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Abstract
Examining the condition of groundwater resources and the impact of droughts is valuable for effective water resources 
management. Today, machine learning (ML) models are recognized as one of the useful tools in time series predictions. In this 
study, the groundwater condition of one of the most important aquifers in northwest Iran was investigated using MODFLOW, 
followed by estimating the groundwater resource index (GRI) utilizing the multivariate adaptive regression spline (MARS) 
and least squares support vector regression (LSSVR) for a period between 2001 and 2019. Meteorological and hydrological 
drought indicators along with precipitation and flow rate were used as input variables for prediction. The simulation results 
revealed a groundwater level decrease since the aquifer withdrawal amount is more than the recharge amount. Besides, 
results showed that there is a limited interaction between surface water and groundwater resources, mainly caused by the 
decrease in the river flow and aquifer groundwater level drop. Both ML models performed well in GRI estimation, using 
groundwater flow, streamflow drought index, standardized precipitation index, and runoff as input variables. The performance 
of the MARS model with RMSE, MAE, and NSE error evaluation criteria of 0.37, − 0.19, and 0.83, respectively, exerted 
slightly better results than LSSVR with RMSE, MAE, and NSE of 0.48, − 0.06, and 0.80, respectively. The findings reveal 
the appropriate performance of both models in forecasting drought indicators, highlighting the necessity of using ML models 
in hydrology and drought prediction problems.

Keywords Groundwater management · Machine learning · Streamflow drought index (SDI) · Groundwater resource index 
(GRI) · MODFLOW

Introduction

Drought is a multifaceted phenomenon that is not as widely 
recognized as other natural hazards, owing to various influ-
ential factors operating at various temporal and spatial scales 
(Kiem et al. 2016). It is a widespread and highly destruc-
tive natural hazard occurring in nearly all geographical 
regions (Kiafar et al. 2020). The primary cause of drought 
is often a deficiency in rainfall, though in certain instances, 
anomalies in variables such as temperature and evapotran-
spiration can also contribute (Cook et al. 2014; Livneh and 
Hoerling 2016). Additionally, human activities, such as 
changes in land use and the exploitation of reservoirs, have 
the potential to modify hydrological processes and impact 

the development of drought (Van Loon et al. 2015). The 
intricate interplay of meteorological anomalies, land sur-
face processes, and human activities plays a crucial role in 
the initiation and progression of drought (Hao et al. 2018). 
Droughts manifest in various types, including meteorologi-
cal, hydrological, groundwater, agricultural, and economic-
social categories. In general, drought is rooted in the amount 
of rainfall. At first, a meteorological drought occurs, and if 
it continues, other types of droughts, including hydrologi-
cal and groundwater droughts, will occur, which will have a 
significant impact on water resources (Livneh and Hoerling 
2016; Luo et al. 2017).

The groundwater drought index indicates the critical con-
dition of groundwater during a long-term meteorological 
drought, which renders groundwater resources unavailable 
or reduced for human use (Villholth et al. 2013). The study 
of groundwater drought is important because groundwater 
is the main source of water supply for domestic use, irri-
gation, and industry in many countries, especially in arid 
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and semiarid regions. According to Melaku and Wang 
(2019), groundwater supplies water needs for over 1.5 bil-
lion people and almost 40% of irrigation water. However, 
changes in land use, population growth, and overexploita-
tion of resources lead to groundwater depletion, which can 
hinder sustainable development (Sheikha-BagemGhaleh 
et al. 2023). Therefore, there is an increasing need to pre-
dict groundwater drought. Forecasting tools for drought 
are deemed essential for effective risk management, water 
resource engineering, and strategic planning (Alsumaiei and 
Alrashidi 2020).

Today, under the influence of various climatic and 
human factors, groundwater resources are always exposed 
to critical conditions, which requires further investigation 
of their possible impacts (Milan et al. 2023). Many studies 
indicate the undesirable impact of drought on groundwater 
resources, showing that more study is required in this 
field. Estimating and predicting the groundwater drought 
index is one of the first steps in investigating the effects of 
drought on groundwater resources (Asadzadeh et al. 2016; 
Karunakalage et  al. 2024). In simulating groundwater 
drought, methods such as physical, mathematical, and data-
based approaches are available. Physical and mathematical 
methods often receive less attention from researchers due to 
limitations such as high cost, time consumption, requirement 
of expertise, and more information (Mosavi et al. 2018). 
Data-based methods or artificial intelligence models, on 
the other hand, are more popular among researchers due 
to advantages such as not requiring initial and boundary 
conditions, high simulation accuracy, and cost efficiency 
(Seo and Lee 2019; Elbeltagi et al. 2023; Aghelpour and 
Varshavian 2021; Farzin et al. 2022; Almikaeel et al. 2022).

Machine learning (ML) is a subset of artificial 
intelligence (AI) focused on identifying patterns and 
regularities. Predictive models built on ML hold promise 
as they are more straightforward to develop and demand 
fewer inputs (Hashemi et al. 2014; Esmaili et al. 2021). 
In comparison with physical models, ML models offer 
simpler implementation, and faster training, validation, 
testing, and evaluation processes (Mosavi et  al. 2018; 
Kiafar et al. 2017). Several researchers have proven the 
application of these models in hydrology studies (Arya 
Azar et al. 2023; Kayhomayoon et al. 2023; Jamnani et al. 
2024; Milan et al. 2023). Shamshirband et al. (2020) used 
ML models including support vector regression (SVR), 
gene expression programming (GEP), and model trees 
(MT) to predict various drought indicators, and their results 
showed high capability in predicting drought indicators. 
Akter et al. (2023) used several ML models to simulate two 
drought indices, SPI and SPEI. Other researchers (Bidabadi 
et al. 2024; Malik et al. 2020; Malik et al. 2019; Piri et al. 
2023; Tian et al. 2018) have used different ML models to 
simulate different drought indicators, but very few studies 

have simulated the groundwater resource index (GRI) 
index using ML models. In this context, we can refer to the 
prediction of groundwater drought index using ANFIS and 
Bayesian networks (Gocić et al. 2015) and groundwater level 
prediction using wavelet-SVM (Pham et al. 2022). Also, in 
recent years, some ML models such as the group method 
of data handling (GMDH) and SVR have been used in a 
limited way, the results of which have shown their promising 
performance. Despite the large number of ML models, 
further investigation in this field is still needed due to their 
different performance.

One of the models used in this research is the MARS 
model, which is a regression-based model that works like 
a step-by-step linear regression model. Its main advantage 
is improving the understanding of complex relationships 
between the target and predictor variables (Adnan et al. 
2020). This method constructs adaptable regression models 
to predict the target variable by partitioning the problem 
space into intervals based on predictor (input) variables 
and fitting a spline (basis function) within each interval 
(Zhang and Goh 2016). Additionally, the LS-SVM model is 
employed in this research. This model is based on the theory 
of statistical learning, which aims to minimize risk. Unlike 
SVM, this model uses linear equations instead of quadratic 
programming problems, yet it has higher computational 
accuracy compared to classical SVM (Leong et al. 2021).

The accuracy of both the MARS and LS-SVM models 
has been confirmed in various hydrology and environmental 
studies (Rezaei-Balf et al. 2017; NajafZadeh et al. 2022a, 
2022b; Arya Azar et al. 2021a; Leong et al. 2021; Amiri 
et  al. 2023). As Iran is located in an arid and semiarid 
region, each region is exposed to different types of drought. 
In recent years, due to changes in precipitation patterns and 
the existence of climate change phenomena, which cause 
increased temperature and decreased rainfall in most regions, 
there has been a decrease in runoff and river flow, as well 
as excessive extraction of groundwater sources. There has 
been significant pressure on the groundwater resources in 
different regions of Iran, making it necessary to investigate 
groundwater drought in these areas. Therefore, the aim of 
this research is to monitor groundwater drought. The study 
area is located in Ajabshir, northwest of Iran.

The research conducted in the field of groundwater 
drought indicators has been so far conducted by the 
indicator itself and using ML models, in which the 
conditions of the aquifer were not considered in the model. 
Therefore, in this study, for the first time, the situation of 
groundwater resources was simulated during modeling. 
Then, the GRI was predicted using its results as well as 
the hydrological indicator. Therefore, among the novelties 
of this research, besides using new ML models, we can 
mention considering the conditions of the aquifer as well 
as the use of the hydrological indices to estimate the GRI. 
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In addition to increasing the performance of the GRI 
prediction, this brings a high level of scenario ability since 
the groundwater drought index is predicted according to 
the groundwater level. In this work, first, groundwater 
resources in the area were simulated using MODFLOW. 
The amounts of discharge and recharge of groundwater 
resources were evaluated along with the status of the 
groundwater level. In the following, the groundwater 
drought index was calculated using groundwater level 
data, and then groundwater drought was simulated using 
rainfall data, groundwater levels, streamflow drought 
index (SDI), and standardized precipitation index (SPI). 
LS-SVM and MARS models were used accordingly. 
Several input scenarios were defined for the models, and 
the performance of the models was evaluated under these 
scenarios. Finally, the most influential parameters affecting 
groundwater drought and the best predictive model were 
determined.

Materials and methods

Study area

The study area of Ajabshir (45° 43′ E, 36° 46′ N), with 
an area of 1508   km2 and an altitude of 1385 m above 
sea level, covers approximately 2.9 percent of the entire 
watershed of Urmia Lake. Out of the total area, 249  km2 
belongs to the plain, while 1259  km2 is composed of ele-
vated regions (Fig. 1). The main river flowing through the 
study area is Ajabshir Chai, which flows in a south-north 
direction. A review of long-term precipitation data from 
the Ajabshir synoptic station reveals that the maximum 
annual rainfall in this region is 678.4 mm, while the mini-
mum is 173.4 mm. Temperature plays a significant role in 
the region’s climate, and Ajabshir City, being located in 
the highlands, enjoys favorable weather conditions. The 
average minimum and maximum temperatures recorded 
in Ajabshir between 1984 and 2021 are 6.5 and 19.0 °C, 
respectively.

Despite having a favorable climate situation, this 
region has always faced challenges in meeting the water 
needs of the area, which is done usually through dams 
and groundwater resources. Lake Urmia, located in the 
neighborhood of this aquifer, is drying up today, which also 
needs serious attention. Meanwhile, the water resources in 
the surrounding areas can be used to improve the condition 
of the lake. This requires preliminary investigation of the 
water resources of the area, especially the groundwater 
sources. Therefore, it seems necessary to investigate and 
simulate the Ajabshir aquifer and investigate its potential 
under climatic factors such as drought and climate change. 

Therefore, this region can be a suitable representative for 
other areas in the implementation of the proposed approach 
in this study.

Research method

Figure 2 depicts the flowchart of this research, illustrat-
ing the prediction of the GRI values using ML models. 
The initial step involved groundwater simulation, accom-
plished using the MODFLOW code. In this stage, simula-
tion was conducted for both steady and transient states. 
Subsequently, the interaction between surface and ground-
water was calculated. Following that, meteorological and 
hydrometric drought indices were computed. Utilizing 
the flow data representing the interaction between surface 
and groundwater, as well as precipitation, SPI, and SDI, 
various input scenarios were developed for GRI predic-
tion. The calculated GRI index served as the output of the 
models, which were estimated by employing ML models, 
namely LSSVR and MARS models. For the models, 70% 
of the available data were utilized for training purposes, 
while the remaining 30% was used for testing. The results 
of the models were evaluated using predefined criteria. If 
the evaluation criteria yielded satisfactory results, the GRI 
prediction was considered valid. Otherwise, the process 
was repeated.

Among the characteristics of drought, we can mention 
severity, continuity, extent, and frequency, all of which are 
determined by using drought evaluation indices. Given the 
significance of meteorological and hydrological drought, 
our research utilizes two hydrological drought indices: SPI 
and SDI. Additionally, in relation to groundwater drought, 
it is initially calculated and subsequently predicted 
using ML. Subsequently, we provide a simulation of 
the groundwater of the Ajabshir aquifer. Following that, 
we explain our methodology for calculating the drought 
indices.

Groundwater simulation

To check the groundwater condition of the Ajabshir 
aquifer, modeling and forecasting are required. Initially, 
the aquifer was modeled separately using the MODFLOW 
code, which was executed in the GMS software 
environment. This code is a suitable tool for measuring 
and simulating groundwater. A conceptual model is 
defined within this code, encompassing the aquifer area, 
groundwater inflow and outflow, water sources, discharge 
wells, and observation wells of the aquifer.

The initial step in groundwater simulation involves 
constructing a conceptual model that integrates 
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fundamental details about the aquifer. This encompasses 
information such as the aquifer’s geographical extent, 
observation wells, exploitation wells, surface recharge 
to the aquifer, rivers, hydraulic conductivity, as well as 
the topography and bedrock (bottom elevation) of the 
aquifer. To establish this, the topographic data and the 
aquifer area were determined utilizing the digital elevation 
model (DEM) of the region. Bedrock data, another 
crucial modeling parameter, were derived from reports of 
pumping tests, well data, and the aquifer’s thickness in 
various locations. The aquifer thickness ranged from 80 
to 250 m, considering a cell size of 300 × 300 m.

Roughly 14% of the monthly precipitation was 
designated for infiltration and aquifer recharge. Additionally, 
considering the primary purpose of the wells, the return 
water from wells was estimated at approximately 65, 70, 
and 20% for drinking water, industrial, and agricultural 
wells, respectively (Milan et al. 2023). As illustrated in 
Fig. 3, a substantial amount of aquifer discharge (around 266 
MCM) occurs in exploitation wells. The model underwent 
simulations from October 2010 for the steady state and from 
October 2010 to September 2013 for the unsteady state, 
employing a monthly time step. The majority of exploitation 
wells are situated in the central section of the aquifer, 

Fig. 1  Location of the Ajabshir watershed
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primarily catering to urban and agricultural needs. Out of the 
56 observation wells within the aquifer, 45 were utilized for 
calibration in both steady and transient states. Under steady-
state conditions, where the hydraulic load remains constant 
over time, the Eq. (1) is employed for simulation

where h represents the groundwater level. In the unsteady 
state, Eq. (2) represents the spatial and temporal distribution 
of the piezometric load in the confined conditions
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where Kxx, Kyy, and Kzz are hydraulic conductivity in the x, 
y, and z directions, respectively. Ss is the storage coefficient 
of the aquifer. In the following, meteorological, hydrologi-
cal, and groundwater drought indices used in this study are 
described.

Groundwater drought index

Proposed by Mendicino et  al. (2008) GRI is used to 
investigate groundwater drought. It is considered one of 
the most reliable indicators of drought as it expresses the 
condition of groundwater resources in terms of drought. One 
of the notable capabilities of this index is its high correlation 
with average runoff in certain rivers, enabling the prediction 
of summer droughts. Therefore, the index holds significant 
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importance as an indicator of drought. Equation (3) provides 
a description of how to calculate GRI

where G represents the water level in month i in observation 
well j. m and σ, respectively, represent the standard deviation 
of water level data in month i. This index is an indirect 
criterion of the amount of water table nutrition and an 

(3)GRI =
Gij − mim

�

indirect source of groundwater drought, which expresses the 
decrease in the groundwater level. It always has positive and 
negative values, which indicate drought and non-drought, 
respectively. According to the different values obtained from 
the above relationship, the intensity of drought is different. 
Table 1 shows the intensity according to the obtained values.

Fig. 3  The conceptual model of the aquifer
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Meteorological drought index

SPI is a variable of the standard probability distribution 
function, with the cumulative probability value or cumulative 
probability value of that variable obtained from the Gamma 
distribution being the same (Deo et al. 2017). SPI for the 
regions is calculated based on their long-run precipitation 
records. To calculate this index, the initial step involves 
fitting an appropriate statistical distribution to the long-term 
precipitation statistics. Subsequently, the cumulative function 
of the distribution is transformed into a normal distribution 
using equal probabilities. This normalization process 
standardizes the distribution, resulting in an average of zero 
for each region and period under examination (Zou et al. 2020; 
Salimi et al. 2021). SPI is calculated using Eq. (4)

where n is the number of months for which cumulative 
precipitation has been considered. P0 and P−i are the 
normalized precipitation in the current and previous month, 
respectively, μn is the average cumulative precipitation of 
n months and δn is the standard deviation of cumulative 
precipitation of n months. Table 2 shows the categorization 
of SPI index values. According to the table, if SPI is greater 
than 1, a downpour condition occurs, and if it is less than 
− 1, a drought condition occurs.

Hydrological drought index

As an index used to study the drought of a region, SDI is 
calculated using river discharge data (Eq. 5) (Nalbantis et al. 
2009; Pathak et al. 2016)

(4)SPI =
P0 +

∑
P−i − �n

�n

where i is the hydrological year and j represents the month 
(1 for October and 12 for September). Q is the volumetric 
flow rate values of cumulative flow and also the mean 
and standard deviation parameters of cumulative flow 
data, respectively (Pathak et al. 2016). Table 3 shows the 
categorization of drought situations based on the SDI 
drought index (Nalbantis et al. 2009). According to this 
table, the downfall condition starts from an SDI value 
greater than 1 and the drought condition starts from an SDI 
value less than − 1.

Meteorological and hydrological drought indicators along 
with precipitation parameters; groundwater discharge and 
level were used to predict the groundwater drought index. In 
this line, four input scenarios were compiled with different 
combinations of the mentioned parameters, which are shown 
in Table 4. According to this table, the fourth model includes 
all input parameters, while the first and second models 
have fewer input parameters for GRI prediction. Each of 
the developed models was implemented using LSSVR and 
MARS models, and their results were evaluated accordingly.

Machine learning models

ML models are highly regarded because they do not rely 
on the specific nature of the data and encompass a variety 
of methods (Amanabadi et al. 2019). Among the existing 
methods, two models, MARS and LS-SVM, are particularly 
interesting as they have demonstrated good results in 
predicting systems in various fields. The following is a 
description of the structure and relationships utilized in 
these methods.

(5)

SDIj,k = Vj,k − Vk∕Sk

Vj,k =

3k∑

j=1

Qi,j, i = 1, 2, 3,…

k = 1, 2, 3, 4 j = 1, 2,… , 12

Table 1  Different values of 
GRI and categories of drought 
severity

GRI value Category GRI value Category

− 1.49 < GRI < − 1 Mild drought 2 < GRI Very severe downpour
− 1.99 < GRI < − 1.5 Severe drought 1.5 < GRI < 1.99 Severe downpour
GRI < − 2 Very severe drought 1 < GRI < 1.49 Mild downpour

− 0.99 < GRI < 0.99 Normal

Table 2  Categorization of SPI 
(Deo et al. 2017)

SPI value Category SPI value Category

− 1.49 < SPI < − 1 Very severe downpour 2 < SPI Very severe downpour
− 1.99 < SPI < − 1.5 Severe downpour 1.5 < SPI < 1.99 Severe downpour
SPI < -2 Mild downpour 1 < SPI < 1.49 Mild downpour

− 0.99 < SPI < 0.99 Normal
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Multivariate adaptive regression spline

Presented by Friedman (1991), MARS is a nonparametric 
technique designed for f lexible modeling of high-
dimensional data. It is capable of uncovering nonlinear 
relationships that may be hidden within a dataset and 
achieving optimal solutions quickly (Zhang et al. 2016). The 
method determines the mutual effects among the explanatory 
variables and allows for distinguishing between effective 
and non-effective variables based on their influence on the 
dependent variable. Therefore, the general model of MARS 
can be expressed as Eq. (6).

Starting from h0(x) = 1 . The basic functions are iteratively 
added to the model. For each hm(x) , there are two choices

where X and t are called variable and node, respectively. 
For each variable, the identified node is different, and 
the coefficient �m is variable in each state of hm(x − t) 
and hm(t − x) ). The number and location of the nodes are 
determined through forward–backward steps. In the forward 
step, a large number of nodes are generated, while in the 
backward step, nodes that contribute less to the overall fit are 
omitted. In each step, a linear process is selected from all the 
derivatives of each basis function that minimizes the model’s 
defects. Basis functions that have the least impact on the 
model are eliminated through elimination steps. The optimal 
model is then chosen based on the lack of fit index, which is 
evaluated using the reciprocal standardized criterion defined 
in Eq. (8).

(6)f (x) = �0 +

M∑

m=1

�mhm(x)

(7)
(x − t)+ =

{
x − t if x > t,

0, otherwise,

(t − x)+ =

{
t − x if t > x,

0, otherwise,

(8)GCV(M) =
1

n

n∑

i=1

(
yi − ŷ

)2

(
1 −

C(M)

n

)2

where ŷ is the model output, n is the number of observations, 
M is the number of non-constant terms in the model, and 
C(M) is the error function and is defined as C(M) = M + cd, 
where c is cost error factor to optimize the basic function, 
and d is the effective degree of freedom, that is equal to the 
number of independent basic functions.

Least square mean support vector regression model

The developed LSSVR is the SVR model which was 
proposed by Suykens and Vandewalle (1999) in order to 
improve the prediction accuracy. Compared to SVR, the 
LSSVR model has the same limitations, yet it has lower 
calculation complexity and higher accuracy and speed. The 
set of training data such as {xk, yk}

N

K=1
 whose input data 

include xk ∈ RN and output data yk ∈ R is defined as Eq. (9) 
(Xie et al. 2013)

where T, b, and W are weights, the bias of the regression 
function, and output, respectively. �(x) is used for a 
nonlinear mapping of inputs into a high-dimensional feature 
space. The nonlinear regression equation can be solved by 
Eq. (10).

According to the constraints, we have:

(9)y(x) = WT�(x) + b

(10)min j(w, e) =
1

2
W2 W +

1

2
�

N∑

k=1

e2
k

(11)yk = WT�(�) + b + ek , k = 1, 2, ...,N

Table 3  Categorization of SDI 
index

SDI value Category SDI value Category

− 1.49 < SDI < − 1 Very severe downpour 2 < SDI Very severe downpour
− 1.99 < SDI < − 1.5 Severe downpour 1.5 < SDI < 1.99 Severe downpour
SDI < − 2 Mild downpour 1 < SDI < 1.49 Mild downpour

− 0.99 < SDI < 0.99 Normal

Table 4  Input scenarios compiled for GR prediction

Scenario Input Output

1 Groundwater and SPI GRI
2 Groundwater level and SDI
3 Groundwater level and SDI and SPI
4 Groundwater level and SDI and SPI and 

Precipitation and river flow
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where γ is the adjusting parameter and e shows the error rate. 
The solution is obtained using the Lagrangian form from the 
main objective function and Eq. (12):

where �i is the Lagrange coefficient. Based on Kahn–Tucker 
conditions, the LS-SVM model is written as Eq. (13).

where K
(
x, xk

)
 is called kernel function. In this research, the 

radial basis kernel function is used (Eq. 14).

Error evaluation criteria

To assess the effectiveness of the MODFLOW code and ML 
models across different scenarios, error evaluation metrics 
were employed. The dataset was randomly split into two 
sets, with 75% of the data allocated for model training and 
the remaining portion for model validation (Mostafa et al. 
2024). Performance metrics, including root-mean-square 
error (RMSE), mean absolute percentage error (MAPE), 
Nash–Sutcliffe efficiency (NSE), coefficient of determination 
(R2), and mean absolute error (MAE), were computed (Arya 
Azar et al. 2021b).

(12)L(w, b, e, �)j(w, e) −

N∑

i=1

�i
{
WT�(�) + b + ek − yk

}

(13)y(�) =

N∑

k=1

�kK(� , �k) + b

(14)K(� , �k) = exp

(

−
‖
‖� − �k

‖
‖

�2

2
)

(15)RMSE =

�
∑n

i=1

�
xo − xp

�2

n

(16)MAPE =
1

n

n∑

i=1

||
||

xo − xp

xo

||
||

(17)NSE = 1 −

∑n

i=1

�
xo − xp

�2

∑n

i=1

�
xo − xo

�2

(18)R2 = 1 −

∑n

i=1

�
xp − xo

�2

∑n

i=1

�
xo − xo

�2

(19)MAE =

∑n

i=1

���
xp − xo

���
n

where xo is the observed value, xp is the predicted (simulated) 
value, and n is the number of samples.

Results and discussion

Results of groundwater simulation

Groundwater simulation was conducted and calibrated 
in both steady and unsteady states, and the outcomes 
are depicted in Fig. 4. The figure illustrates the highest 

Fig. 4  Groundwater simulation results

Fig. 5  Calibrated values of hydraulic conductivity
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groundwater levels in the northern regions of the aqui-
fers. Furthermore, the groundwater level exhibits varia-
tions ranging from 1353 to 1380 km across the Ajabshir 
aquifer, indicating substantial fluctuations in groundwater 
levels in this aquifer. Conversely, the southern areas of the 
aquifer, situated at lower elevations, exhibit lower ground-
water levels.

Figure 5 displays the calibrated values for both aquifers. 
The hydraulic conductivity values within the aquifer span 
from 1 to 15 m/day, with the northern region of the aqui-
fer demonstrating the highest values (approximately 12 to 
15 m/day). Additionally, the south and southeast areas of 
the aquifer show lower hydraulic conductivity values, rang-
ing from 1 to 5 m/day. However, in the deeper central part 
of the aquifer, the hydraulic conductivity varies between 7 
and 10 m/day.

The error evaluation criteria values for both aquifers in 
both steady and unsteady states indicate that the simulations 
exhibit satisfactory accuracy, as shown in Table 5. The 
RMSE values for the aquifer in the two states were 
0.77 m and 0.86 m, respectively. Moreover, coefficients of 
determination exceeding 0.98 indicate a highly favorable 

agreement between the actual and simulated data in both 
aquifers. In the following, changes in groundwater level were 
investigated according to the results of simulation. Then, 
the groundwater level, which represents the state of the 
aquifer, along with other variables, was used to estimate the 
groundwater drought index.

The results of drought indicators

The values of SPI and SDI, calculated using precipitation 
and runoff data, are presented in Fig. 6. According to the 
figures, the study area experienced a situation close to nor-
mal during the years 2001 to 2005. However, starting from 
2005, severe droughts in some months of 2006, 2007, 2010, 
and 2019 can be observed due to irregular precipitation pat-
terns. Throughout the study period, particularly in the later 
years, with increasing rainfall, the SPI indicates a return to 
normal conditions, indicating wetter years. The SDI values 
also indicate that from 2001 to 2007, the study area expe-
rienced wet year conditions. A hydrological drought was 
observed between 2007 and 2011. Normal to wet hydrologi-
cal conditions were observed in the later years of the study 
period (Fig. 7).

The performance of the models in predicting 
groundwater drought indicators

Both MARS and LSSVR models exerted promising 
results in predicting the GRI. As mentioned earlier, four 
input scenarios were used for simulation purposes, which 

Table 5  Error evaluation criteria for numerical simulation of the 
aquifer

Aquifer State RMSE (m) MAE (m) R2

Ajabshir Steady 0.77 0.70 0.99
Transient 0.86 0.79 0.98

Fig. 6  The results for SPI and 
SDI
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included various combinations of precipitation, runoff, 
meteorological drought index, and hydrological drought 
index. The results of the error evaluation criteria (Table 6) 
showed that using LSSVR and considering the third sce-
nario, which included groundwater level, meteorological 
index, and precipitation index as input values, resulted 
in RMSE, MAE, NSE, and MAD values equal to 0.60, 
− 0.03, 0.80, and 0.37, respectively, for the test data. Simi-
larly, using the MARS model, the fourth scenario, which 
included all input variables, produced RMSE, MAE, NSE, 
and MAD values of 0.37, − 0.19, 0.83, and 0.30, respec-
tively, for the test data. This indicates that the MARS 
model performed better than LSSVR. The first scenario in 
both models exhibited the lowest prediction performance, 
as it only included groundwater level and SPI variables. 
Therefore, using this combination alone does not yield 
proper GRI prediction performance. Similar results were 
obtained with the second scenario, indicating that having 
the groundwater level and only one of the meteorologi-
cal or hydrological drought indicators is insufficient for 
accurate GRI prediction. Hence, using the third scenario 
in LSSVR and the fourth scenario in MARS allows for 
reliable prediction performance of GRI values.

The time series results of the GRI values calculated and 
predicted by the models are shown in Fig. 8. According to 
the figure, both models provide an acceptable estimate of the 
trend of the GRI. However, in Fig. 8A, it can be observed 
that the LSSVR model’s error ranges from − 1.5 to 1, with 
more noticeable deviations at the beginning and end of the 
modeling period. The histogram results also indicate that the 
error follows a normal distribution, with a standard deviation 
of 0.422. On the other hand, Fig. 8b depicts the estimation 
with slightly better performance for MARS, where the error 
in each step falls within a range of 0.5 to − 1.5. Additionally, 
the figure illustrates that the error of the estimation follows 
a normal distribution with a standard deviation of 0.37, sig-
nifying the model’s proper performance.

Plotting the observed versus predicted GRI data by 
the models shows low scattering from the regression 
line (Fig.  9). The coefficient of determination of the 
LSSVR and MARS models was equal to 0.80 and 0.83, 
respectively, obtained for the third and fourth scenarios, 
respectively.

For further investigation, the performances of the mod-
els were compared using Taylor’s diagram (Fig. 10). In this 
diagram, the vertical axis, arcs inside the quarter circle, 

Fig. 7  Groundwater resource 
index (GRI) during the study 
area
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Table 6  The performance 
of predictive models for the 
training and test data

The selected pattern is bolded

Models Scenarios Training Test

RMSE MAE NSE MAD RMSE MAE NSE MAD

LSSVR S1 0.54 0.00 0.72 0.42 0.60 − 0.03 0.68 0.47
S2 0.42 0.00 0.85 0.31 0.48 − 0.07 0.74 0.34
S3 0.40 0.00 0.85 0.29 0.48 − 0.06 0.80 0.37
S4 0.34 0.00 0.90 0.25 0.60 − 0.03 0.63 0.42

MARS S1 0.60 0.00 0.73 0.43 0.70 − 0.08 0.38 0.61
S2 0.43 0.00 0.85 0.30 0.55 0.00 0.54 0.44
S3 0.43 0.00 0.84 0.32 0.56 − 0.31 0.60 0.46
S4 0.39 0.00 0.88 0.28 0.37 − 0.19 0.83 0.30
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and arc of the quarter circle show the standard deviation, 
RMSD, and correlation coefficient, respectively. Accord-
ing to the diagram, models positioned closer to the obser-
vation data demonstrate a better estimate of the drought 

indicators. In Fig. 10, the correlation coefficient for both 
models is approximately 0.90, with the MARS model 
showing a slightly higher value compared to LSSVR. 
Furthermore, the position of the MARS model is closer to 

Fig. 8  Time series of the observed and predicted values using the a LSSVR and b MARS models
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the observational data. The standard deviation values for 
MARS and LSSVR are 1 and 0.8, respectively, indicating 
that the MARS model aligns more closely with the stand-
ard deviation values of the observed data. Despite this, 
both models have RMSD values below 0.5, suggesting 
their appropriate performance. Consequently, the MARS 
model exhibits better prediction of the GRI. The results of 
Taylor’s diagram support the findings of the error evalua-
tion criteria and indicate the models’ overall performance.

Discussion

Groundwater stands as a vital water supply source in 
numerous regions globally, particularly in arid and semiarid 
areas. Challenges such as droughts, climate change, 
and intensive agricultural activities aimed at ensuring 
food security have resulted in a notable decline in both 
the quantity and quality of groundwater. Consequently, 
the simulation of groundwater and the examination of 
the aquifer’s status represent crucial initial measures in 
effectively managing this valuable resource. The results of 
the groundwater simulation in the study area indicate that 
despite the presence of suitable surface water resources, 
groundwater is still at risk of excessive extraction, 
necessitating further comprehensive studies in this region. 
The performance of MODFLOW in aquifer simulation 
was evaluated, and the results demonstrated its suitability 
for managing surface water and groundwater resources. 
Therefore, according to the obtained results, it can be stated 
that the groundwater resources in the area have suffered a 
significant decrease in water volume, which requires the 
implementation of appropriate management scenarios. 
Applicable scenarios can be the use of optimal integrated 
exploitation of groundwater resources and dams, which are 
not done currently in an optimal integrated way. Also, the 
agricultural water transmission and distribution system, 
which is mainly supplied from groundwater resources, is 
traditional and somewhat outdated, which causes a lot of 
water wastage. Therefore, according to the necessity of 
proper management, the distribution and transmission 
system can be improved in order to prevent water wastage. 
Agriculture in the region is one of the largest consumers 
of groundwater, and most of the irrigation methods in the 
region are still traditional. Also, in this area, the cultivation 
pattern has not changed to create a suitable situation for 
groundwater resources. Therefore, with a reduction of 
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Fig. 9  The observed and predicted values of GRI obtained by a MARS and b LSSVR

Fig. 10  Taylor’s diagram of the study models
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about 5–30% of aquifer harvesting in this sector along with 
changing the irrigation system and cultivation patterns, 
one can hope to improve the condition of the aquifer in a 
relatively short time.

The implementation of ML models for GRI prediction 
yielded promising results. The integration of SPI and 
SDI with groundwater levels resulted in accurate GRI 
predictions. This signifies the potential for predicting 
groundwater drought using both groundwater levels and 
drought indices. The results of ML models in GRI and 
drought indices prediction using ANNs (Banadkooki 
et al. 2021) and ANFIS (Gocić et al. 2015) also showed 
that they have a promising performance in GRI estimation. 
Therefore, employing ML models is highly recommended in 
groundwater resource management, as they serve as useful 
tools for predicting various types of droughts. These findings 
align with the research conducted by Milan et al. (2023).

The results of the models indicated that although their 
structures differed, their performance was relatively similar. 
The MARS model possesses a more complex structure 
compared to LSSVR resulting in higher computational 
complexity and requiring a greater understanding of 
modeling principles. Additionally, MARS produces 
numerous output functions, which may pose challenges 
in their application, whereas LSSVR lacks such complex 
nonlinear relationships and has relatively simpler coding. 
As a result, based on the model results and considering 
their structures, LSSVR may be preferred over MARS for 
GRI modeling. The data utilized in this research comprised 
precipitation and runoff flow rate, but other meteorological 
information, such as evaporation and temperature, could 
also be employed to estimate index values. Furthermore, 
it is advisable to explore alternative ML models in future 
studies for estimating SPI, SDI, and other drought indicators. 
Comparing the results of other models to those obtained 
in this research represents a useful step in selecting an 
appropriate ML model within this field.

Conclusion

Groundwater is one of the main sources used to meet the 
water demands of the industry, agriculture, and drinking 
sectors due to its accessibility and low operational cost, 
along with its acceptable quality. However, recent droughts 
have resulted in the excessive exploitation of aquifers. In this 
research, MODEFLOW was utilized to simulate groundwater 
and investigate the water resources situation in Ajabshir, 

located in the northwest of Iran. Subsequently, ML models 
were employed to predict the groundwater drought index of 
the aquifer. The input variables included groundwater flow, 
precipitation, SPI, and SDI, as well as precipitation and 
discharge flow. The results of the groundwater simulation 
indicated a relatively stable groundwater condition in the 
area. Furthermore, the hydrograph of the simulated aquifer 
revealed an increasing trend in groundwater withdrawal, 
which may lead to excessive utilization of groundwater 
resources in the vicinity. Meteorological and hydrological 
drought indicators also showed the prevalence of severe 
drought in the years 2006, 2007, 2010, and 2011. However, 
in the final years of the research period, the situation 
approached normal conditions and indicated a wet year.

The performance evaluation of the MARS and LSSVR 
models demonstrated their capability in estimating the 
GRI, making them applicable for predicting groundwater 
drought indexes in similar areas. Additionally, the prediction 
results of the groundwater drought index suggested that the 
combination of groundwater flow, SPI, and SDI variables 
can enhance prediction accuracy. Such predictions can 
greatly assist decision-makers in this field. Considering 
the significant negative impacts of climate change, 
particularly in arid and semiarid regions, it is recommended 
to incorporate the influence of this phenomenon when 
modeling the GRI. Moreover, various metaheuristic 
evolutionary algorithms are available that can enhance the 
performance of base ML algorithms, thus improving the 
results of individual models. Implementing such an approach 
can be beneficial for estimating other challenging drought 
indicators. In addition to the above, the implementation 
of management scenarios includes the modification of the 
cultivation pattern, the modification of the agricultural water 
distribution and transmission system, and the irrigation 
system along with the reduction of agricultural water 
withdrawal from the aquifer, are among the solutions that 
can be implemented in this area and other similar areas 
neighboring Lake Urmia, which causes improvements in 
the status of groundwater resources.
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