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Abstract
The effective removal of dye pollutants from water and wastewater is a key environmental challenge. The present study is 
developed to investigate alizarin (ALI) dye and its derivations, including Alizarin blue (ABL), Alizarin purpurin (APU), 
Quinalizarin (AQU), Alizarin cyanin (ACY), and Alizarin Red S (ARS) removal process from water and wastewater sources, 
using covalent organic frameworks (COFs) nanoadsorbents. Herein, we explore the process of how dye molecules are 
absorbed onto COFs with precise supramolecular structures. The molecular dynamics (MD) and well-tempered metadynamics 
(WTMtD) simulations are used to investigate this process in aqueous solution. From the results obtained, it is clear that the 
intermolecular van der Waals (vdw) and π-π interactions have a significant role on accelerating the interaction between dye 
molecules and the COF nanostructures. This ultimately leads to the creation of a stable dye-COF complex. The dye-adsor-
bent average interaction energy value reaches around APU-COF1=−604.34, AQU-COF1=-515.25, ABL-COF1=−504.74, 
ALI-COF1=−489.48, ARS-COF1=−475.81, ACY-COF1=−273.82, AQU-COF2=−459.76, ALI-COF2=−451.46, ABL-
COF2=−405.90, APU-COF2=−367.55, ACY-COF2=−287.89, ARS-COF2=−210.63 kJ/mol for dye/COF1 and dye/COF2 
complexes, respectively. The primary interaction between dye and COFs is attributed to the Lennard-Jones term, resulting 
from the formation of a strong π-π interaction between the dye molecules and the surface of the adsorbent. Overall, our 
simulations confirmed that the COF1 nanostructure is more effective than the COF2 nanostructure in removing alizarin dye 
and its derivatives. In this study, not only the performance of two COFs in removing alizarin dye and its derivatives has been 
compared, but also the possibility of removing alizarin dye and its derivatives with both COFs has been examined.
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Introduction

In recent years, freshwater consumption has experienced a 
surge due to advancements in technology and rapid popula-
tion growth (Khamis et al. 2020; Muniyandi and Govindaraj 
2021). This has led to the generation of substantial volumes 
of wastewater that necessitates direct disposal into natural 

habitats. In addition, water pollution from various sources 
such as dyes, heavy metals, antibiotics, chelating agents, and 
insecticides generates different types of wastewater, posing 
a significant threat to the environment and human life (Liu 
et al. 2022; Jjagwe et al. 2021; Wang et al. 2020).

Wastewater treatment related to the oil industry, organic 
effluents, such as benzene, toluene, cyclohexane (Fan et al. 
2022), oily wastewater (Ma et al. 2021), oil/water mixtures 
(Lu et al. 2022), and aqueous solutions containing fluoride, 
is always challenging (Jian et al. 2022 Jian et al. 2022).

In the meantime, dye wastewater from the textile industry 
with high organic content, difficult degradation, and deep 
chroma, has a detrimental impact not only on the environ-
ment but also on the health of human life and causes many 
cancers, allergies, and mutations (Liu et al. 2022; Li et al. 
2019; Sherugar et al. 2022).
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Consequently, the ability to effectively remove these 
pollutants from wastewater becomes crucial for safeguard-
ing both human health and the environment. Cationic dyes 
including methylene blue (MtlB), malachite green (MalG), 
and crystal violet (CryV), were widely used in veterinary 
medicine, bacteriostatic agents, colorants, and biological 
stains (Xue et al. 2024; Ibrahim et al. 2022). These dye 
molecules are teratogenic and toxic, resistant to degrada-
tion in the natural environment, and will pose a great threat 
to human health and the ecological environment (Lu et al. 
2023). The acid dyes, such as acid blue, acid red, acid yel-
low, direct violet, and reactive red, contain the azo group 
(-N=N-) and aromatic rings in their chemical structure, 
making them anionic dyes. Due to the presence of amino 
groups and complex aromatic rings, these dyes are difficult 
to biodegrade (Mehdi et al. 2022). Alizarin Red S (ARS) has 
been widely used for dyeing textiles (Rehman et al. 2011; 
Moulya et al. 2024).

Due to its optical, high thermal, and physicochemical sta-
bility, it resists degradation and thereby cannot be removed 
by conventional processes (Gholivand et al. 2015). Hence, 
remediation techniques for their economic and safe removal 
on simple, easy, and highly efficient processes are concen-
trated (Machado et al. 2016).

It is an anionic dye, specifically a water-soluble anth-
raquinone dye known as 1, 2-dihydroxy-9,10-anthraquinone 
sulfonic acid sodium salt (Veni et al. 2024).

It is noteworthy that ARS is considered the most hazard-
ous dye, associated with various adverse effects such as skin 
and eye irritation upon contact and a potential cancer hazard. 
Consequently, it is imperative to eliminate this dye from 
industrial wastewater due to its severe impact on health and 
the environment (Nachiyar et al. 2023).

Rhodamine B (RhB) and Rhodamine 6G (R6G) are both 
derivatives of xanthene dyes and are commonly used in fluo-
rescent labeling, textiles, paper, and printing due to their 
vibrant pink color. However, both compounds are gener-
ally toxic and can lead to allergies, asthma, skin irritation, 
and respiratory tract irritation. As a result, the use of RhB 
and R6G in food products is strictly prohibited (Chao et al. 
2020). M.-U.-N. Khilji et al. used MgO@GO nanocompos-
ite for Rhodamine 6G degradation (Nahyoon et al. 2023). 
Various methods have been developed for treating wastewa-
ter contaminated with dyes, including the use of photodeg-
radation (Yaacob et al. 2021), membrane technology (Jian 
et al. 2022; Ding et al. 2022), photocatalysis (Aziz et al. 
2022), and photothermal conversion (Li et al. 2022). These 
methods can eliminate or break down the organic pollutants 
and dyes in wastewater. Nonetheless, these techniques face 
limited adoption due to their high costs, economic disadvan-
tages, and the generation of secondary waste. Among acces-
sible techniques, adsorption has been extensively considered 
as a technique for removing dye due to its high efficiency, 

low cost, simplicity, and ease of operation (Borthakur et al. 
2016; Ayati et al. 2016; Hou et al. 2022; Nassar et al. 2022). 
These adsorbents include activated carbon, biomass, zeo-
lites, hydrogels, COFs, MOFs, etc. (Xue et al. 2024).

Covalent organic frameworks (COFs) exhibit molecular 
ordering and inherent porosity, coupled with robust stabil-
ity across a broad spectrum of conditions. Recently recog-
nized as versatile platforms, COFs have emerged for diverse 
applications, including gas storage, heterogeneous catalysis, 
and adsorption (Wang et al. 2020; Zeng et al. 2016; Guan 
et al. 2018; Lu et al. 2022; Zhong et al. 2021; Yue et al. 
2021). Organic building blocks are connected by covalent 
bonds (by linkers) and COFs are synthesized (Cote et al. 
2005; Lyle et al. 2019; Jiang et al. 2016). COFs are in the 
category of porous and crystalline polymer materials, which 
have numerous uses, including: gas storage, chemosensing, 
ion exchange, separation, heterogeneous catalysis, sensing, 
and transport (Wang et al. 2019; Das et al. 2015; Furukawa 
and Yaghi 2009; Ding et al. 2016; Kandambeth et al. 2018; 
Sasmal et al. 2022). The reticular structure and modular 
property of COFs are promising for the synthesis of arbitrary 
porous building blocks with different and diverse functions 
(Alahakoon et al. 2020; Gao et al. 2020; Karak et al. 2018; 
Jin et al. 2022; Kang et al. 2020).

Their promising performance is attributed, in part, to 
the ease with which they can be carefully tuned during the 
preparation of their organic constituents. The relatively mild 
synthesis conditions necessary for the final COF material 
contribute to their advantageous properties. Despite the 
potential benefits stemming from structural diversity and 
high-yielding synthesis (Xu et al. 2016; Vyas et al. 2016; 
Pang et al. 2016; Nguyen et al. 2016; Ma et al. 2016; Lohse 
et al. 2016; Huang et al. 2016; Dalapati et al. 2016; Ascherl 
et al. 2016), COFs have been specifically explored for their 
effectiveness in the adsorption of dyes from aqueous media 
(Liu et al. 2012).

Today, COFs are receiving attention due to their phys-
icochemical properties (Cui et al. 2016), high design flex-
ibility (Kong et al. 2021), high specific surface areas (Chen 
et al. 2021), nanoporous structure, mechanical robustness 
(Dey et al. 2021), well-proportioned cavities (Choudhury 
and Kalamdhad 2021), low densities excellent solvent, and 
thermal stabilities (Qi et al. 2021). Shang et al. explored the 
adsorption process of three types of nanoplastics, includ-
ing polyethylene terephthalate, nylon-6, and polyethylene 
on the COF (TpPa-X, X = CH3, F, NO2, H, and OH) by the 
molecular dynamic (MD) simulations. Their results showed 
that COF polymers at the atomic level have the potential 
to develop effective COF materials to combat nanoplastic 
(NP) pollution (Shang et al. 2022). Ghahari et al. used a 
covalent organic framework to adsorb and reduce phenol 
compounds from water&wastewater. The study confirmed 
that COFs have the potential to be used as adsorbents for 



Applied Water Science (2024) 14:184	 Page 3 of 12  184

removing phenol from water and wastewater (Ghahari et al. 
2022). Ali et al proposed COF-based lamellar membranes 
for desalination of water. They explained how COF materials 
could be used for exchange and separation applications, such 
as desalination (Ali et al. 2023).

Jatoi et al. PEGylated graphene oxide lamellar mem-
branes were introduced for organic solvent removal. Their 
studies confirmed the successful removal of organic solvents 
such as methanol, acetone, hexane, etc. (Jatoi et al. 2023). 
Ali et al. designed functionalized graphene oxide-based 
(FGO-based) lamellar membranes with tunable channels 
for ionic and molecular separation (Ali et al. 2022). Xue et 
al. explored the spiroborate-based three-dimensional COF 
for effective adsorption and separation of organic dyes (cati-
onic dyes; (MtlB), (CryV), and (MalG), as well as anionic 
dyes; fluorescein sodium (FluS), methyl orange (MtyO), and 
methyl blue (MtyB)) (Xue et al. 2024).

Xue et al. also examined the functionalization, valency 
design, and various applications of 3D COFs, including 1. 
gas adsorption (hydrogen storage, CO2 capture, methane 
storage, acetylene storage), 2. gas separation (hydrogen sep-
aration, carbon dioxide separation, acetylene and ethylene 
separation), 3. adsorption and separation in the liquid phase 
(adsorption of organic pollutants, ion sieving, macromol-
ecule separation, chromatography separation, drug deliv-
ery), 4. catalysis (heterogeneous catalysis, photocatalysis, 
electrocatalyst), 5. external stimulus response, 6. ionic and 
electronic conduction (electronic conduction, ionic conduc-
tion and electrolytes), 7. energy storage devices (solar cells, 
supercapacitors, lithium metal batteries), which is a testa-
ment to the importance of COFs (Xue et al. 2024).

Chen et al. studied a 2D sulfonate anionic COF mem-
brane, finding it effective for removing cationic organic 
pollutants from the environment. They also found that the 
high porosity of the COF membrane could make it a candi-
date for nanofiltration and separation of some organic pol-
lutants (Chen et al. 2021). Tong et al. designed a few-lay-
ered 2D-COF nanofilter/membranes and investigated their 
CO2&N2 separation performance via MD simulations (Tong 
et al. 2016). The results also showed that various few-layered 
2D-COF membranes can be made for a variety of separa-
tions and even molecular sieves. Zhan et al. designed a series 
of 2D functional COF membranes for reducing salt in water 
and the influential factors of water permeance (Zhang et al. 
2017).

This work focuses on the adsorptive removal process of 
alizarin (ALI) dye and its derivatives, including Alizarin 
blue (ABL), Alizarin purpurin (APU), Quinalizarin (AQU), 
Alizarin cyanin (ACY), and Alizarin Red S (ARS) from 
water and wastewater using COFs as porous super absor-
bents. So, in this study, we for the first time used classical 
simulation to examine the adsorption mechanisms of alizarin 
dye and its derivative pollutants on well-established COFs.

Electrostatic (elec) and van der Waals (vdW) interactions 
are responsible for adsorbing dye pollutants on COFs. To 
analyze the penetration of dye on COF nanomaterial, vari-
ous parameters including radial distribution function (RDF) 
and diffusion coefficient (DC) of the dye are analyzed for all 
simulated systems.

Among all the simulated systems, the metadynamics sim-
ulation technique was performed for the APU-COF1 and 
AQU-COF2 systems, which both of them have the highest 
adsorption energy. The obtained results confirm that COFs 
have a high potential in the removal of environmental pol-
lutants, especially water and wastewater. In summary, we 
first investigate the mechanism of dye adsorption on COFs; 
next, we compared the ability of two types of COFs to 
attract alizarin dye and its derivatives. Finally, we propose 
the best COFs most efficiently remove alizarin dye and its 
derivatives.

Results and discussion

MD simulation

In this work, the COF1 and COF2 structures are designed 
in five layers, including 1320 and 1560 atoms, respectively, 
via using the GaussView software. Inspired by the work of 
Jiang et al. the distance between the layers was determined 
to be about 3.4 angstroms (Jiang et al. 2020). In addition, 
to investigate the adsorption process of alizarin dye and its 
derivatives, including alizarin blue, alizarin purpurin, qui-
nalizarin, alizarin cyanin, and alizarin red S by two COFs 
(COF1&COF2), we designed a total of 12 simulation sys-
tems. Structures of two COF nanostructure (COF1&COF2) 
and dye molecules are presented in Fig. 1a and b. Snapshots 
of the configurations of the dye-COF complexes at the initial 
are presented in Fig. 2 and supplementary Fig. S1 and Fig. 
S2 also; final simulation times are shown in Fig. 3 and sup-
plementary Fig. S3 and Fig. S4. As shown in these figures, 
the molecules of dye move to create a more parallel arrange-
ment; in this orientation, they can have more π-π interac-
tions with a substrate surface. It is clear that dye molecules, 
containing three benzene rings, form strong π-π stacking 
interactions with the surface of COFs.

Moreover, the inter-molecular interactions between 
dye molecules and the adsorbent surfaces at a distance 
of ~0.25–0.39 nm were observed. In summary, in all 12 
systems, the contaminants are relocated from an aqueous 
phase to the adsorbent surface in the adsorption process (see 
Figs. 4 and 5). The values of Lennard-Jones (van der Waals), 
Coulombic (electrostatic), and total energies are given in 
Table ST1.

Looking at the data in Table ST1, we notice that in all sys-
tems, the Lennard-Jose and electrostatic energies decrease 
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during the simulation time, although the value of the electro-
static energy is lower compared to the van der Waals energy; 

therefore, the Lennard-Jones energy has a major contribution 
to the total interaction energy. The adsorption energy values 

Fig. 1   The structures of a dye 
molecules (1, ABL; 2, ACY; 3, 
ALI; 4, APU; 5, AQU; 6, ARS), 
b COF1&COF2 nanostructures, 
respectively (color code: O, red; 
N, blue; S, yellow; C, cyan; H, 
white)

Fig. 2   Snapshots of the configurations of the dye-COF complexes at the initial simulation times (a, ABL/COF1; b, AQU/COF2). Water and ions 
molecules are not shown for clarity
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indicate a stronger interaction of alizarin purpurin dye with 
COF1 than other complexes, which confirms that the COF-
1substrate has a more tendency for the capture of alizarin 
purpurin dye than the other dyes, whereas, according to the 
obtained results, the tendency of the COF2 substrate for the 
removal of quinalizarin dye is more than the others. At the 
initial of the simulation times, both L-J and elec interaction 
energies are zero, which is because the dye molecules are 
adequately far from the adsorbent surface (at a distance of ~2 
nm). Figures 4 and 5 show the variations of total interaction 

energy (LJ&CUL) between dye molecules and COFs versus 
time of simulation. After approximately 25 nanoseconds, 
dye molecules quickly adsorb onto COFs and then fluctuate 
around the overall interaction energy average, as shown in 
these figures.

The most interaction energy average is about −600 kJ/
mol and −450 kJ/mol for APU/COF1 and AQU/COF2 com-
plexes, respectively. This fact confirms the high kinetics of 
dye molecules' adsorption onto COFs. Also, the obtained 
results from Figs. 4 and 5 confirm the better efficiency of the 

Fig. 3   Snapshots of the con-
figurations of the dye-COF 
complexes; at the final simula-
tion times (a, APU/COF1; b, 
ACY/COF1; c, AQU/COF2; d, 
ARS/COF2). Water and ions 
molecules are not shown for 
clarity

Fig. 4   The total interaction energy of dye molecules, on the COF1 nanostructure during 120 ns time of simulation
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COF1 adsorbent in removing dye molecules compared to the 
COF2 adsorbent. This fact is probably due to the presence of 
sulfonic groups, which increases the steric hindrance in the 
COF2 substrate and, subsequently, its π-π stacking interac-
tions with the dye molecules reduce.

To investigate the interaction modality between dye 
molecules and two substrates, the RDF analysis between 
dye–COFs (D–C) and dye–water (D–W) is carried out, and 
obtained results are presented in Fig. 6a and b. Based on the 
obtained RDF results, it is evident that the most intense peak 
observed at a distance of 0.46-0.56 nm. This aligns with 
the reported π–π distances in the conjugated complexes (An 
et al. 2012). In other words, the probability of finding dye 

molecules at ~0.5 nm distance from the substrate surface 
is the highest, which can be attributed to the strong attrac-
tion forces between adsorbate molecules and the substrate. 
As depicted in Fig. 6a and b, the height of the RDF peak 
for the APU-COF1 and AQU-COF2 complexes is the most, 
while for the ACY-COF1 and ARS-COF2 complexes is the 
least. In complexes containing COF1 (system 1), the strong-
est RDF peak is observed at a distance of around 0.45 nm 
with a g(r) value of 10; meanwhile, in complexes containing 
COF2 (system 2), the location of the most intense peak is 
roughly the same with the system 1, but its g(r) value is 8. 
This suggests that the COF1 substrate removes Alizarin dye 
and its derivatives better than the COF2 substrate. All these 

Fig. 5   The total interaction energy of dye molecules, on the COF2 nanostructure during 120 ns time of simulation

Fig. 6   Radial distribution functions of dye molecules, around the COF1&COF2 nanostructures surface during 120 ns time of simulation
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properly properties in system 1, including stronger attraction 
forces and higher efficiency in dye removal, are probably due 
to more π-π stacking interactions between dye molecules 
and COFs nanostructure, while in system 2, due to the steric 
hindrance of sulfonic groups, the efficiency of the adsorption 
process decreases. The mobility of a molecule can be esti-
mated by analyzing the mean-square displacement (MSD) 
and self-diffusion coefficient (Di) (Benkhaya et al. 2021).

The paper employs the "Einstein" relation to compute the 
diffusion coefficient (Cui et al. 2016). The slope of the mean-
square displacement curve demonstrates the dye molecules' 
diffusion to the adsorbent surface. In other words, it exam-
ines the interaction of dye molecules with the COF surface 
in the 1 and 2 systems (Fig. 7a and b). The smaller slope 
in the mean-square displacement curves of dye molecules 
in the AQU-COF2 and APU-COF1 systems confirms that 
the adsorption of AQU and APU on the adsorbent surface 
restricts dye movement. In simpler terms, less movement of 
AQU and APU molecules means more adsorption onto the 
substrate. In general, the results showed that system 1 has 
a better performance than system 2 in removing dye mol-
ecules. This observation can be ascribed to electrostatic(cul), 
van der Waals (lj), π-π stacking interactions, and hydrogen 
bonds.

Metadynamics

The effectiveness of COFs nanostructures depends on their 
ability to adsorb and remove dye molecules from water and 
wastewater. Therefore, we have investigated the adsorp-
tion process of dye molecules on the COFs nanomaterial, 
through well-tempered metadynamics simulations. In this 
study, we examine how the free energy surface changes 

based on the distance between the center of mass of dye 
molecules and the COFs nanostructure in APU-COF1 and 
AQU-COF2 complexes. Figure  8a and b illustrates the 
free energy landscape for the dye molecules adsorption on 
the investigated COFs substrates. As depicted in Figure 8, 
when the dye molecules reach near the adsorbent surface, 
their free energy decreases, causing the global minimum 
to converge at -319 kJ/mol (d1=0.79 nm) and -260 kJ/mol 
(d1=1.98 nm for APU-COF1 and AQU-COF2 complexes, 
respectively). In simple terms, the free energy is set to zero 
when the dye molecules are positioned far from the COFs 
surface and whenever the free energy level decreases, the 
dye molecules become more near to the substrate surface as 
well as there is an energy barrier that prevents releasing of 
dye molecules from the COFs surfaces. This barrier has a 
height of approximately 210 kJ/mol and 15 kJ/mol for APU-
COF1 and AQU-COF2 complexes, respectively. These find-
ings are in good agreement with the obtained results from 
RDF in MD simulations.

The results of this study have validated that dye mole-
cules face significant energy barriers during their desorption 
on the COF substrate. Therefore, using COF as an adsorbent 
is an effective way to purify polluted water sources. This 
research has great potential for practical applications in the 
field of water and wastewater purification.

Methods

MD simulations

To explore the potential of using COFs carriers for treating 
water and wastewater contaminated with alizarin dye and its 

Fig. 7   Time evolutions of MSD of COF1&COF2 nanostructures in the simulated systems
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derivative, we designed a total of 12 simulation boxes. COF1 
is made up of a p-phenylenediamine (Pa) linker and 1,3,5-tri-
formylphloroglucinol (Tp) building units (see Fig. 1b), while 
COF2 is composed of a p-phenylenediamine (Pa) linker and 
functionalized 1,3,5-triformylphloroglucinol (Tp) building 
units with -SO3H groups (see Fig. 1b) The COFs pores have 
a van der Waals diameter of 22.07 Å and are formed through 
robust covalent interactions (Wei et al. 2018).

The initial geometries of the COF structures are designed 
in five layers, including 1320 atoms for COF1 and 1560 
atoms for COF2, respectively, via using the GaussView soft-
ware, and the structures are optimized using the Gaussian 09 
program (Frisch 2009).

Inspired by the work of Jiang et al. the distance between 
the layers was determined to be about 3.4 angstroms (Jiang 
et al. 2020). Additionally, the structural data file for dye 
molecules was obtained from the PubChem database (see 
Fig. 1a). Also, a simulation box with the dimension of 6 × 
8 × 9 nm, containing five layers of the COFs, is designed at 
the center, and dye molecules are dissolved in TIP3P water 
model with a salinity of 0.01 M NaCl (Jorgensen et al. 
1983). The dye molecule topology parameters and COFs 
were obtained from the SwissParam web server (available 
https://​www.​swiss​param.​ch/). Table ST2 provides additional 
details on the designed systems.

In order to avoid interaction between components and 
neighboring cells, the periodic boundary condition is used. 
The Particle Mesh Ewald method manages Lenard-Jones and 
non-bonded electrostatic interactions by implementing a cut-
off of 1.4 nm. The pressure and temperature are maintained 
at 1 bar and 310 K by using the Parrinello–Rahman barostat 
(Podio-Guidugli 2010) and Nose-hoover thermostat (Leim-
kuhler et al. 2009), respectively. In the simulation, all bonds 
are constrained to their equilibrium length using the linear 

constraint solver algorithm (Hess et al. 1997). At first, in order 
to minimize any negative interactions, the simulation system is 
relaxed through energy minimization, accomplished with the 
steepest descent algorithm (Piche 1994). Finally, MD simula-
tions are performed for 120 ns using the GROMACS software 
package version 2019.2 (Abraham et al. 2015) along with the 
CHARMM 36 force field (Huang et al. 2017). The Visual MD 
package is used to visualize the simulated products (Humphrey 
et al. 1996).

Metadynamics simulations

In order to obtain FE surfaces, we use well-tempered meta-
dynamics simulations as a function of the set of CVs devel-
oped by Chrobak, W. et al (Chrobak et al. 2021). The WTMtD 
simulation was conducted over a period of 100 ns after the 
equilibration process, using the PLUMED version 2.5.2 plugin 
in the Gromacs 2019.2 software (Wang et al. 2022; Carvalho 
Martins et al. 2021). In the well-tempered metadynamics algo-
rithm used in this study, the initial Gaussian height is set at 1.0 
kJ mol-1, while the width is set at 0.25 A°. Additionally, a bias 
factor of 15 is deposited every 500 timesteps. The simulations 
were run for a duration of 100 ns on four systems. Overall, 
these metadynamic simulations provide a reliable estimate 
of the free energy landscape of COFs/dye systems. In other 
words, the FE surface can be computed as a function of the 
distance between the center of mass (COM) of dye molecules 
and the COFs nanostructure surface.

Fig. 8   The free energy landscape of the a APU molecules' adsorption onto COF1 and b APU molecules' adsorption onto COF2

https://www.swissparam.ch/
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Conclusion

In this study, the mechanism of the dye molecules attrac-
tion process onto the surface of COFs is investigated. 
For this purpose, classical molecular dynamics and well-
tempered metadynamics simulations are employed. Our 
results have shown that when a dye molecule adsorbed 
onto the adsorbent surface, the energy value of the dye-
adsorbent average interaction reaches around −600 kJ/mol 
and −450 kJ/mol for dye/COF1 and dye/COF2 complexes, 
respectively. Moreover, when each dye molecule varies its 
initial position and becomes near the adsorbent surface, it 
creates a synergistic impact within the original dye-COFs 
complex. As a result of this synergy, the interaction energy 
is further reduced. The RDF analysis shows that for all of 
the investigated dyes, the probability of dye molecules' 
presence is the most at a distance of 0.46-0.56 nm from the 
substrate surface. This is in agreement with the reported 
π–π distances in the conjugated complexes. Our results 
confirm that the π-π interactions are the essential deter-
mining factor in the stability of dye-COF complexes. A 
metadynamic simulation has been performed to investigate 
the process of dye molecule adsorption onto the COFs 
nanostructure. The results of the metadynamics study indi-
cate that there are energy barriers that prevent dye mol-
ecules from being adsorbed onto the nanostructure surface.
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