 
removal by coagulants at pH 3 was substantially higher com-
pared to other pH levels (Azizi et al. 2023).

Effects of microplastic concentration on removal efficiency

MP concentration is another factor that affects the removal 
efficiency. Figure 7 shows that as the concentration of PVC 
and PS increases from 20 to 100 mg/L, the removal effi-
ciency decreases. The removal rate of PVC and PS in the 
control group without okra seed was 33% and 25.09%. Fur-
thermore, a statistically significant difference was observed 
between the removal efficiency and MP dosage for both PVC 
and PS, respectively (P-value < 0.03, P-value < 0.04). In a 
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Fig. 6   Removal efficiency of PVC and PS MPs under various pH. 
[PVC]0 = 50 mg/L, [PS]0 = 50 mg/L; [okra seed]0 = 40 mg/L
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study, it was confirmed that the removal efficiency of poly-
ethylene MPs using Chlorella vulgaris algae decreased by 
increasing the concentration of PE from 250 to 400 mg/L 
(Nasrabadi et  al. 2023a). The findings suggest that the 
removal efficiency of MPs is maximized within an opti-
mal concentration range. However, beyond this range, the 
removal efficiency starts to decrease. At higher concentra-
tions, the MPs can form a protective layer around them-
selves, reducing the contact between the MPs and okra 
seeds. Additionally, the repulsive forces between the parti-
cles at high concentrations contribute to their stability, mak-
ing their removal more challenging (Nasrabadi et al. 2023a; 
Tang et al. 2022). Ziembowicz et al. (2023) discovered that 
during the coagulation of polyethylene and PVC in water 
using aluminum salt, an increase in MPs concentrations 
resulted in a slight decrease in removal efficiency (Ziembo-
wicz et al. 2023).

Effects of coagulant concentration on removal efficiency

The effect of varying the okra seed coagulant dosage from 
10 to 70 mg/L on the removal of PVC and PS MPs was 
evaluated. The results presented in Fig. 8 demonstrate a 
direct relationship between the dose of the coagulant and 
the removal efficiency.

By decreasing the coagulant dose to 10 mg/L, the removal 
efficiency of PVC and PS reached its lowest level of 54.62 
and 40.14%, respectively. On the other hand, when the okra 
seed dose was increased to 70 mg/L, the removal efficiency 
significantly improved, reaching 64.76% for PS and 80.11% 
for PVC while those in the control groups without okra seeds 
are 36 and 32.6%, respectively. Statistical analysis revealed a 
statistically significant difference between the removal effi-
ciency and coagulant dosage for PS (P-value < 0.01), but not 
for PVC (P-value < 0.726). These findings can be attributed 
to the mechanism of coagulation using the okra seed coagu-
lant. At low coagulant doses, the formation of smaller and 
less dense flocs occurs, leading to poor sedimentation of the 
MPs. As shown in Fig. 4, the FTIR analysis of okra confirms 
the presence of carbonyl and hydroxyl groups, which are 
major components of carbohydrate molecules (Fard et al. 
2021). These functional groups can be adsorbed on the sur-
face of suspended colloids, allowing for the formation of 
bridges between the particles. In systems where the bridg-
ing mechanism is responsible for coagulation, increasing the 
dose of the coagulant generally improves the coagulation 
process (Kim et al. 2020). Therefore, the increase in okra 
seed coagulant dosage led to the formation of larger and 
more densely packed flocs (Jones and Bridgeman 2016), 
resulting in enhanced sedimentation and increased removal 
efficiency for both PVC and PS. Zhou et al. (2021) found 
that charge neutralization was dependent on coagulant and 
that removal efficiency increased with coagulant dosage 
because positive coagulant charges gradually decreased the 
ZP of MPs (Zhou et al. 2021).

Effects of electrical conductivity changes on removal 
efficiency

The study investigated the effects of various ions present 
in water samples on the removal efficiency of PVC and PS 
MPs. As shown in Fig. 9, the presence of NaCl being the 
most common compound in aquatic environments had little 
influence on the removal efficiency of MPs. This finding is 
consistent with a previous study (Ma et al. 2019a), in which 
the effect of inorganic salts on the coagulation process is 
influenced by the charge of the ions present in the solution 
(Jia et al. 2017). In contrast, the results indicate that SO4

2- 
had a certain inhibitory effect on the removal efficiency of 
MPs (Duan and Gregory 2003). This is likely due to the 
fact that SO4

2 -is not useful for the binding of coagulant 

R
em

ov
al

 e
ffi

ci
en

cy
 %

Dosage of MPs (mg /L)

Fig. 7   Removal efficiency of PVC and PS MPs under various concen-
tration MPs. [PVC pH]0 = 10, [PS pH]0 = 3; [0kra seed]0 = 40 mg/L
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Fig. 8   Removal efficiency of PVC and PS MPs under coagulant 
various dosage. [PVC pH]0 = 10, [PS pH]0 = 3; [ PVC]0 = 20  mg/L, 
[PS]0 = 20 mg/L
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hydrolyzates and MPs (Zhou et al. 2021). When the com-
bination of Na2SO4 and NaCl was present, the removal effi-
ciency of MPs was further lowered. As the salinity increases, 
Na+ cations can easily attach to the negatively charged MPs 
through electrostatic interaction, preventing the adsorp-
tion of okra by the MPs (Perren et al. 2018). Statistically, a 
significant difference was found between the removal effi-
ciency and EC for both PVC and PS MPs (P-value < 0.01 
and P-value < 0.03, respectively). In summary, the findings 
of the study indicate that NaCl exhibits minimal impact on 
the removal efficiency of MPs. However, the presence of 
SO4

2- and the combination of Na2SO4 and NaCl demonstrate 
inhibitory effects on the removal process of MPs.

Future prospective

We propose the integration of waste-to-energy technology, 
specifically pyrolysis, as a promising method for address-
ing the disposal of MPs. Pyrolysis offers a transformative 
approach by converting MPs waste into valuable products, 
such as oils and gases, while minimizing environmental 
impacts. By incorporating pyrolysis into the waste manage-
ment process, we can effectively address the issue of MPs 
disposal, contributing to a more sustainable approach while 
simulta neously harnessing energy from the process. This 
indicates a promising direction for future research and devel-
opment in the field of MPs waste management.

Conclusion

In summary, this research elucidates the removal perfor-
mance and mechanism of PVC and PS MPs through the 
coagulation process utilizing okra seed. The study reveals 
that okra seed exhibits a notable removal performance on 

both types of MP and with PVC displaying a higher removal 
efficiency compared to PS. The coagulation process involves 
charge neutralization and bridging phenomena. According to 
the FESEM images, agglomeration adsorption was observed 
in the system. Furthermore, the FTIR spectra indicate the 
formation of new bonds during the interaction between the 
MPs and coagulants. The removal efficiencies of PVC and 
PS were the largest at pH levels of 10 and 3, respectively. 
The increase in MP concentration was conducive to the 
decreased removal performance. The increase in coagulant 
dos was conducive to the improved removal performance of 
MPs. NaCl and SO4

2− had inhibitory and promoting effects 
on the removal efficiency of MPs, respectively.
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