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Abstract
Due to the pressure on South Africa’s irrigated agriculture to improve efficiency and optimal water use, irrigators must 
consider alternative water sources, such as root-accessible shallow groundwater tables, to supply the crop evapotranspira-
tion requirement. Devising irrigation scheduling strategies that will optimize conjunctive water use is difficult because the 
contribution of shallow groundwater tables is not directly observed and is a function of irrigation management decisions; as 
a result, very few irrigators use these strategies. This paper aims to evaluate the profitability of using shallow groundwater 
tables as a source of irrigation water to satisfy crop evapotranspiration requirements. A bio-economic simulation model 
consisting of the soil–water–atmosphere–plant model and an economic accounting module was developed to calculate the 
profitability of conjunctive irrigation practices under different states of nature. The bio-economic simulation model was 
linked to a differential evolutionary algorithm to optimize the irrigation scheduling decisions. The results showed that irriga-
tors could substantially increase profitability and water use efficiency if they consider the shallow groundwater table in their 
irrigation decision. About 51% of crop evapotranspiration could originate from shallow groundwater tables, reducing the 
irrigation requirements substantially without impacting crop yields. Sequential adaptive irrigation decision-making does not 
improve the bio-economic indicators much since using the shallow groundwater table mitigates the risk of undersupplying 
water. Therefore, conjunctive water use strategies using shallow groundwater tables economically benefit irrigators. How-
ever, a complex interplay exists between irrigation adjustments, crop yields and economic performance in different states, 
emphasizing the careful consideration of context-specific factors in irrigation management decisions.

Keywords  Irrigated agriculture · Conjunctive water use · Root-accessible shallow groundwater tables · Irrigation 
decisions · South Africa

Introduction

South Africa’s irrigated agriculture is estimated to produce 
74% of total field crop and horticultural production, but it 
uses some 64% of the available surface water in a country 
where water scarcity is prevalent (de Witt et al. 2021). The 
water scarcity problem is further magnified by projections 
that estimate that as soon as 2025 the whole of southern 

Africa must expect to experience intensified physical and/
or economic water scarcity (Mabhaudhi et al. 2018). Addi-
tionally, the situation is heightened by concerns around the 
sector’s low water use efficiency. Therefore, the sector is 
increasingly pressured to release water for redistribution 
through improved efficiency and optimal water use (Singels 
et al. 2019; de Witt et al. 2021).

Several water sources may contribute toward satisfying 
crop water requirements, such as surface water (i.e., riv-
ers, dams and canals), deep groundwater, precipitation and 
capillary rise from shallow groundwater tables. Conjunc-
tively using all the water sources requires the irrigator to 
adjust irrigation decisions to maximize the contribution of 
water sources with the lowest marginal factor cost. Barnard 
et al. (2021) evaluated the irrigation management prac-
tices of farmers in the Vaalharts irrigation scheme in South 
Africa to determine the extent to which farmers apply best 
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management practices related to conjunctive use of surface 
water, precipitation and capillary rise from shallow ground-
water tables. Vaalharts is the largest irrigation scheme in 
South Africa (± 40,000 ha), situated in a semi-arid region 
with a mean annual rainfall of 487 mm. A canal conveys 
water from a weir in the Vaalharts river to the Vaalharts 
irrigation scheme, where water use is regulated using a 
water quota. The geohydrology of the scheme ensures that 
the groundwater table is relatively constant at 1.6 m due to 
lateral groundwater movement from the canal to the Harts 
River (Verwey and Vermeulen 2011). Results from the irri-
gation practice evaluations showed that irrigation farmers do 
not consider either precipitation or the contribution of capil-
lary rise from shallow groundwater tables in their irrigation 
scheduling decisions. Instead, they apply surface irrigation 
water to satisfy crop water requirements regardless of cur-
rent rainfall and the presence of capillary rise.

Not managing irrigation depths and timing of irrigation 
events to maximize the contribution of capillary rise to sat-
isfying crop evapotranspiration requirements is surprising 
since research found that shallow groundwater tables could 
contribute as much as 40% to evapotranspiration require-
ments (Jovanovic et al. 2004; Liu et al. 2022). Devising irri-
gation scheduling strategies that will optimize the contribu-
tion of different water sources (i.e., surface water, rainfall 
and shallow groundwater tables) to satisfy crop evapotran-
spiration requirements is difficult because the contribution 
of shallow groundwater tables is not directly observed and 
is a function of irrigation management decisions (Schulthess 
et al. 2019). Li et al. (2020) pointed out that research only 
recently started focusing on the contribution of shallow 
groundwater to satisfying crop evapotranspiration require-
ments. Consequently, Liu et al. (2022) argued that research 
is still insufficient to devise adjusted irrigation scheduling 
strategies considering shallow groundwater table contribu-
tions to satisfying crop evapotranspiration requirements. 
Therefore, a possible explanation for irrigators not consid-
ering shallow groundwater tables as a potential water source 
contributing toward crop evapotranspiration requirements 
is a lack of information regarding the complex interactions 
between irrigation scheduling decisions and shallow ground-
water table contributions.

Conducting field trials under heterogeneous conditions to 
develop appropriate irrigation scheduling strategies to opti-
mize groundwater table contributions is laborious and expen-
sive. As an alternative, mechanistic simulation models provide 
a good compromise between accuracy and simplicity if the 
simulation models are well-calibrated (Singh 2021; Liu et al. 
2022). Simulation models provide a means to evaluate the 
implications of “what if” scenarios, while linking these mod-
els to external search engines provides a powerful method to 
optimize management decisions through simulation optimiza-
tion (Lalehzari et al. 2020; Li et al. 2020). The review by Singh 

(2021) shows that modelers rarely consider the impact of the 
irrigator’s decisions on the modeled system (i.e., feedback 
loops). Furthermore, certainty is frequently assumed when 
optimizing irrigation scheduling decisions (Li et al. 2020). 
The assumption of certainty will result in suboptimal irriga-
tion schedules because the system’s future state of nature is 
known with certainty (e.g., rainfall, etc.) when the irrigation 
decisions are optimized. Irrigation scheduling strategies that 
adjust according to unfolding information regarding the state 
of the soil–plant–atmosphere continuum are typically more 
helpful than strategies that do not respond to unfolding infor-
mation (Schulthess et al. 2019). Many exogenous factors, such 
as irrigation system delivery capacity and efficiency, time-of-
use electricity tariff charges and surface water availability, will 
influence the timing and irrigation application depth. Failure 
to consider these exogenous factors when devising irrigation 
strategies to optimize the contribution of shallow groundwater 
tables will result in unrealistic irrigation schedules (Foster and 
Brozović 2018).

The main objective of this research is to evaluate the 
profitability of using shallow groundwater tables as a 
source of water satisfying crop evapotranspiration require-
ments, thereby providing some insight into why irrigators 
in Vaalharts do not use shallow groundwater tables. The 
first sub-objective of the research was to determine the 
profitability and water use efficiency of the current irriga-
tion scheduling practice (i.e., baseline) where irrigation is 
scheduled to satisfy crop water requirements without con-
sidering the contribution of shallow groundwater tables. A 
bio-economic simulation model consisting of the integrated 
soil–water–atmosphere–plant model, namely, SWAP (Kroes 
et al. 2017), and an economic accounting module was devel-
oped to calculate the profitability of current irrigation prac-
tices using the Ruraflex time-of-use electricity tariff under 
different states of nature. The second sub-objective was to 
compare the baseline’s profitability and water use efficiency 
with irrigation scheduling decisions that maximize the 
expected profitability irrespective of which state of nature 
unfolds. The bio-economic simulation model was linked to 
a differential evolutionary (DE) algorithm to optimize the 
irrigation scheduling decisions. Lastly, the bio-economic 
simulation optimization model was solved recursively over 
the growing season using a weekly interval to determine the 
impact of responding to unfolding information regarding the 
state of nature on profitability and water use efficiency.

Bio‑economic optimization model

Overview

The bio-economic optimization model is, in essence, a 
bio-economic simulation model linked to a DE algorithm 
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to optimize irrigation decisions to maximize the margin 
above the specified costs of irrigating maize. The bio-eco-
nomic simulation model uses the SWAP integrated agro-
hydrological crop growth simulation model to quantify the 
impact of alternative irrigation schedules on maize yields 
and on the state of the agro-hydrological system. The irri-
gation schedule and crop yield information serve as input 
into an economic module that determines the profitability 
of the irrigation schedules.

The complexity of the bio-economic simulation model 
renders the application of standard linear and nonlinear 
programming approaches infeasible to optimize irrigation 
scheduling decisions. According to Bilal et al. (2020), DE 
has emerged as one of the most frequently applied algo-
rithms for solving complex problems. Recently, Kelly 
et al. (2023) applied DE to determine the value of adapting 
irrigation scheduling decisions during the season. DE is 
a population-based metaheuristic stochastic search algo-
rithm that evolves an initial population of trial solutions 
through mutation, crossover and selection based on the 
fitness of the evolved irrigation schedules (Ahmad et al. 
2022). Figure 1 shows how the bio-economic simulation 
model is linked with the DE algorithm to optimize irriga-
tion decisions.

The optimization process starts with the user specify-
ing the DE algorithm initializing algorithm-specific input 
parameters (population size, crossover probability and dif-
ferential weight) and the bounds on irrigation depth and the 
irrigation trigger that determines the timing of irrigation 
events. The DE algorithm uses the information to randomly 
generate a trial population of alternative irrigation timing 
triggers and irrigation depths to represent alternative irriga-
tion schedules. The bio-economic simulation model simu-
lates the maize yield for each irrigation schedule in the trial 
population with SWAP and determines the margin above 
the specified costs that indicate the fitness of an irrigation 
schedule with the economic module. Calculating the margin 
above the specified costs distinguishes yield and irrigation-
dependent costs to reflect irrigation management decisions 
on profitability better.

During the first iteration of the optimization, the trial 
population represents the population that needs to itera-
tively evolve to a better solution through the processes of 
mutation and crossover if the stopping criterium is not met. 
In subsequent iterations, the fitness of the newly generated 
trial population of irrigation schedules is compared with the 
current population of irrigation schedules to select irriga-
tion schedules from the trial population that will replace 
schedules in the current population based on a higher fitness. 
The population of irrigation schedules keeps evolving until 
the population’s fitness converges or the maximum iteration 
count. The reader is referred to Storn and Price (1996) for 
the specifics of implementing DE.

Next, the components of the bio-economic simulation 
model are discussed in more detail.

Integrated agro‑hydrological crop growth 
simulations

SWAP (Kroes et al. 2009; Kroes et al. 2017) is a popular 
model used to investigate field crop systems under shallow 
groundwater table conditions (Huo et al. 2012; Xu et al. 
2012, 2013, 2015; Wang et al. 2014; Haj-Amor et al. 2017; 
Kroes et al. 2018). WOFOST (de Wit et al. 2019), a detailed 
model for the dynamic growth of arable crops, is fully inte-
grated into SWAP. Only the processes and parameters used 
in simulations for this paper are briefly described below. For 
some processes, two or more simulation options are avail-
able in SWAP.

SWAP uses the Penman–Monteith equation applied to a 
well-watered reference grass surface (ET0, Allen et al. 1998) 
as an index for the evaporating power of the atmosphere. A 
soil factor (CFBS) is used to convert ET0 to the potential 
evaporation rate of a wet, bare soil (Ep0). Potential soil evap-
oration (Ep) is simulated using Ep0, leaf area index (LAI), 
an extinction coefficient for diffuse (KDIF) and direct visible 
light (KDIR), and the fraction of the day the crop canopy is 
wet (Wfrac). Actual soil evaporation rate (Ea) is determined 
as the minimum value of Ep, Emax or the empirical function 
of Black (1969), which requires a soil evaporation coefficient 
(COFRED). The maximum soil evaporation rate that the 
topsoil can sustain, namely, Emax, is calculated according 
to Darcy’s law, using the average hydraulic conductivity 
between the soil surface and the first node, the soil water 
pressure head in equilibrium with the air relative humidity, 
the soil water pressure head of the first node and the soil 
depth of the first node. Crop factors (CF) are used to convert 
ET0 to potential evapotranspiration of a uniform dry (ETp0) 
or wet (ETw0) crop canopy (these crop factors differ from 
the well-known FAO56 crop factors). Potential transpiration 
rate (Tp) is simulated using ETp0, Ep and Wfrac, potential 
root water extraction rate at a certain depth (Sp(z)) depends 
on root length density distribution and Tp. Actual root water 
extraction at a specific depth (Sa(z)) is determined using 
Sp(z) and the multiplication of various stress reduction fac-
tors ( � ), i.e., reduction factors for conditions that are too wet, 
dry, saline and cold.

Germination is represented by the start of the simulation. 
To simulate the length of the growth period and phenologi-
cal development stage (1 < DVS < 2), the temperature sum 
from emergence to anthesis (TSUMEA), temperature sum 
from anthesis to maturity (TSUMAM) and effective tem-
perature (DTSM) are required. The latter is a tabular func-
tion of average daily temperature (TAV) and needs to be 
specified. Potential daily biomass production depends on the 
intercepted amount of irradiation. Hence, the time course of 



	 Applied Water Science (2024) 14:190190  Page 4 of 18

green leaf mass, the resulting LAI, the fraction of irradiation 
that is intercepted by the canopy and the time course of total 
above-ground biomass production are important. Changing 
the lower specific leaf area parameter (SLATB) can simulate 

a higher or lower LAI. Biomass production is primarily 
determined by the daily photosynthesis rate, simulated with 
a photosynthesis–light response curve. The initial angle 
(EFF, light use efficiency for real leaf) is generally constant, 

Fig. 1   Bio-economic optimiza-
tion framework
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while the maximum (AMAXTB, maximum CO2 assimila-
tion rate) is often crop variety specific and can decrease due 
to nutrient shortage and canopy aging. AMAXTB is speci-
fied for a specific development stage (DVS). LAI and light 
interception at the start and end of the growing season may 
also be calibrated by the LAI at emergence (LAIEM) and 
maximum relative increase in LAI (RGRLAI) parameters. 
Both parameters affect the initial increase in LAI and, there-
fore, the duration till the linear growth phase starts. During 
the linear growth phase, a complete light interception occurs. 
The life span of the leaves (SPAN) influences the simulated 
time course of LAI during the final growth period. The 
SPAN value must be increased to simulate a longer period 
of green leaves and higher LAI and, thus, biomass produc-
tion near crop maturity. Other parameters that may influence 
light interception and potential biomass production include 
initial total crop dry weight (TDWI), lower threshold tem-
perature for the aging of leaves (TBASE), extinction coef-
ficient for diffuse visible light (KDIF), extinction coefficient 
for direct visible light (KDIR), a reduction factor of AMAX 
as a function of average daily temperature (TMPF) and a 
reduction factor of AMAX as a function of minimum day 
temperature (TMNF). The former first two parameters are 
specially for simulating green leaf area, while the latter four 
parameters are associated with assimilation. For the conver-
sion of assimilates into biomass, four parameters that repre-
sent the efficiency of conversion into leaves (CVL), storage 
organs (CVO), roots (CVR) and stems (CVS) are required. 
The six parameters used in simulating maintenance respira-
tion include the increase in respiration rate with temperature 
(Q10), the maintenance respiration rate of leaves (RML), 
storage organs (RMO), roots (RMR) and stems (RMS) and 
the reduction factor of senescence (RFSETB) as a function 
of the development stage. Parameters used to allocate the 
produced assimilates to the different organs are important 
because they determine leaf mass, light interception and eco-
nomical products (i.e., the grain). These parameters are the 
fraction of total dry matter increase partitioned to the roots 
(FRTB), leaves (FLTB), stems (FSTB) and storage organs 
(FOTB), which are all a function of the development stage. 
To simulate root density distribution and growth, the root 
density (RDCTB) of the specific crop must be entered as 
a function of relative rooting depth (Rdepth). In addition, 
the initial rooting depth (RDI), maximum daily increase in 
rooting depth (RRI) and maximum rooting depth of crop or 
cultivar (RDC) need to be specified.

SWAP deals primarily with hydraulic and hydrodynamic 
behavior and continuous flow of water in the unsaturated 
zone above the groundwater table. The model simulates one-
dimensional vertical upward and downward soil water flow 
by numerically solving Richards partial differential equa-
tion. Richards equation combines Darcy’s and the continuity 
equations. The former relates the soil water flux density (q) 

to hydraulic conductivity (K) and soil water potential gradi-
ent ( �, which include both the matric, � , and gravimetric, Z, 
potentials) over a vertical coordinate. The continuity equa-
tion represents the water balance of an infinitely small soil 
volume. Namely, the change in volumetric soil water content 
over time is determined by the change in soil water flux 
density (Darcy equation) over the vertical coordinate and a 
sink term (S). Highly nonlinear soil hydraulic functions are 
required for solving Richards equation, i.e., functions that 
relate volumetric soil water content to soil pressure head 
(also known as matric potential) and hydraulic conductivity. 
SWAP uses the Mualem–Van Genuchten functions, which 
are described by six parameters, namely, saturated hydraulic 
conductivity (Ks), residual (θr) and saturated volumetric soil 
water content (θs), and empirical m, n and α shape param-
eters, where m = 1 −

1

n
 . The sink term generally represents 

the root water extraction rate.

Economic module

The economic model calculates the total gross margin above 
specified costs (MAS) for a pivot of 30 ha with an applica-
tion rate of 12 mm day−1, which is the key performance 
indicator for evaluating the profitability of an irrigation 
schedule. A distinction is made in the model between costs 
dependent on irrigation applications and costs dependent on 
crop yield (i.e., fertilizer and harvesting costs). The electric-
ity cost to pump the water represents most of the irrigation-
dependent costs. The electricity cost calculations are based 
on the Ruraflex time-of-use electricity tariff.

Equation 1 calculates the MAS associated with a specific 
irrigation schedule:

where MAS is the margin above specified costs (R ha−1), 
Y(i) is the simulated crop as a function of the irrigation 
schedule (ton ha−1), p is the price of maize (R ton−1), ydc 
is the yield-dependent costs (R ton−1), IDC(i) is the irriga-
tion-dependent cost for a state-specific irrigation schedule 
(R ha−1) and ADC is the area-dependent cost (R ha−1).

The first term (i.e., p × Y(i) ) of the MAS calculates the 
production income as a function of the irrigation schedule 
by multiplying the simulated maize yield as a function of 
the irrigation schedule with the selling price of maize. 
The second term (i.e., ydc × Y(i) ) calculates the costs that 
depend on the simulated crop yield as a function of the 
irrigation schedule, which was also taken as the yield 
expectation. Consequently, ydc includes fertilizer costs 
and harvesting costs. ADC is the only cost component that 
does not vary as a function of the irrigation schedule and 
includes costs such as fuel, microelements, seed, chemi-
cal, harvest and mechanization costs. The calculation of 

(1)MAS = p × Y(i) − ydc × Y(i) − IDC(i) − ADC
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irrigation-dependent costs (i.e., IDC(i) ) is not straightfor-
ward because it depends on the required irrigation hours to 
apply a given amount of water. Therefore, the calculation 
of irrigation-dependent costs is discussed in more detail.

Equation 2 shows all the costs associated with applying 
irrigation water.

where EC is the variable electricity costs for crop c (R ha−1), 
LC is the total labor costs for crop c (R ha−1), RMC is the 
total repair and maintenance costs for crop c (R ha−1) and 
WC is the total water costs for crop c (R ha−1) for indirect 
or direct pricing.

The electricity cost calculation does not include fixed 
costs since fixed electricity costs must be paid whether the 
irrigator applies water or not. Variable electricity costs are 
calculated as follows using the Ruraflex electricity tariff:

where tai,t is the active energy charge on day i in timeslot 
t (R kWh−1), rci,t is the reliable energy charge on day i in 
timeslot t (R kWh−1), dci,t is the demand energy charge on 
day i in timeslot t (R kWh−1), kW is the kilowatt require-
ment (kW), PHc,i,t is the pumping hours to irrigate crop c on 
day i in timeslot t (hours), trai,t is the reactive energy charge 
on day i in timeslot t (R kVARh−1) and kvar is the kilovar 
(kVAR).

The active energy, reliable energy and demand energy 
charge are dependent on the kilowatt required to pump irri-
gation water, while the reactive energy charge is dependent 
on the kilovar. However, the reliable energy charge is only 
applicable during the high-demand season. Both active 
energy and reactive energy consumption are determined 
by the required pumping hours, which are calculated as 
follows (Eq. 4): 

where RPHi is the required pumping hours on day i (hours), 
ηs is the irrigation system application efficiency (%), PA is 
the pivot area (ha) and q is the flow rate (m3 h−1).

Equation 4 shows that RPHi is differentiated for each 
day and is a function of pivot characteristics (i.e., appli-
cation efficiency, pivot area and flow rate). The Ruraflex 
electricity tariff charges are differentiated into different 
time-of-use timeslots (i.e., off-peak, standard and peak) 
based on the day of the week and time of the day. The irri-
gator needs to decide during which time-of-use timeslots 
to irrigate. The assumption is that an irrigator will distrib-
ute the required pumping hours over 2 consecutive days 

(2)IDC(i) = EC + LC + RMC +WC

(3)

ECc =
∑

i,t

(
tai,t + rci,t + dci,t

)
kWPHi,t +

∑

i,t

trai,tkvar PHi,t

(4)

to facilitate energy management. The following heuristic 
(Eqs. 5–7) is used to allocate the required pumping hours 
to different time-of-use timeslots (Madende, 2017):

where aphi,t is the total available pumping hours during time-
of-use timeslot t (i.e., off-peak, standard and peak) for allo-
cating required pumping hours on day i (hours), and PHi,t 
is day i’s required pumping hours allocated to time-of-use 
timeslot t (i.e., off-peak, standard and peak) when irrigating 
on day i and the next day (hours).

The irrigation labor and repair and maintenance costs are 
calculated using the cost estimation procedures developed 
by Meiring (1989). Irrigation labor costs are calculated with 
Eq. 8:

where lh is the labor hours required per 24 h of irrigation 
for a certain pivot size (hours) and lw is the labor wage rate 
(R hour−1), the total repair and maintenance cost is calcu-
lated with Eq. 9:

where rt is the repair and maintenance tariff per 1000 h 
pumped for an irrigation system (R 1000 h−1).

The assumption is that the water tariff is implemented 
on a volumetric basis. The total water charge payable to the 
water user association is calculated with Eq. 10:

where cwrc is the crop water requirement as given by WUA 
for crop c (mm) and wt is the water tariff (R mm−1).

Differential evolution optimization

The complexity of the bio-economic simulation model 
renders the application of standard linear and nonlinear 
programming approaches infeasible to optimize irriga-
tion scheduling decisions. According to Bilal et al. (2020), 
DE has emerged as one of the most frequently applied 

(5)PHi, }}off−peak” = min
|||
|
|

RPHi

aphi, }}off−peak”

(6)PHi, }}standard” = min
|||
|
|

RPHi − PHi, }}off−peak”

aphi, }}standard”

(7)

PHi, }}peak” = min
|||
|
|

RPHi − PHi, }}off−peak” − PHi, }}standard

aphi, }}peak”

(8)LC =
∑

i

RPHi

24
× lh × lw

(9)RMCc =
∑

i

RPHi,crt

(10)WCc = cwrc × wt
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algorithms for solving complex problems. Recently, Kelly 
et al. (2023) applied DE to determine the value of adapt-
ing irrigation scheduling decisions during the season. DE 
is a population-based metaheuristic stochastic search algo-
rithm that evolves an initial population of candidate solu-
tions through mutation, crossover and selection based on 
the fitness of the evolved irrigation schedules (Ahmad et al. 
2022). In our application, the MAS of an irrigation schedule 
determines the fitness of the irrigation schedule to optimize 
irrigation water use.

Model setup and data

Reducing the dimensionality of the optimization 
problem

The research used a South African weather database that 
has 50 years of data from across the country in the SAP-
WAT software (Crosby and Crosby 1999) to define differ-
ent weather states. Cluster analysis was used to reduce the 
dimensionality of the weather database to three clusters 
containing similar weather patterns. Cluster analysis is a 
technique used to classify cases or groups that are homo-
geneous within themselves and heterogenous between each 
other (Yim and Ramdeen 2015).

Cluster analysis was performed on data covering the 
growing maize season in the Vaalharts area. Two years were 
considered outliers and removed from the dataset. After the 
data were organized to fit the simulation period, daily ET0 
and rainfall amounts were aggregated to weekly averages, 
and after that, the difference between the two was computed 
and standardized (Jajuga and Walesiak 2000). The stand-
ardized data were used to do a hierarchical cluster analysis 
using Ward’s linkage method using the Statistical Package 
for the Social Sciences (SPSS) (2017). The 48 years of data 
were reduced to three clusters of 11, 21 and 16 years in 
each cluster. Only one of the cluster members was used to 
represent the weather pattern of a cluster. The representative 
member was chosen based on the mean absolute deviation 
(MAD).

MAD is a statistic measuring the accuracy of the pre-
dictions within a set of quantitative elements and is useful 
due to the prediction errors being in the same unit as the 
observed data (Khair et al. 2017). The MAD was calculated 
for each member state within a cluster, translating to 11 
MAD calculations for cluster 1, 21 MAD calculations for 
cluster 2 and 16 MAD calculations for cluster 3. The year 
with the smallest MAD was chosen to represent the weather 
pattern of the cluster. The probability that each representa-
tive weather state could occur was calculated as the number 
of years in a cluster divided by the 48 years of data used 
for the cluster analysis. Consequently, the three states had 

occurrence probabilities of 33%, 44% and 23%. The prob-
abilities were used to calculate the expected performance 
indicators of the irrigation schedules.

The variation in the identified states is depicted in Fig. 2. 
The differences arose from the main differences between 
ET0 and rainfall, especially toward the end of the period 
under simulation (week 20), where State 2 has the largest 
difference between ET0 and rainfall, meaning that toward 
the end of the season, the ET0 was greater than the rain-
fall present. In State 1, on the other hand, the difference 
between ET0 and rainfall in week 4 and week 20 was similar, 
while State 3 shows a consistent difference from week 4 up 
until week 16. The identified characteristics of each state of 
nature, measured by ET0 and rainfall, set the states apart.

SWAP

Two datasets of Water Research Commission (WRC) funded 
projects conducted on the same lysimeter facility (i.e., the 
Department Soil, Crop and Climate Sciences, University of 
the Free State, Bloemfontein, South Africa) were used for 
calibration and validation of SWAP in this paper. Trial 1 was 
conducted by Ehlers et al. (2003) and Trial 2 by Ehlers et al. 
(2007). The diameter and depth of the static lysimeters are 
1.8 m and 2 m, with rims of 0.05 m above the soil surface. 
In each lysimeter, two neutron access tubes allow soil water 
measurements (0.3-m intervals up to 1.8 m), while the inner 
walls and bottom of the lysimeters can be accessed through 
an underground chamber (1.8 m wide, 2 m deep and 30 m 
long). A monometer and bucket at the bottom of each lysim-
eter allow recharging and regulation of shallow groundwater 
tables (< 1.8 m from surface) and measurement of drain-
age. Root water uptake from the groundwater was recorded 
daily and then added through the bottom of the lysimeter 
to recharge the groundwater table and keep it at a constant 
depth. Data of maize (PAN 6335) grown on the sandy loam 
(mean 18% silt-plus-clay) soil (Plinthustalf, according to 
Survey Staff, 2003) during both trials were used. The plant-
ing dates were December 6 and 15, 2000 and 2004, for Tri-
als 1 and 2, respectively, at a density of 50,000 plants ha−1. 
All the data in the trials, used for calibration and validation, 
represent optimum conditions for crop growth, allowing for 
maximum root water uptake and grain yield.

Daily minimum and maximum temperatures, ET0 and 
radiation values, measured during the maize growing season 
of both trials were entered into the model. Rainfall during 
the growing season of Trial 1 was entered as part of irriga-
tion. During Trial 2, the rain shelter was closed, and hence, 
no rainfall values were entered.

Vertical discretization of the sandy loam soil profile is 
shown in Table 1, i.e., six sublayers of 30 cm each, with 30 
compartments of 1 cm each in the first layer and six compart-
ments of 5 cm each in the remaining five sublayers. The first 
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sublayer represents soil physical layer 1, sublayers 2, 3 and 4 
soil physical layer 2 and sublayers 5 and 6 soil physical layer 
3. Table 2 lists the Mualem–van Genuchten soil parameters 

used in SWAP. Three physical soil layers were identified based 
on the silt-plus-clay measurements, namely, 10%, 18% and 
24% as physical soil layers 1, 2 and 3. A locally developed 
pedotransfer function, RETEN (Streuderst 1985), was used to 
establish the relationship between volumetric soil water and 
matric suction (pressure head) for the three physical layers 
from silt-plus-clay measurements. These values were then 
entered in the RETC software package (version 6.02, van 
Genuchten et al. 1991), which estimated the Mualem–van 
Genuchten parameters, while the saturated hydraulic conduc-
tivity was determined with Eq. 11. The measured volumetric 
soil water at the start of the growing season was entered in 
SWAP and represents initial conditions.

(11)Ks = 2925.8e−0.1188(silt−plus−clay)

Fig. 2   Variation of the identified states at various weeks

Table 1   Vertical discretization of the soil profile in SWAP

Sublayer Soil 
physical 
layer

Sublayer 
thickness 
(cm)

Compartment 
thickness (cm)

Number of 
compart-
ments

1 1 30 1 30
2 2 30 5 6
3 2 30 5 6
4 2 30 5 6
5 3 30 5 6
6 3 30 5 6

Table 2   Mualem–van 
Genuchten parameters of the 
three identified soil layers in 
the lysimeters describing the 
soil hydraulic functions used in 
SWAP

Soil parameters Physical soil layer

1 2 3

Residual volumetric water content ( �
r
 , cm3 cm−3) 0.033 0.046 0.061

Saturated volumetric water content ( �
s
 , cm3 cm−3) 0.336 0.354 0.369

Alfa of main drying curve ( � , cm−1) 0.0181 0.0196 0.0215
Parameter n 1.447 1.352 1.315
Exponent in hydraulic conductivity function (I) 1.795 − 3.501 − 6.112
Saturated hydraulic conductivity (Ks, cm d−1) 115.57 56.84 34.02
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The control treatment for Trial 1, namely, maize grown 
on a sandy loam soil with no groundwater table was used 
to calibrate SWAP. The bottom boundary condition was set 
to the free outflow at the soil–air interface option, which is 
commonly applied for lysimeters. Table 3 lists the calibrated 
parameters for SWAP. The normalized root-mean-square 
error for the simulation of weekly (w) soil water content 
over a depth of 1.8 m (WC1.8(w)) was < 5% and for weekly 
evapotranspiration (ET(w)) < 20%. Seasonal (s) above-ground 
dry biomass (BM(s)) and grain yield were over and under-
simulated by 8.9% and 5.9%, respectively.

For validation of SWAP, simulations were repeated in the 
presence of a constant groundwater table at a depth of 1.5 m 
(Trial 1) and 1.2 m (Trial 2) using the parameters in Tables 2 
and 3. Hence, the bottom boundary condition option 1 in 
SWAP was selected, namely, a prescribed groundwater 
table depth. BM(s) was under-simulated by about 20% for 
the 1.5-m groundwater table depth and over-simulated by 
about 7% for the 1.2-m groundwater table depth. The differ-
ence between measured and simulated grain yield amounted 
to 15% and − 26%, respectively. SWAP was able to simulate 
the trend in soil water content during the growing season 
for both groundwater table depths relatively well. In addi-
tion, seasonal evapotranspiration and water table uptake 
(i.e., + bottom flux) were simulated accurately.

Enterprise budgets and differential evolution 
parameters

The area- and yield-dependent costs for irrigated maize were 
obtained from the income and cost budgets for the summer 
crops compiled by BFAP et al. (2021), while the variable 
electricity charges are based on the Ruraflex structure for 
2020/2021 (Eskom 2021). The costs are given in Table 4. 
The estimated maize price was R2 633 ton−1.

The DE algorithm requires the initial population size, 
maximum number of iterations, mutation factor, crossover 
probability, and the lower and upper bounds on irrigation 
applications. The algorithm generated an initial population 
of 100 irrigation schedules with irrigation events between 6 
and 12 mm. The initial population evolved for 500 iterations 
while applying a mutation factor of 50% and a crossover 
rate of 10%.

Bio‑economic analyses

Without water table information

The full irrigation strategy represents the baseline whereby 
the irrigator uses the previous week’s observed evapotran-
spiration and rainfall to calculate the necessary irrigation for 
the current week. Since the strategy does not consider any 

soil–water information, it ignores the possible contribution 
of shallow groundwater tables to satisfy the crop’s evapo-
transpiration requirement for the week.

For each state of nature, the cumulative difference 
between the previous week’s crop evapotranspiration 
demand and rainfall was taken as the irrigation require-
ment of the current week. The weekly calculated irrigation 
requirement was scheduled such that irrigation events start 
on a Friday and consecutively continue until all the water 
is applied. The reason for starting on a Friday is that it is 
cheapest to irrigate over weekends, according to the Ruraflex 
time-of-use timeslots. The maximum daily application was 
determined according to the application rate of the pivot. 
The resulting irrigation schedule was used as input in the 
bio-economic simulation model to quantify the key eco-
nomic and biophysical performance indicators.

With water table information

Linking the bio-economic simulation model with the DE 
algorithm allows for the optimization of irrigation deci-
sions while representing the state of the soil–crop–atmos-
phere continuum probabilistically. Deriving optimal irriga-
tion schedules with the bio-economic optimization model 
considers the possible contribution of shallow groundwater 
tables to satisfying crop evapotranspiration requirements 
because using the shallow groundwater table as a potential 
water source does not come at a cost when the profitability 
of alternative irrigation schedules is evaluated. The decision-
making framework of Madende and Grové (2020) presented 
in Fig. 3 is used to guide the optimization of irrigation deci-
sions to maximize the expected margin above specified costs 
irrespective of the state of nature and to maximize the MAS 
in the presence of state-specific unfolding soil–crop–atmos-
phere information. Next, the application of the decision-
making framework for the two objectives is discussed in 
more detail.

Expected outcome maximization

The first decision tree depicted in Fig. 3 shows that irriga-
tion decisions are made to maximize the expected outcome 
(i.e., MAS) irrespective of the state of nature occurring for 
a given irrigation area. Thus, irrigation decisions are made 
once and for all time periods without considering unfolding 
information on the state of the soil–crop atmosphere con-
tinuum. The same irrigation decisions apply to all states, and 
the DE algorithm evolves the irrigation decisions while con-
sidering shallow groundwater table contributions through 
separate SWAP simulations for each state. Consequently, 
the optimized irrigation decisions represent the best irriga-
tion water management, regardless of which state of nature 
unfolds.



	 Applied Water Science (2024) 14:190190  Page 10 of 18

Table 3   Parameters used in SWAP for simulating Trials 1 and 2

Parameters Units Values

TBASEM °C 6
TSUMEMEOPT °C 94
TEFFMX °C 30.0
TSUMEA – 994
TSUMAM – 798
TAV vs DTSM °C 8 (0); 32 (24); 45 (24)
DLO hours 1.0
DLC hours 0.0
SLATB vs DVS ha kg−1 0.0024 (0.0); 0.00220 (0.78); 0.00150 (2.00)
EFF kg CO2 J−1 adsorbed 0.49
AMAXTB vs DVS kg ha hour−1 80 (0.0); 80 (1.25); 78 (1.50); 78 (1.75); 56 (2.00)
LAIEM m2 m−2 0.04836
RGRLAI m2 m−2 day−1 0.03530
SPAN day 38
TDWI kg ha−1 50.00
TBASE °C 10.00
KDIF – 0.60
KDIR – 0.75
TMNFTB vs Min T °C 0.00 (5.00); 1.00 (8.00)
TMPFTB vs Ave T °C 0.10 (0); 0.8 (16); 1.00 (20); 0.95 (36); 0.56 (42)
SPA ha kg−1 0.0
SSA ha kg−1 0.0
CVL kg ha−1 0.6800
CVO kg ha−1 0.6710
CVR kg ha−1 0.6900
CVS kg ha−1 0.6580
Q10 /10 °C 2.00
RML kg CH2O kg−1 day−1 0.03
RMO kg CH2O kg−1 day−1 0.01
RMR kg CH2O kg−1 day−1 0.015
RMS kg CH2O kg−1 day−1 0.015
RFSETB vs DVS – 1.00 (0); 1.00 (1.50); 0.75 (1.75); 0.25 (2.00)
FRTB vs DVS kg kg−1 0.40 (0); 0.34 (0.20); 0.23 (0.50); 0.10 (0.8); 0 (1); 0 (2)
FLTB vs DVS kg kg−1 0.62 (0); 0.62 (0.33); 0.15 (0.88); 0.10 (1.10); 0 (1.2); 0 (2)
FSTB vs DVS kg kg−1 0.38 (0); 0.38 (0.33); 0.85 (0.88); 0.40 (1.10); 0 (1.2); 0 (2)
FOTB vs DVS kg kg−1 0.00 (0.95); 0.50 (1.10); 1.0 (1.2); 1.0 (2)
RDCTB vs Rdepth cm3 cm−3 1 (0); 0.74 (0.2); 0.30 (0.4); 0.17 (0.6); 0.9 (0.8); 0.05 (1)
RDI cm 5.00
RRI cm day−1 2.20
RDC cm 75
CFBS – 1.25
KDIF – 0.60
KDIR – 0.75
COFRED – 0.60
CF vs DVS – 0.21 (0.30); 0.95 (0.50); 1.34 (0.7); 1.38 (1.00); 1.21 (1.40); 0.93 (2)
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Unfolding information maximization

The unfolding information maximization optimization rec-
ognizes that irrigation decisions that maximize expected 

outcomes irrespective of the state of nature might be 
suboptimal for a specific state. The second decision tree 
in Fig. 3 shows that the irrigator can adjust future irriga-
tion decisions based on the expected future state of the 

Table 4   Irrigated maize 
production cost estimates 
(2021)

Dependent costs Yield Contracting (R ha−1) 1 470
Crop insurance (R ha−1) 308
Fertilizer (R ha−1) 8 564
Transport (R ha−1) 285

Area Fuel (R ha−1) 926
Seed (R ha−1) 4 975
Weed control (R ha−1) 663
Pest control (R ha−1) 2 397

Variable electricity charges Active energy Off-peak (R kWh−1) 0.72
Standard (R kWh−1) 1.13
Peak (R kWh−1) 1.64

Ancillary Off-peak (R kWh−1) 0.63
Standard (R kWh−1) 0.63
Peak (R kWh−1) 0.63

Demand Off-peak (R kWh−1) 0.41
Standard (R kWh−1) 0.41
Peak (R kWh−1) 0.41

Other costs Labor cost (R 24-h irrigation−1) 12.58

Fig. 3   Schematic representation of decision-making within a single-
stage and multi-stage decision framework where; square represents 
fixed decisions, circle represents possible events to unfold, dotted 
square represents optimized decisions, left inverted triangle repre-

sents the outcome, A represents the area, I represents the irrigation 
decisions, T represents the decision stage, and S represents the pos-
sible state of nature to unfold Source: Madende and Grové (2020)



	 Applied Water Science (2024) 14:190190  Page 12 of 18

soil–crop–atmosphere continuum, given the past state of 
the soil–crop–atmosphere continuum is known when the 
adjustment is made. Consequently, the irrigation decision 
problem must be solved for each unfolding state of nature, 
exponentially increasing the problem’s dimensionality when 
including more states. The assumption is that the irrigator 
is allowed to adjust irrigation decisions weekly. Therefore, 
20 optimizations are necessary for each unfolding state of 
nature. After each optimization (i.e., 1 week), the weather 
file of the SWAP simulation model representing a specific 
future state of nature is updated with information on the 
unfolding state of nature. The irrigation amounts are also 
fixed to correspond with the optimized irrigation decisions 
of the previous week. As a result, only future irrigation deci-
sions are optimized.

Results

No consideration of water table uptake

The full irrigation management strategy is a strategy 
where the irrigator, for each state, uses the previous week’s 
observed evapotranspiration and rainfall levels to sched-
ule irrigation for the current week. Thus, the strategy does 
not use soil–water information to schedule irrigation and, 
therefore, ignores the potential contribution of shallow 

groundwater tables. Each state will have an irrigation sched-
ule as it differs in evapotranspiration and rainfall levels.

Table  5 shows the bio-economic simulation results 
for the full irrigation strategy. The full irrigation strat-
egy applications vary by 26 mm between a minimum of 
557 mm (State 1) and a maximum of 583 mm (State 2), 
with an expected application of 574 mm. The variation in 
maize yields was greater when compared to irrigation water 
applications. Maize yields varied by 3 329 kg ha−1 between 
a minimum of 10 733 kg ha−1 (State 2) and 14 062 kg ha−1 
(State 3) with an expected crop yield of 11 963 kg ha−1. The 
extent of the crop yield variation is attributed to the ability 
of SWAP to capture the impact of different states of nature 
on potential non-stressed crop yields since inspection of the 
crop results file indicated almost no water stress.

Although the full irrigation strategy achieved state-spe-
cific potential crop yields, the water use efficiency of the 
strategy was low as it varies between a minimum of 1.13 
(State 3) and a maximum of 1.28 (State 2) with an expected 
value of 1.19. The water use efficiency results show that the 
full irrigation strategy is expected to supply 19% more water 
(i.e., rainfall, irrigation and shallow groundwater tables) than 
the crop’s evapotranspiration requirement. The mismatch 
between total water supply and crop evapotranspiration 
requirements results in an expected drainage loss of 92 mm, 
which could be as low as 51 mm (State 3) and as high as 
143 mm (State 2). The order of magnitude of the drainage 
losses corresponds with the magnitude of the rainfall. The 

Table 5   Economic and biophysical indicators when applying a state-specific full irrigation strategy without considering water table uptake on a 
30.1-ha pivot (2021)

Indicators Units Full irrigation strategy

State 1 State 2 State 3 Expected

Probability of occurrence fraction 0.23 0.44 0.33 –
Economic Margin above specified costs R 132 960 94 006 298 022 170 291

Production income R 1 218 329 1 156 890 1 515 716 1 289 433
Total variable electricity costs R 34 006 35 720 34 100 34 791
Active energy charge Off-peak R 12 869 13 477 14 211 13 579

Standard R 9 030 9 063 8 338 8 816
Peak R 1 051 1 617 191 1 016

Other variable electricity charges R 11 056 11 564 11 361 11 380
Other irrigation-dependent costs R 60 394 63 169 62 064 62 166
Yield-dependent costs R 534 893 507 919 665 455 566 110

Biophysical Irrigation application mm 557 583 573 574
Evapotranspiration mm 657 643 664 653
Rainfall mm 146 199 132 165
Seasonal water table uptake mm 44 39 45 42

% 7 6 7 6
Drainage mm 54 143 51 92
Yields kg ha-1 11 303 10 733 14 062 11 963
Water use efficiency fraction 1.14 1.28 1.13 1.19
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contribution of shallow groundwater tables to satisfying crop 
evapotranspiration requirements was less than 7% in all the 
states.

The MAS of the full irrigation strategy in each state of 
nature directly results from how the biophysical system 
responded to the full irrigation strategy. The expected mar-
gin above specified costs for the strategy was R170 291, 
which varied substantially between R298 022 (State 3) and 
R94 006 (State 2). The substantial variation in the MAS 
directly results from the yield expectation differences 
between states of nature and the production income and 
expenses dependent on crop yield. Expenses dependent on 
irrigation applications, such as total variable electricity and 
other irrigation-dependent costs, varied only with R1 714 
(R35 720-R34 006) and R508 (R11 564-R11 056), respec-
tively, for the 30-ha pivot.

Consideration of water table uptake

Optimal expected outcome irrigation strategy

The DE algorithm uses information on the expected state 
of the soil–crop–atmosphere continuum to devise an irriga-
tion schedule that is the best-performing profit-maximizing 
schedule irrespective of the state of nature. Consequently, 
the algorithm also considers shallow groundwater tables as a 
water source to satisfy crop evapotranspiration requirements.

Table 6 shows the bio-economic simulation results when 
the optimized irrigation schedule is applied to each state of 
nature. The optimal expected outcome irrigation strategy 
applied only 148 mm of irrigation, which is 426 mm less 
than the expected irrigation application of the full irrigation 
strategy. The substantial reduction in irrigation application 
did not impact crop yields in each state of nature much, with 
absolute deviations from the full irrigation strategy being 
less than 102 kg ha−1 across the states of nature.

Reducing irrigation applications of the optimal expected 
outcome strategy improved the expected water use efficiency 
by 15 percentage points, showing that the strategy uses rain-
fall and shallow groundwater tables more efficiently. Drain-
age losses associated with overirrigation and ineffective 
rainfall were reduced to zero in State 1 and State 3, while 
the drainage losses in State 2 were reduced by 86 mm. The 
optimal expected outcome irrigation strategy increased the 
contribution of shallow groundwater tables to satisfying the 
crop evapotranspiration requirements substantially across all 
states of nature. Compared to full irrigation, the water table 
uptake increased by a minimum of 42 percentage points 
(State 2) and a maximum of 46 percentage points (State 3), 
with an expected increase of 45 percentage points. When 
applying the optimal expected outcome irrigation strategy, 
shallow groundwater tables contributed about 51% to satisfy 
the expected crop evapotranspiration requirement.

The expected MAS for the optimal expected outcome 
irrigation strategy is R 243 553, which is R73 262 higher 
than that of the full irrigation strategy. The reason for the 
increase in the expected MAS is that the reduction in irriga-
tion application decreased total variable costs and other irri-
gation-dependent costs, while crop yields were not affected 
much. The optimal expected outcome irrigation strategy did, 
however, increase the crop yields in State 2 while compro-
mising crop yield in the other states. The variable electricity 
costs decreased by a minimum of R25 509 (State 1) and a 
maximum of R27 223 (State 2), with an expected reduction 
of R26 294. The other irrigation-dependent costs decreased 
by a minimum of R44 353 (State 1) and by a maximum of 
R47 128 (State 2), with an expected decrease in R46 125. 
Expected production income and expected yield-dependent 
costs did not change much because crop yields were not 
affected much by the optimal expected outcome irrigation 
strategy. Expected production income increased by R1 503 
while expected yield-dependent cost increased by R660 
compared to the full irrigation strategy.

Optimal sequential irrigation strategy

The optimal sequential irrigation strategy allows the irriga-
tor to adjust the optimal expected outcome irrigation strat-
egy weekly for the rest of the season based on the unfolding 
state of nature. The results of the optimal sequential irriga-
tion strategy are given for each state of nature in Table 7.

Table 7 shows that, contrary to expectation, no substantial 
adjustments were made to the optimal expected outcome 
irrigation strategy when the irrigator had the chance to react 
to unfolding information regarding the soil–crop–atmos-
phere continuum. In absolute terms, the optimal sequential 
irrigation strategy does not deviate more than 18 mm from 
the optimal expected outcome irrigation strategy in any 
state of nature. Irrigation adjustments in all states of nature 
resulted in higher crop yields. Interestingly, the total irriga-
tion application was increased in State 2 while the applica-
tions were reduced in the other two states to increase crop 
yield. The increases were small, with the highest increase 
(i.e., 100 kg ha−1) in State 1. The relatively small changes 
in irrigation applications resulted in an increased shal-
low groundwater table contribution in State 1 and State 3 
of 14 mm and 17 mm and a decrease of 7 mm in State 2. 
Accordingly, the water use efficiencies changed by one per-
centage point in absolute terms.

The MAS increased with R8 007 and R3 340 in State 1 
and State 3 because irrigation applications were reduced, 
and crop yields increased in these states of nature. The 
results for State 2 seem non-optimal because the MAS of 
the optimal sequential irrigation strategy reduced the MAS 
of the optimal expected outcome strategy with R510.
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Discussion

The bio-economic simulation results confirm the claims by 
Barnard et al. (2021) that farmers who irrigate to satisfy crop 
evapotranspiration requirements will have low water use effi-
ciencies. The bio-economic optimization results estimated that 
51% of maize’s crop evapotranspiration could originate from 
shallow groundwater tables using optimal irrigation manage-
ment, reducing the irrigation requirements substantially with-
out impacting crop yields. This contribution is in line with 
findings by Jovanovic et al. (2004), who found that the shal-
low groundwater tables can potentially contribute about 40% 
or more to the crop water demand under near-optimal irriga-
tion schedules. Liu et al. (2022) estimated the contribution to 
be 49%. Huo et al. (2012) showed with field lysimeters and 
simulations with SWAP that the contribution from shallow 
groundwater not only depends on crop type, soil texture, etc., 
but that irrigation volumes and frequency should be deter-
mined according to the groundwater table depth.

The bio-economic analyses assume the area limiting case 
(i.e., 30-ha irrigated irrespective of water application rates per 
hectare). Consequently, the analyses only consider changes 
in irrigation water use at the intensive margin (i.e., irrigation 
water applications per hectare) (Graveline 2016). According 
to Graveline (2016), intensive margin changes will create the 
opportunity to increase the irrigated area (i.e., extensive mar-
gin changes) if the production area is not limited. The intensive 
margin changes in irrigation water use using shallow ground-
water tables are substantial; therefore, the extensive margin 
change, if possible, would also be substantial. However, wide-
spread use of shallow groundwater tables and extensive margin 
changes in water use may result in unintended hydro-ecologi-
cal consequences as well as consequences for the revenues of 
the irrigation supplier.

The economic benefit of adapting irrigation management 
decisions was small, contrary to the findings of Madende and 
Grové (2020), who did not consider shallow groundwater 
tables and included water scarcity in their analyses. The risk of 
a short supply of irrigation water is reduced in the presence of 
a shallow groundwater table. Consequently, conjunctive water 
use strategies considering shallow groundwater tables provide 
substantial economic benefit at the farm level (i.e., optimal 
expected outcome irrigation strategy), leaving less potential to 
decrease risk through adaptive decision-making (i.e., optimal 
sequential irrigation strategy) because a shallow groundwater 
table neutralizes the impact of insufficient water.

The bio-economic optimization models used a proba-
bilistic representation of the state of the soil–plant–atmos-
phere when optimizing irrigation water applications. Con-
sequently, when optimizing irrigation application decisions, 
the optimization procedure has access to all information 

(i.e., weather states and the cause-and-effect interactions in 
the SWAP simulation model).

Conclusions

This paper aimed to approximate the profitability of con-
junctively using irrigation water and root-accessible shallow 
groundwater tables to satisfy crop evapotranspiration. The 
results provided some biophysical and new economic les-
sons from South Africa into why farmers do not consider 
shallow groundwater tables when scheduling irrigation.

Inconsistent irrigation water use efficiencies, indicating 
suboptimal management, were found with an irrigation strat-
egy of using the previous week’s observed evapotranspira-
tion and rainfall levels to schedule irrigation for the current 
week (full strategy). The margin above specified costs varied 
substantially (> 200%) among states of nature, this varia-
tion is attributed to differences in yield expectations across 
states and the corresponding impact on production income 
and expenses.

Improved irrigation water use efficiencies (15 percent-
age points) compared to the full irrigation strategy were 
found when an optimized irrigation schedule based on 
expected states of the soil–crop–atmosphere continuum was 
employed. This reduction in irrigation had minimal impact 
on crop yields, confirming the successful utilization of 
rainfall and shallow groundwater tables as additional water 
sources to satisfy crop evapotranspiration. The margin above 
the specified costs increased by R73 262 compared to the 
full irrigation strategy, primarily attributed to reduced irriga-
tion applications. This led to decreased total variable costs 
and other irrigation-dependent costs.

Surprisingly, the optimal sequential irrigation strategy, 
designed to allow weekly adjustments based on unfolding 
information about the soil–crop–atmosphere continuum, did 
not result in substantial deviations from the optimal expected 
outcome irrigation strategy. This indicates that the initial 
optimized strategy was already nearly optimal for various 
unfolding conditions. The margin above specified costs var-
ied across states of nature and highlighted the complex inter-
play between irrigation adjustments, crop yields and eco-
nomic performance in different states, emphasizing the need 
to carefully consider context-specific factors in irrigation 
management decisions. Future research is needed to devise 
an information dissemination strategy to facilitate irrigation 
management considering shallow groundwater tables.
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