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Abstract
Accurate prediction of reference evapotranspiration  (ETo) is crucial for many water-related fields, including crop modelling, 
hydrologic simulations, irrigation scheduling and sustainable water management. This study compares the performance of 
different soft computing models such as artificial neural network (ANN), wavelet-coupled ANN (WANN), adaptive neuro-
fuzzy inference systems (ANFIS) and multiple nonlinear regression (MNLR) for predicting  ETo. The Gamma test technique 
was adopted to select the suitable input combination of meteorological variables. The performance of the models was quan-
titatively and qualitatively evaluated using several statistical criteria. The study showed that the ANN-10 model performed 
superior to the ANFIS-06, WANN-11 and MNLR models. The proposed ANN-10 model was more appropriate and efficient 
than the ANFIS-06, WANN-11 and MNLR models for predicting daily  ETo. Solar radiation was found to be the most sensi-
tive input variable. In contrast, actual vapour pressure was the least sensitive parameter based on sensitivity analysis.
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Introduction

Water is essential for agriculture production and constitutes 
the major component of sustainable growth in the agricul-
ture sector (Kumar et al. 2012, 2017; Kumar and Haroon 
2021). It is the main component on which several hydro-
meteorological processes rely (Kushwaha et al. 2016). The 
primary source of water on our planet is precipitation, which 
is available in various forms such as rainfall, snowfall, hail, 
fog and dew (Kurzyca and Frankowski 2019) and supply 
of water at different locations worldwide depends greatly 
on the event and rainfall, a key factor of the hydrological 
cycle. Land and water are two basic needs for agrarian and 
economic improvement worldwide. Both land and water 
are important natural resources and provide a regulatory 
role in the production of agriculture. Among several sec-
tors, it is reported that the agricultural industry consumes 
more than 55% of the freshwater, especially for irrigation 
purposes (Dias et al. 2018). In several regions where water 
supplies are limited, estimating the loss of evapotranspira-
tion becomes crucial for irrigation purposes (Jensen and 

Allen 2016). Evapotranspiration is the major component of 
the water balance in irrigation planning and management 
practices (Zeleke and Wade 2012) and the major consump-
tive use of irrigation water in agriculture (Elhag et al. 2011). 
In Mousinram near Cherrapunji, India (a temperate region) 
receives the highest rainfall globally (Saikia 2009), even 
though water shortage also occurs almost every year in the 
dry season (Kumar et al. 2005). Reference evapotranspi-
ration  (ETo) is quantified worldwide according to the rec-
ommendation of the FAO (Allen et al. 1998; Pereira et al. 
2015). The Penman–Monteith FAO-56 (P-M FAO-56) is 
considered the reference approach and is mainly adopted 
worldwide in the absence of direct measurement using 
lysimeters (Sentelhas et al. 2010).

Soft computing techniques have the capacity over conven-
tional approaches to solving complex problems of various 
hydrologic processes (Chandwani et al. 2015). Regarding 
its capability to handle highly complex nonlinear problems, 
the application of various soft computing approaches has 
attracted the interest of many international researchers dur-
ing the last few years (Bajirao et al. 2021; Tulla et al. 2024). 
Hence, techniques like ANN, ANFIS, gene expression pro-
gramming (GEP) and deep learning (DL), among others, 
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have been the extraordinary technology of reference evapo-
transpiration modelling (Kisi and Alizamir 2018; Tikhama-
rine et al. 2020; Kushwaha et al. 2022).

Lee et al. (2010) present the development and evalu-
ation of artificial neural network (ANN) models for esti-
mating future reference evapotranspiration  (ETo) based on 
climate change scenarios. The models were trained and 
validated for Suwon, Korea, using four climate factors as 
input parameters and the FAO Penman–Monteith equation 
as the target values. The study found that the ANN models 
achieved good performance in estimating future reference 
crop evapotranspiration. Shiri et al. (2011) apply adaptive 
neuro-fuzzy inference system (ANFIS) and artificial neural 
network (ANN) approaches to model daily pan evaporation 
using daily climatic parameters in the State of Illinois, USA. 
The feasibility of ANFIS and ANN evaporation modelling 
from limited climatic parameters is demonstrated, showing 
the potential for accurate estimation of daily pan evapora-
tion. Üneş et al. (2018) focus on estimating daily reference 
evapotranspiration  (ETo) using different empirical methods 
and comparing the results with an artificial neural network 
(ANN) model. The study concludes that the ANN model 
outperforms traditional empirical equations in estimating 
daily  ETo. Wu et al. (2019) explore the use of eight machine 
learning models and the Hargreaves-Samani equation for 
estimating reference evapotranspiration  (ETo) using temper-
ature data from local or cross stations. The results show that 
the tree-based models (RF, GBDT and XGBoost) perform 
better in local applications.

In contrast, MARS and SVM models are more suitable 
when only temperature data is available. In the absence of 
temperature data at the target station, MARS, SVM and 
KNEA models are recommended. Kushwaha et al. (2022) 
compare different models (additive regression (AdR), ran-
dom subspace (RSS), M5 pruning tree (M5P) independently 
and four novel permutated hybrid combinations of these 
algorithms) with sequential inclusion of six meteorologi-
cal input variables to estimate reference evapotranspiration 
 (ETo) using machine learning algorithms. The model AdR6, 
which included all six selected meteorological variables, 
outperformed other models in terms of prediction accura-
cies. At the same time, the RSS algorithm failed to capture 
observed trends even with all input variables.

The extreme learning machine (ELM) was applied to 
predict the  ETo in south China by Wu et al. (2021) and Liu 
et al. (2021). Sanikhani et al. (2019) considered six artificial 
intelligence (AI) models, i.e. the ANN, the (GRNN), the 
RBFNN, two ANFIS models (i.e. with gird partition and 
subtractive clustering partition: GP and SC) and GEP, for 
forecasting the  ETo by using only three meteorological vari-
ables (i.e. Tmin, Tmax and Solar radiation). The study con-
cluded that the GEP and GRNN were more accurate com-
pared to the other models at Antalya station. On the other 

hand, the RBNN and ANFIS-SC were the best models at 
the Isparta station. A cross-station scenario examination is 
applied to predict the reference evapotranspiration of any 
station using the input data of the nearby station. Using 
cross-station scenarios, all the AI models were more suc-
cessfully employed than the other empirical methods except 
the MLPNN model for modelling the  ETo. A comparison 
between single and hybrid ANFIS models was made by 
Roy et al. (2021), highlighting the superiority of the hybrid 
models. Furthermore, several other studies have reported 
the superiority of the hybrid models compared to the single 
models (Ahmadi et al. 2021).

An essential task is to do a sensitivity analysis on the 
possible change in  ETo in response to the currently avail-
able climatic conditions. Evaporation rates were initially 
studied by McCuen (1973), who looked at how changes in 
meteorological conditions affected the rate of evaporation 
and how measurement errors affected rates.  ETo estimates 
and weather-related sensitivity analyses for various areas 
have been studied extensively. Many studies have been done 
(Goyal 2004) reporting that (i) the solar radiation climatic 
variable (SR) was the most important factor in the  ETo cal-
culation (Emeka et al. 2021), (ii) Tmax and Tmin significantly 
impact the model's output, as shown by Ley et al. (1994). 
Beven (1979) and Gong et al. (2006) studied the effect of 
input data errors on estimates of actual crop evapotranspi-
ration  (ETa, crop) in England and Wales. A mass transfer-
based equation to calculate evaporation in Vaud, Switzerland 
(Singh and Xu 1997). Systematic and random errors of 5, 
10 and 20% were added to the original data before evaluat-
ing the change in evaporation. It was discovered that the 
vapour pressure gradient, wind speed and air temperature 
data did not affect evaporation. Goyal (2004) investigated 
the variability of the  ETo in response to the fluctuation of 
four climatic variables (i.e. Tmean, Rn,  U2, and ea) within a 
range of ± 20% in Rajasthan (India). According to Goyal's 
findings, the  ETo in the research region increased by 14.8% 
when the mean air temperature was raised by 20% (maxi-
mum of 8 °C).  ETo was less responsive (11% less sensitive). 
Even a 20% increase in ea (say, 4.3%) slightly negatively 
affects  ETo. In another study, Gong et al. (2006), conducted 
in China, investigated the fluctuation of  ETo derived from 
the PM FAO-56 to changes in climatic variables and found 
that SR, Tmean and  U2 are significantly affected by relative 
humidity. Irmak et al. (2006) undertook an examination of 
climate change sensitivity in the various climate areas of the 
USA. Sunshine duration has been discovered to be an impor-
tant factor in determining the susceptibility of  ETo to climate 
factors in China's Yellow River basin. It has been shown that 
 ETo is more responsive to solar radiation and less susceptible 
to Tmean in studies conducted Liu et al. (2019) during the 
growing season. Using data from 57 weather stations, Liu 
et al. (2016) discovered that  ETo was more responsive to U2 
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and Tmean than other climatic factors in south-eastern China. 
The sensitivity of the PM FAO-56 using the Monte Carlo 
(MC) method to check variability in the meteorological data 
is considered as input (Kovoor and Nandagiri 2018). The 
study was conducted in India using data from four stations. 
The analysis was performed separately for four climatic sta-
tions representing different climate regions of India, such 
as Jodhpur-1453, Hyderabad-1044, Bangalore-1368 and 
Pattambi-1275. The U2 Wind speed was the superior input 
variable, and the net radiation was found to be a critical vari-
able. Many other researchers investigate sensitivity analysis 
 ETo in many parts of the world (Ndiaye et al. 2021; Poddar 
et al. 2021).

Regional and seasonal differences in  ETo sensitivity have 
received less attention in studies using a single station than 
in studies involving many stations. The chosen Indian sta-
tion has not conducted a comprehensive investigation on 
the sensitivity of  ETo to major climatic elements under 
various scenarios, while in India, less information is avail-
able. In addition, a wide range of meteorological factors has 
been altered due to global warming. Therefore, the purpose 
of the present study was to evaluate various ML models, 
namely ANN, wavelet-ANN (WANN), ANFIS and MNLR, 
for predicting daily  ETo in the state of Karnataka, India, to 
determine the sensitivity of  ETo to standard climate observa-
tion variables at climate stations and their contributions to 
changes in yearly  ETo.

Materials and methods

Study area

This study was conducted at the Gandhi Krishi Vignana 
Kendra (GKVK) station at Bengaluru north taluk of Ben-
galuru (Urban) district in Karnataka state. It belongs to the 
eastern dry zone (Zone-V), which includes Kolar, Tumkur, 
Bengaluru (Urban), Bengaluru (Rural), Chikkaballapura and 
Ramanagara. The eastern dry zone comes under the South-
ern Plateau and Hills region (X) of agro-climatic zones. 
Geographically, the GKVK station is located at 12° 58° N 
latitude and 77° 30° E longitude with an altitude of 930 
m above the average sea level. The location of GKVK is 
shown in Fig. 1. The area of GKVK is considered a semi-
arid sub-tropical that falls in a sub-tropical zone. The mean 
annual rainfall of the station is 867.9 mm. In the winter sea-
son, there is low rainfall compared to the summer season. 
January and February months receive the lowest rainfall, 
whereas the major portion of precipitation is received dur-
ing April-November, with two peaks in May and September. 
The mean annual temperature is in the range of 18.2–29.5 
°C. The monthly temperature data of the station reveals that 
December is the coolest month of the year, having a daily 

mean temperature ranging between 15.8 and 26.9 °C, and 
April is the warmest month of the year as the daily mean 
temperature lies between 21.2 and 34.1 °C. In Karnataka, 
most of the area is covered by sandy loam soil, having low 
organic matter content and low moisture retention capacity. 
Ragi, maize, paddy, groundnut, finger millet and sunflower 
are considered the major crops growing in this area.

Data acquisition, pre‑analysis and formulation 
of data

The present study was conducted using daily weather data 
of maximum and minimum air temperatures (Tmin, Tmax), 
relative humidity (RH), wind velocity at 2 m height (ws) 
and sunshine hour (Sh) for the period of 12 years and ten 
months (4687 days, from January 2007 to October 2019) 
which were recorded by the Agro Meteorology station of 
University of Agriculture Sciences (UAS), GKVK, Ben-
galuru. These data were downloaded from the UAS Banga-
lore (Agro Meteorology system) portal (www. uasba ngalo 
re. edu. in/). For this study region, the data set of various 
climatic variables such as Tmin, Tmax, ws, Sh and  RHmean 

Fig. 1  The geographical location of the study area

http://www.uasbangalore.edu.in/
http://www.uasbangalore.edu.in/
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were considered as inputs to CROPWAT 8.0 software for 
calculating PM FAO-56  ETo. The estimated PM FAO-56 
 ETo values were utilised as output data. Time series and 
Box and Whisker plots of observed daily climatic vari-
ables with computed  ETo (PM) are shown in Figs. 2 and 3, 
respectively, which provide the basic idea about the vari-
ability of the dataset with time. In this study, various input 
climatic variables, viz. mean air temperature (Tmean), mean 
relative humidity  (RHmean), wind speed (ws), sunshine hour 
(Sh), saturated vapour pressure (es), actual vapour pressure 
(ea) and solar radiation (Rs), were combined to derive the 
best input combination data set with applying Gamma test 
(GT) algorithm. Several statistical parameters were con-
sidered for pre-analysis of the time series dataset shown 
in Table S1. Out of the whole data set (4687 days), 70% of 
data (3281 days, 01/01/2007 to 25/12/2015) were used for 
training purposes, and the remaining 30% of data (1406 
days, 26/12/2015 to 31/10/2019) were used for testing pur-
poses. The ML models are developed and trained on the 
training dataset, and further, the performance evaluation 
is carried out using the unseen test dataset.

Development of models

In this research, various artificial intelligence techniques, 
such as ANN, ANFIS, WANN and MNLR techniques, were 
developed to simulate the daily  ETo. The flowchart of the 
proposed is illustrated in Fig. 4.

Artificial neural network (ANN)

An artificial neural network (ANN) is an machine learn-
ing (ML) model composed of several processing elements 
and can display complex relationships between inputs and 
outputs. The functioning of the ANN is similar to the way 
neurons work in the human nervous system, and the archi-
tecture consists of input, hidden and output layers (Fig. S1). 
The input layer of the ANN is the first layer that receives 
the various types of input data, such as image pixels, texts 
and numbers. The data passes through one or more hidden 
layers; the hidden layer performs mathematical computation 
on the data received (Hassoun 1995). The number of hid-
den layers in the ANN model is mainly related to the task 
being solved. The output layer is the last year in the ANN 
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and is responsible for producing the output. An ANN fine-
tunes its weights and improves the performance through the 
backpropagation algorithms, which is the central pillar of the 
neural network training process. The functional composition 
of a neural network is the most popular structure, which is 
represented in Fig. S2. A neuron applies the net function 
and activation function on input variables to determine the 
output variable value. The xi and wi are input vectors and 
their respective connection weights from an ith neuron in 
the input layer (where i = 1, 2…., n). The net function (a) 
is represented in the linear form that is determined based 
on the product of the input vector with their corresponding 
connection weights (Wi) and the value of bias or threshold 
value (wo) associated with that node. In a neural network 
system, a nonlinear activation function f(.) is used to show 
its nonlinearity between input variables and output variables 
as well as to transform net function (a) at the hidden node 
into output (y) of the node, which is expressed as:

By varying the transfer function and altering the param-
eter, such as thresholds or gains, the output of neurons can 
be modified. An appropriate learning algorithm is utilised 

(1)Y = f(a)

to adjust the connection weights using the training data set 
in a neural network. The purpose of changing the connec-
tion weights value is to minimise the error of prediction 
results during the learning process. Because weight shows 
the effect of any input on output. Several nonlinear activa-
tion functions are available, as presented in Table 1, which 
are mostly utilised for the modelling of the hydrological 
process. The hyperbolic tangent sigmoid (tensing) activa-
tion function is used to establish the hydrology process's 
neural network models, shown in Fig. S3. The mathemati-
cal formula of tansig activation function is expressed as:

In this study, the multi-layer perceptron neural network 
(MLP) is used. The general architecture of a feed-forward 
MLP neural network with a single hidden layer appears 
in Fig. S4.

Adaptive neuro‑fuzzy inference system (ANFIS)

Adaptive neuro-fuzzy inference system (ANFIS) is an ML 
developed from the combination of the ANN and fuzzy 

(2)f(a) = tansig(a) =
2

1 + e−2a
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inference systems (FIS). Jang (1993) proposed the ANFIS 
model and its principles, applied to various hydrological 
and other modelling problems. The ANFIS model is a uni-
versal estimator, taking full advantage of the FIS and the 
IF–THEN rules. The basic architecture of ANFIS comprises 
five layers: fuzzification layer, product layer, normalisation 
layer, defuzzification layer and output layer (AL-Oqla and 
Al-Jarrah 2021). Figure S5 shows the schematic diagram of 
the ANFIS. The circle and square nodes represent the fixed 
and the adaptive nodes, respectively. The number of nodes 
in each layer is decided according to the specific research 
requirement. In the present study, six different membership 
functions were utilised, whose shapes appear in Figs. S6 and 
S7. ANFIS has various types of FIS for the learning process. 
The Sugeno-type fuzzy system is the most popular and com-
monly used fuzzy system.

Wavelet‑coupled artificial neural network (WANN)

Wavelet artificial neural networks combine the ANN with 
wavelet analysis. The wavelet analysis is used as a pre-
processing data strategy to improve the accuracy (Fig. S8). 
WANN is considered a feed-forward neural network that 
uses a wavelet as its activation function (Esmaeilzadeh et al. 
2017). It introduces wavelet decomposition property into 
an ANN. The amalgamation of the frequency location of 
the wavelet transform and the self-learning feature of ANN 
makes it a powerful tool. An additional layer is introduced 
to traditional ANN. The dilation, translation and weight 
parameters are updated during the model training (Mob-
taker et al. 2016). A backpropagation algorithm is usually 
employed to train the wavelet artificial neural networks. 
Since this hybrid approach enhances the existing model and 
achieves improved nonlinear approximations, WANN suc-
cessfully models function approximations and forecasting. 
The ANN, WANN and ANFIS models were calibrated based 
on the different training variables and assigned values given 
in Tables 2 and 3.

Fig. 4  Flowchart of the methodology of the study

Table 1  Details about different types of activation functions

Transfer function Output range Description

Tansig − 1 to 1 Hyperbolic tangent sigmoid
Logsig 0 to 1 Log sigmoid
Purelin − 1 to 1 Linear transfer function
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Multivariate nonlinear regression (MNLR)

Linking a set of independent variables to one dependent 
variable is a challenging task. Nonlinear regression analysis 
is utilised to define the quantitative relationships between 
the dependent variable and various independent variables. 
The multivariate nonlinear regression (MNLR) technique 
is the most widely recognised type of nonlinear regression 
analysis, which is used for linking a suite of independent 
variables to one dependent variable by fitting them through 
the function of the nonlinear equation (Vishwakarma et al. 
2022a). Eventually, this technique succeeds based on the 
least square technique and as the best-fit line to model the 
nonlinear behaviour between dependent and independent 
variables of observational data. Here, the mathematical 
expression of the MNLR technique is expressed as:

where Y is the dependent variable, �0 is the intercept (con-
stant), �1 ……… �n are the regression slope coefficient for 
the nonlinear relation and X1, X2, ………, Xn are the inde-
pendent variables. The model formulation of a nonlinear 
equation can be transformed into the linear form by taking a 
log of Eq. (5) to solve the problem of the MNLR technique, 
which establishes the linear relationship between dependent 
and independent variables on log paper:

Equation (5) denotes a regression of log (Y) on log (X1), 
log (X2), …, log (Xn), which is used to estimate the regres-
sion coefficient. �0, �1, �2, �3,… ..�n . PM FAO-56 -based 
daily  ETo was considered as the dependent variable (Y). In 
contrast, meteorological variables were used as independent 
variables (X1, X2, …, Xn).

Gamma test (GT)

The mechanism of evapotranspiration is part of hydrological 
processes that are typically nonlinear, complex and dynamic 
(Vishwakarma et al. 2022b; Raza et al. 2022). Due to the trial-
and-error procedure, looking for the best input combination 

(3)Y = �0
(
X
�1
1

)(
X
�2
2

)(
X
�3

3

)
…………

(
X�n
n

)

(4)logY = log�0 + �1logX1 + �2logX2 +…+ �nlogXn

is a challenging task optimal for hydrological modelling 
(Bajirao et al. 2021). This procedure needs calibration and 
testing to establish the best model based on input combina-
tions. The Gamma test (GT) minimises the workload required 
for model creation by considering all input combinations of 
input parameters, guiding the selection of input parameters 
for creating a reliable, smooth model (Malik et al. 2020). The 
choice of input parameters is an important step towards cre-
ating a robust regressor. The used input variables led to a 
complicated structure for which the model’s parameters were 
updated; consequently, the model’s performances were also 
affected. GT is a nonparametric test and nonlinearity ana-
lysing tool that examines the nonlinear relationship between 
input and output variables (Singh et al. 2018). A major advan-
tage of this tool is its speed in massive datasets because GT 
takes a few moments to run. The GT algorithm uses a set of 
M input/output variables as:

where M is the total number of data, X is the input matrix 
and Y is the corresponding output variable, for which a 
hypothesis for a possible link between X and Y is available. 
The gamma coefficient (Г) is calculated using a simple linear 
regression between X and Y as follows:

(5)
{
xi(i),……… .xm(i), yi

}
=
{
xi, yi

}
[1 ≤ i ≤ M]

(6)y = f
(
xi … xm

)
+ Γ

Table 2  Training variables and 
their assigned values for ANN 
and WANN models

Training variables Assigned values

Type of neural network Feed-forward multi-layer perceptron
Number of inputs 6
Number of outputs 1
Number of hidden layers 1
Number of processing elements/neurons in the hidden layer 1 to 2n + 1
Training function/Learning rule Levenberg–Marquardt (LM)
Activation function in the hidden layer Hyperbolic tangent sigmoid
Maximum epoch 1000

Table 3  Training variables and their assigned values for ANFIS mod-
els

Training variables Assigned value

FIS generation method Grid partition
FIS Type TSK
Number of membership functions per 

input
2

Types of input MFs gaussmf, gauss2mf, 
trimf, trapmf, gbellmf, 
psigmf

Types of output MFs Linear
Epoch 100
Error tolerance 0.001
Learning algorithm Hybrid
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where f is a smooth function and Г is a random variable 
representing noise. This study selected the best input combi-
nation based on the minimum V ratio and gamma (Г) value 
for predicting  ETo. WinGamma™ software was utilised to 
apply the gamma test.

CROPWAT 8.0 software

CROPWAT 8.0 software is a water system management and 
planning model that recreates the unpredictable relationship 
between the atmosphere, soil and crop cultivation parameters. 
The FAO developed it to encourage the estimation of reference 
evapotranspiration  (ETo), crop evapotranspiration, the need for 
agriculture water and irrigation scheduling with different crop-
ping patterns for irrigation planning. In water necessity and 
water system improvement (irrigation) planning, the computa-
tion of reference evapotranspiration is vitally important. Gen-
eral information on the spatial circulation of reference evapo-
transpiration is still crude, irrespective of its significance for 
global ecosystem research. It is difficult to observe one reason 
for  ETo because it depends on a few weather parameters seen 
at stations. The monthly  ETo was calculated using CROPWAT 
8.0 software based on the necessary climatic variables for Gan-
dhi Krishi Vignana Kendra (GKVK) Bengaluru stations. In 
CROPWAT 8.0, the PM FAO-56 PM is used, and its theoreti-
cal description can be found in (Allen et al. 1998).

Model performance evaluation indices

In this study, numerous performance indices were utilised 
to test the performance of the ANN, WANN, ANFIS and 
MNLR models, including root mean-squared error (RMSE), 
coefficient of determination  (R2), Willmott index (WI) and 
Nash–Sutcliffe efficiency (CE). The mentioned parameters 
are defined as:

Statistical parameters Value range optimal value

RMSE =

�
n∑
i=1

1

N

�
ETPM, i − ETm, i

�2�0.5 0 < RMSE < ∞ 0 (7)

R
2 =

⎛⎜⎜⎜⎝

∑N

i=1

�
ETPM,i−ETPM

��
ET

m,i−ETm

�
���∑N

i=1

�
ETPM,i−ETPM

�2
��∑N

i=1

�
ET

m,i−ETm

�2
��

⎞⎟⎟⎟⎠

2 0 < R2 ≤ 1 1 (8)

WI = 1 −

N∑
i=1

(ETPM, i−ETm, i)
2

N∑
i=1

(�ETm, i
− ̄ETPM�+�ETPM, i−

̄ETPM�)2
0 < WI ≤ 1 1 (9)

CE = 1 −

⎛
⎜⎜⎝

N∑
i=1

(ETPM, i−ETm, i)
2

N∑
i=1

�
ETPM, i−ETm

�2

⎞⎟⎟⎠

− ∞ < CE ≤ 1 1 (10)

where ETPM, ETm, ETPMandETm  are the values of the 
PM FAO-56-based observed and model-based estimated, 
average values of PM FAO-56 observed and PM FAO-56 
equation-based estimated values, respectively. The models 
with higher CE, R2 and WI values and lower RMSE are 
adjudged relatively the better model for monthly  ETo estima-
tion (Vishwakarma et al. 2022b).

Sensitivity analysis

Sensitivity analysis is a tool used to control the reliability 
of modelling by determining the cause-and-effect of an 
ensemble of input to an output variable for a developed 
model (Hosseini et al. 2022). It plays a significant role in 
finding the most sensitive parameter from different input 
parameters whose deviation significantly changes the pre-
dicted output. The sensitivity analysis also finds irrelevant 
inputs eliminated from the created model for simplicity. So 
it may improve the model’s performance. It disables the 
built model's learning not to affect network weights. In the 
present study, input parameters such as relative humidity, 
wind speed, sunshine hour, actual and saturated vapour pres-
sure and solar radiation were selected to perform sensitivity 
analysis for the best model that influences the predicted val-
ues of reference evapotranspiration. The sensitivity analysis 
was performed by increasing 10% and decreasing 10% of 
the input parameter values. For each input parameter, this 
procedure is repeated to evaluate the sensitivity of the out-
put concerning changes in input values. The mathematical 
expression of relative sensitivity is used to determine the 
sensitivity order of selected input parameters. Using the 
equation, relative sensitivity (RS) has been computed after 
calculating the individual value of each day's sensitivity as:

(11)RS =
∑{(

x

y

)
×

(
y2 − y1

x2 − x1

)}
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where x and y are the original input parameter and the 
originally predicted output for a given day, respectively. 
x1 = (x + ∆x) and x2 = (x − ∆x) are increasing and decreasing 
input parameter values, respectively, where ∆x = 0.1 × x. y1 
and y2 are the results of predicted output concerning x1 and 
x2, respectively.

Results

Best input combination‑Gamma test (GT)

To simulate artificial intelligence and statistical techniques-
based reference evapotranspiration models, a gamma test 
(GT) can be utilised to choose the best input combination 
of climatic variables. It can minimise the necessary work-
load for conducting cumbersome trial-and-error methods. 
Therefore, this study chose the best input combination of 
meteorological predictors by applying the GT to predict 
PM FAO-56. In the GT, the meteorological variables, i.e. 
Tmean,  RHmean, ws and Rs, were combined to predict the PM 
FAO-56. These input variables were used to form various 
possible input combinations, as shown in z 4. The best input 
combination of climatic variables was selected based on 
the lower gamma and Vratio (Vishwakarma et al. 2023). It 
can provide better outcomes during the development of AI 
models. According to Table 4, model M-41  (RHmean, ws, Sh, 
es, ea, Rs) represented the minimum value of gamma and V 
ratio. It was considered the best input combination, which 
was further used for the calibration of ANN, WANN, ANFIS 
and MNLR models to predict reference evapotranspiration.

A selected input combination of climatic variables was 
employed for the prediction of daily reference evapotranspi-
ration, which is functionally expressed as:

The structure of the ANN and ANFIS models is shown in 
Fig. S9. For developing the WANN model, the decomposed 
components of selected input variables obtained by applying 
DWT were used as inputs to ANN mode (Fig. S10).

In this study, the Haar-type wavelet function was consid-
ered to decompose the original time series of selected input 
variables into different sub-series at appropriate decomposi-
tion levels, which was taken as 3. Therefore, each input vari-
able was decomposed into four sub-series comprising one 
approximate  (A3) and three detail  (D1,  D2,  D3) sub-series. 

(13)ETo = f
(
RHmean,ws, Sh, es, ea,Rs

)

Based on the best input combination  (RHmean, ws, Sh, es, ea, 
Rs), 24 (6 × 4) subseries were produced and considered as 
input variables. After this, these 24 input variables were fed 
to the ANN system for simulation of reference evapotran-
spiration as shown in Fig. S10, and it is also functionally 
expressed as:

Model performances evaluation

This study applied the Levenberg–Marquardt-based back-
propagation learning algorithm to calibrate both ANN and 
WANN-based  ETo models. Both models used the Tan-sig-
moid activation function for the hidden neurons and a lin-
ear function for the output neuron. Different architectures 
of ANN and WANN models were built by varying the total 
number of neurons in the hidden layer. In the ANN model, 
the number of neurons in the hidden layer was varied from 
one to 2n + 1, where n is the number of inputs. Therefore, 
13 (2 × 6 + 1) ANN architecture was built to develop the 
ANN-based  ETo model. In the case of the WANN model, 
a total of 49 (2 × 24 + 1) architectures were built as 24 
input signals (a decomposed form of selected input vari-
ables) were taken to train the ANN system. Based on per-
formance evaluation such as qualitative and quantitative 
 (R2, RMSE, CE and WI) evaluation, the best model was 
selected from various ANN/WANN model architectures to 
predict reference evapotranspiration.

MLP‑ANN models

Using data from KGVK Campus Bengaluru meteorological 
stations, the performance of all MLP-ANN (1–13) for pre-
dicting daily  ETo was examined. For this, many statistical 
metrics and graphical performance assessment methodolo-
gies were applied. All obtained numerical performances are 
depicted in Table 5. As indicated in Table 5, the best model 
was determined to be the ANN-10 model with 6-10-1 archi-
tecture. Based on qualitative analysis, the performance of 
developed models was examined using a graphical repre-
sentation of simulated  ETo versus computed  ETo. From all 
network structures of ANN, ANN-10 was selected as the 
best model (Table 5). As shown in Fig. 5, the calculated and 
predicted values of daily reference evapotranspiration were 
analysed through a time series graph to be in remarkably 
close agreement during both training and testing periods, 

(12)ETo,(PM) = f

⎛
⎜⎜⎝

RHmeanD1, RHmeanD2, RHmeanD3, RHmeanA3,WsD1,WsD2,WsD3,WsA3,

ShD1, ShD2, ShD3, ShA3, esD1, esD2, esD3, esA3, eaD1, eaD2, eaD3, eaA3,

RsD1,RsD2,RsD3,RsA3

⎞
⎟⎟⎠
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Table 4  Selection of the best 
input combination for modelling 
reference evapotranspiration 
using the Gamma test

Model no. Model input combination Mask Gamma value V ratio

M1 Tmean 1000000 0.118790 0.475150
M2 Tmean,  RHmean 1100000 0.082926 0.331703
M3 Tmean,  RHmean, ws 1110000 0.056962 0.227847
M4 Tmean,  RHmean, ws, Sh 1111000 0.005806 0.023225
M5 Tmean,  RHmean, ws, Sh, es 1111100 0.004982 0.019926
M6 Tmean,  RHmean, ws, Sh, es, ea 1111110 0.004937 0.019748
M7 Tmean,  RHmean, ws, Sh, es, ea, Rs 1111111 0.000735 0.002941
M8 Tmean, ws 1010000 0.105652 0.422609
M9 Tmean, ws, Sh 1011000 0.013139 0.052554
M10 Tmean, ws, Sh, es 1011100 0.009140 0.036560
M11 Tmean, ws, Sh, es, ea 1011110 0.005103 0.020412
M12 Tmean, ws, Sh, es, ea, Rs 1011111 0.000728 0.002910
M13 Tmean,  RHmean, Sh 1101000 0.033376 0.133503
M14 Tmean,  RHmean, Sh, es 1101100 0.032459 0.129838
M15 Tmean,  RHmean, Sh, es, ea 1101110 0.032038 0.128150
M16 Tmean,  RHmean,  Sh, es, ea, Rs 1101111 0.021467 0.085868
M17 Tmean,  RHmean, ws, es 1110100 0.047730 0.190919
M18 Tmean,  RHmean, ws, es, ea 1110110 0.047694 0.190775
M19 Tmean,  RHmean, ws, es, ea, Rs 1110111 0.000688 0.002753
M20 Tmean,  RHmean, ws, ea, Rs 1110011 0.001275 0.005099
M21 Tmean,  RHmean, ws, Rs 1110001 0.001362 0.005446
M22 Tmean,  RHmean, ws, Sh, ea 1111010 0.006145 0.024579
M23 Tmean,  RHmean, ws, Sh, ea, Rs 1111011 0.001111 0.004443
M24 Tmean,  RHmean, ws, Sh, es, Rs 1111101 0.000572 0.002290
M25 Tmean,  RHmean, ws, Sh, Rs 1111001 0.000973 0.003893
M26 Tmean, Sh 1001000 0.037880 0.151521
M27 Tmean, Sh, es 1001100 0.032868 0.131473
M28 Tmean, Sh, es, ea 1001110 0.032023 0.128092
M29 Tmean, Sh, es, ea, Rs 1001111 0.020760 0.083040
M30 Tmean, es 1000100 0.077945 0.311782
M31 Tmean, es, ea 1000110 0.073296 0.293185
M32 Tmean, es, ea, Rs 1000111 0.023706 0.094823
M33 Tmean, ea 1000010 0.083293 0.333173
M34 Tmean, ea, Rs 1000011 0.023756 0.095023
M35 Tmean, Rs 1000001 0.027509 0.110036
M36 RHmean 0100000 0.129958 0.519834
M37 RHmean, ws 0110000 0.098428 0.393711
M38 RHmean, ws, Sh 0111000 0.042855 0.171420
M39 RHmean, ws, Sh, es 0111100 0.004853 0.019413
M40 RHmean, ws, Sh, es, ea 0111110 0.004956 0.019825
M41 RHmean, ws, Sh, es, ea, Rs 0111111 0.000455 0.001822
M42 RHmean, ws, es, ea, Rs 0110110 0.000748 0.002993
M43 RHmean, Sh 0101000 0.079073 0.316290
M44 RHmean, Sh, es 0101100 0.033528 0.134110
M45 RHmean, Sh, es, ea 0101110 0.033348 0.133391
M46 RHmean, Sh, es, ea, Rs 0101111 0.021432 0.085728
M47 RHmean, es 0100100 0.077222 0.308886
M48 RHmean, es, ea 0100110 0.075250 0.301000
M49 RHmean, es, ea, Rs 0100111 0.024376 0.097504
M50 RHmean, ea 0100010 0.086683 0.346731
M51 RHmean, ea, Rs 0100011 0.025063 0.100251
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respectively; however, the model very slightly under-pre-
dicted the higher magnitude of  ETo as indicated through 
1:1 line of scatter plot which is also shown in Fig. 5a during 

training. As shown in Fig. 5b, the chosen ANN-10 model 
is slightly under-predicted, over-predicted medium values 
and greatly under-predicted high values of  ETo, respectively, 

Table 4  (continued) Model no. Model input combination Mask Gamma value V ratio

M52 RHmean, Rs 0100001 0.045478 0.181913
M53 ws 0010000 0.233944 0.935777
M54 ws, Sh 0011000 0.084414 0.337656
M55 ws, Sh, es 0011100 0.009850 0.039401
M56 ws, Sh, es, ea 0011110 0.005518 0.022071
M57 ws, Sh, es, ea, Rs 0011111 0.000524 0.002097
M58 ws, es 0010100 0.083756 0.335025
M59 ws, es, ea 0010110 0.048860 0.195438
M60 ws, es, ea,  Rs 0010111 0.001210 0.004839
M61 ws, ea 0010010 0.234393 0.937572
M62 ws, ea, Rs 0010011 0.027374 0.109497
M63 ws, Rs 0010001 0.034151 0.136606
M64 Sh 0001000 0.113863 0.455451
M65 Sh, es 0001100 0.035770 0.143079
M66 Sh, es, ea 0001110 0.034749 0.138996
M67 Sh, es, ea, Rs 0001111 0.021212 0.084850
M68 Sh, ea 0001010 0.088877 0.355508
M69 Sh, ea, Rs 0001011 0.030368 0.121470
M70 Sh, Rs 0001001 0.031621 0.126484
M71 es 0000100 0.106270 0.425079
M72 es, ea 0000110 0.073837 0.295347
M73 es, ea, Rs 0000111 0.025089 0.100356
M74 es, Rs 0000101 0.026975 0.107900
M75 ea 0000010 0.248679 0.994717
M76 ea, Rs 0000011 0.045990 0.183958
M77 Rs 0000001 0.055216 0.220863

Bold value shows the best input combination is based on the minimum gamma and V ratio values

Table 5  Results of different 
performance indicators for 
ANN-based  ETo prediction 
models

Bold value shows the best model based on the minimum RMSE and highest  R2 and model efficiency (CE 
and WI) values

Model Architecture Training Testing

R2 RMSE CE WI R2 RMSE CE WI

ANN-1 6-1-1 0.9823 0.1350 0.9823 0.9429 0.9792 0.1488 0.9790 0.9466
ANN-2 6-2-1 0.9878 0.1122 0.9878 0.9520 0.9827 0.1359 0.9825 0.9549
ANN-3 6-3-1 0.9969 0.0566 0.9969 0.9767 0.9906 0.0998 0.9905 0.9766
ANN-4 6-4-1 0.9986 0.0385 0.9986 0.9835 0.9918 0.0941 0.9916 0.9808
ANN-5 6-5-1 0.9990 0.0315 0.9990 0.9870 0.9918 0.0929 0.9918 0.9830
ANN-6 6-6-1 0.9993 0.0267 0.9993 0.9883 0.9921 0.0911 0.9921 0.9853
ANN-7 6-7-1 0.9994 0.0257 0.9994 0.9888 0.9920 0.0918 0.9922 0.9848
ANN-8 6-8-1 0.9992 0.0285 0.9992 0.9883 0.9920 0.0920 0.9920 0.9839
ANN-9 6-9-1 0.9993 0.0270 0.9993 0.9883 0.9922 0.0908 0.9922 0.9852
ANN-10 6-10-1 0.9995 0.0236 0.9995 0.9999 0.9992 0.0299 0.9991 0.9998
ANN-11 6-11-1 0.9992 0.0283 0.9992 0.9879 0.9919 0.0924 0.9919 0.9835
ANN-12 6-12-1 0.9995 0.0229 0.9995 0.9898 0.9920 0.0906 0.9922 0.9853
ANN-13 6-13-1 0.9995 0.0219 0.9995 0.9901 0.9918 0.0928 0.9918 0.9851
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based on a 1:1 line during the testing period. The quantitative 
analysis was performed based on statistical and hydrologi-
cal indices, employing the best ANN model for  ETo predic-
tion. The results of various performance evaluation indi-
ces (R2, RMSE, CE and WI) for all 13 ANNs are reported 
in Table 5. The values of R2, RMSE, CE and WI varied 
from 0.9823 to 0.9995 and 0.9792–0.9923; 0.0219–0.1350 
mm/day and 0.0905–0.1488 mm/day; 0.9823–0.9995 and 
0.9790–0.9922, and 0.9429–0.9901 and 0.9466–0.9859 dur-
ing training and testing, respectively. The ANN-13 model 
was observed to be better than the ANN-10 model during 
training. Nevertheless, as per testing results, the ANN-10 
model with architecture (6-10-1) was found to be the most 
accurate model among all ANN models. During the training 
period, the results could be due to the over-fitting problem, 
which influenced the model’s actual performance; therefore, 
only testing period outcomes were considered to select the 
best ANN model. The  R2, RMSE, CE and WI values for 

the ANN-10 model were obtained as 0.9995, 0.0236 mm/
day, 0.9995 and 0.9999, respectively, during training and 
0.9992 0.0209 mm/day, 0.9991 and 0.9998, during testing. 
The residual plot for the training and testing periods (Fig. 6) 
shows that the highest errors occur in the range of − 0.28 to 
0.14, − 0.24 to 0.24 mm.

WANN model

The performance of the selected model was evaluated quali-
tatively. For the accurate WANN-11 architecture, the calcu-
lated  ETo is in close agreement with computed values of ETo 
(PM), which were observed through graphical representa-
tion, as shown in Fig. 7. However, the selected architecture 
(24-11-1)-based WANN-11 model slightly under-predicted 
medium and high values of  ETo as denoted through a 1:1 line 
of scatter plot during training and testing, shown in Fig. 7a 
and Fig. 7b, respectively.
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Fig. 5  Comparison of ANN-10 (6-10-1) model in estimating FAO-56 PM  ETo in GKVK Bengaluru station: a training period and b Testing 
period
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Fig. 6  Residual plot of predicted  ETo in ANN-10 (6-10-1) model: a training and b testing periods
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Fig. 7  Comparison of WANN-11 (24-11-1) model in estimating FAO-56 PM  ETo in GKVK Bengaluru station: a training period and b Testing 
period



 Applied Water Science (2024) 14:138138 Page 14 of 26

Table 6  Results of different 
performance indicators for 
WANN-based  ETo prediction 
models

Bold value shows the best model based on the minimum RMSE and highest  R2 and model efficiency (CE 
and WI) values

Model Architecture Training Testing

R2 RMSE CE WI R2 RMSE CE WI

WANN-1 24-1-1 0.9780 0.1505 0.9780 0.9369 0.9807 0.1425 0.9807 0.9406
WANN-2 24-2-1 0.9832 0.1315 0.9832 0.9445 0.9849 0.1269 0.9847 0.9468
WANN-3 24-3-1 0.9914 0.0943 0.9914 0.9652 0.9914 0.0966 0.9911 0.9637
WANN-4 24-4-1 0.9935 0.0815 0.9935 0.9728 0.9928 0.0875 0.9927 0.9702
WANN-5 24-5-1 0.9932 0.0838 0.9932 0.9706 0.9922 0.0920 0.9920 0.9685
WANN-6 24-6-1 0.9937 0.0802 0.9937 0.9730 0.9934 0.0845 0.9932 0.9700
WANN-7 24-7-1 0.9935 0.0816 0.9935 0.9725 0.9929 0.0866 0.9929 0.9700
WANN-8 24-8-1 0.9939 0.0795 0.9939 0.9728 0.9928 0.0877 0.9927 0.9688
WANN-9 24-9-1 0.9942 0.0775 0.9942 0.9739 0.9930 0.0867 0.9929 0.9711
WANN-10 24-10-1 0.9941 0.0776 0.9941 0.9734 0.9919 0.0935 0.9917 0.9696
WANN-11 24-11-1 0.9995 0.0761 0.9944 0.9986 0.9939 0.0808 0.9937 0.9984
WANN-12 24-12-1 0.9938 0.0797 0.9938 0.9719 0.9931 0.0859 0.9930 0.9685
WANN-13 24-13-1 0.9944 0.0757 0.9944 0.9740 0.9924 0.0906 0.9922 0.9701
WANN-14 24-14-1 0.9942 0.0773 0.9942 0.9720 0.9924 0.0908 0.9922 0.9676
WANN-15 24-15-1 0.9936 0.0813 0.9936 0.9711 0.9928 0.0885 0.9926 0.9680
WANN-16 24-16-1 0.9940 0.0782 0.9940 0.9732 0.9924 0.0907 0.9922 0.9693
WANN-17 24-17-1 0.9941 0.0782 0.9941 0.9734 0.9934 0.0841 0.9933 0.9715
WANN-18 24-18-1 0.9943 0.0768 0.9943 0.9736 0.9936 0.0851 0.9931 0.9689
WANN-19 24-19-1 0.9942 0.0770 0.9942 0.9735 0.9924 0.0908 0.9922 0.9686
WANN-20 24-20-1 0.9944 0.0757 0.9944 0.9733 0.9926 0.0890 0.9925 0.9675
WANN-21 24-21-1 0.9939 0.0790 0.9939 0.9712 0.9930 0.0864 0.9929 0.9696
WANN-22 24-22-1 0.9937 0.0805 0.9937 0.9731 0.9651 0.1928 0.9647 0.9691
WANN-23 24-23-1 0.9940 0.0783 0.9940 0.9716 0.9913 0.0956 0.9913 0.9667
WANN-24 24-24-1 0.9941 0.0778 0.9941 0.9725 0.9910 0.0983 0.9908 0.9676
WANN-25 24-25-1 0.9942 0.0775 0.9942 0.9737 0.9928 0.0881 0.9926 0.9698
WANN-26 24-26-1 0.9941 0.0776 0.9941 0.9726 0.9922 0.0912 0.9921 0.9690
WANN-27 24-27-1 0.9943 0.0764 0.9943 0.9732 0.9918 0.0930 0.9918 0.9694
WANN-28 24-28-1 0.9944 0.0759 0.9944 0.9730 0.9924 0.0901 0.9923 0.9685
WANN-29 24-29-1 0.9940 0.0788 0.9940 0.9719 0.9910 0.0985 0.9908 0.9676
WANN-30 24-30-1 0.9941 0.0776 0.9941 0.9720 0.9920 0.0923 0.9919 0.9679
WANN-31 24-31-1 0.9944 0.0760 0.9944 0.9729 0.9918 0.0935 0.9917 0.9678
WANN-32 24-32-1 0.9942 0.0771 0.9942 0.9728 0.9908 0.0999 0.9905 0.9659
WANN-33 24-33-1 0.9945 0.0750 0.9945 0.9725 0.9922 0.0934 0.9917 0.9667
WANN-34 24-34-1 0.9943 0.0768 0.9943 0.9718 0.9906 0.1009 0.9903 0.9635
WANN-35 24-35-1 0.9939 0.0794 0.9939 0.9721 0.9916 0.0951 0.9914 0.9682
WANN-36 24-36-1 0.9944 0.0758 0.9944 0.9718 0.9906 0.0991 0.9907 0.9680
WANN-37 24-37-1 0.9948 0.0732 0.9948 0.9729 0.9924 0.0899 0.9923 0.9673
WANN-38 24-38-1 0.9941 0.0780 0.9941 0.9701 0.9906 0.1011 0.9903 0.9608
WANN-39 24-39-1 0.9950 0.0719 0.9950 0.9731 0.9910 0.0981 0.9909 0.9650
WANN-40 24-40-1 0.9942 0.0776 0.9942 0.9706 0.9916 0.0947 0.9915 0.9657
WANN-41 24-41-1 0.9942 0.0769 0.9942 0.9701 0.9912 0.0967 0.9911 0.9659
WANN-42 24-42-1 0.9944 0.0759 0.9944 0.9731 0.9926 0.0900 0.9923 0.9681
WANN-43 24-43-1 0.9947 0.0735 0.9947 0.9734 0.9918 0.0925 0.9919 0.9680
WANN-44 24-44-1 0.9939 0.0793 0.9939 0.9726 0.9906 0.1009 0.9903 0.9681
WANN-45 24-45-1 0.9941 0.0780 0.9941 0.9708 0.9920 0.0923 0.9919 0.9660
WANN-46 24-46-1 0.9943 0.0766 0.9943 0.9723 0.9924 0.0893 0.9924 0.9689
WANN-47 24-47-1 0.9944 0.0757 0.9944 0.9715 0.9892 0.1084 0.9888 0.9614
WANN-48 24-48-1 0.9941 0.0780 0.9941 0.9719 0.9912 0.0981 0.9909 0.9677
WANN-49 24-49-1 0.9947 0.0738 0.9947 0.9722 0.9911 0.0979 0.9909 0.9642
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In quantitative analysis, various performance indicator 
values were used to choose the best WANN model for the 
simulation of  ETo. The performance evaluation indices  (R2, 
RMSE, CE and WI) for all 49 WANN models are presented 
in Table 6. The values of  R2, RMSE, CE and WI varied 
from 0.9780 to 0.9995 and 0.9651–0.9939; 0.0719–0.1505 
mm/day and 0.0814–0.1928 mm/day; 0.9780–0.9950 and 
0.9647–0.9937; 0.9369–0.9986 and 0.9406–0.9984 during 
training and testing, respectively. As per training, the out-
comes of performance indices for the WANN-39 model were 
found to be better than the WANN-11 model. During the 
testing process, the WANN-11 model (24-11-1) was found 
to have satisfactory results using the performance criteria; 
therefore, this model was chosen as the best model among all 
WANN models. The values of  R2, RMSE, CE and WI for the 
selected WANN-11 model were obtained as 0.9995, 0.0761 
mm/day, 0.9944 and 0.9986, respectively, during training 
and 0.9939, 0.0808 mm/day, 0.9937 and 0.9984, respectively 
during testing. The residual plot for the training and testing 
periods (Fig. 8) shows that the highest errors occur in the 
range of − 0.21 to 0.22, − 0.45 to 0.45 mm.

ANFIS models

Various ANFIS models were calibrated in MATLAB 
(R2019a) software using ANFIS Editor GUI (graphical user 
interface) to simulate reference evapotranspiration. For the 
training of ANFIS, TSK-type FIS was generated using the 
grid partition method to construct the ANFIS structure. In 
the generation of FIS, six types of input MFs, namely Tri-
angular (tri), Generalised bell (gbell), P sigmoidal (psig), 
Gaussian (gauss), Gaussian 2 (gauss2) and Trapezoidal 
(trap), were used with linear type output MFs. Two MFs 

were used to construct one input's best possible model archi-
tecture. In the ANFIS editor, a hybrid-type learning algo-
rithm with 100 epochs was chosen, and error tolerance was 
taken as 0.001 for the training of the ANFIS model. Using 
qualitative and quantitative analysis, the performance of the 
developed model was assessed.

In qualitative analysis, the performance of the selected 
model was evaluated graphically (time series graph and 
scatter plot). ANFIS-06 model with trapezoidal input 
membership function was found to be the best among all 
ANFIS models. For the selected ANFIS-06 model, the 
computed and predicted values of daily  ETo were observed 
through the time series graph to be in close agreement for 
all values of  ETo for the calibration and validation stages, 
as shown in Fig. 9, respectively. However, the selected 
model predicted good results for all values of  ETo; there-
fore, no point deviated from the regression line and 1:1 
line of scatter plot with an  R2 value of 0.9996 during 
training, as shown in Fig. 9a while modelling slightly and 
slightly under-predicted for medium and high values of 
 ETo with an  R2 value of 0.9987 during testing which is 
shown in Fig. 9b.

Results obtained using ANFIS models are reported in 
Table 7. It was observed that the values of  R2, RMSE, CE 
and WI varied from 0.9994 to 0.9996 and 0.8961–0.9987, 
0.0193–0.0238 mm/day and 0.0374–0.3584 mm/day; 
0.9994–0.9996 and 0.8780–0.9987; 0.9893–0.9999 and 
0.9752–0.9997 during training and testing, respectively. 
From Table 7, all ANFIS models based on input MFs 
performed satisfactorily during training. Moreover, dur-
ing training, the outcomes of performance indicators for 
the ANFIS-04 model (gauss-2 input MFs) were found to 
be better than the ANFIS-06 model (trap-2 input MFs). 
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Fig. 8  Residual plot of predicted  ETo in WANN-11 (24-11-1) model: a training and b testing periods



 Applied Water Science (2024) 14:138138 Page 16 of 26

During the testing process, the ANFIS-06 model was 
found to have the most accurate results of all performance 
criteria except the WI result. Hence, this model was the 

best model among all ANFIS models. The values of  R2, 
RMSE, CE and WI for the selected ANFIS-06 model 
based on trapezoidal (trap) input MFs were observed to be 
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Fig. 9  Comparison of ANFIS-06 (trap 2) model in estimating FAO-56 PM  ETo in GKVK Bengaluru station: a training period and b Testing 
period

Table 7  Results of different performance indicators for ANFIS-based  ETo prediction models

Bold value shows the best model based on the minimum RMSE and highest  R2 and model efficiency (CE and WI) values

Model Architecture Output MF Training Testing

R2 RMSE CE WI R2 RMSE CE WI

ANFIS-01 Tri-2 Linear 0.9996 0.0200 0.9996 0.9910 0.8961 0.3584 0.8780 0.9752
ANFIS-02 PSig-2 Linear 0.9994 0.0238 0.9994 0.9893 0.9897 0.1046 0.9896 0.9816
ANFIS-03 gbell-2 Linear 0.9996 0.0197 0.9996 0.9911 0.9917 0.0939 0.9916 0.9848
ANFIS-04 gauss-2 Linear 0.9996 0.0193 0.9996 0.9912 0.9916 0.0942 0.9916 0.9848
ANFIS-05 gauss2-2 Linear 0.9996 0.0206 0.9996 0.9906 0.9916 0.0942 0.9916 0.9843
ANFIS-06 trap-2 Linear 0.9996 0.0214 0.9996 0.9999 0.9987 0.0374 0.9987 0.9997
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0.9996, 0.0214 mm/day, 0.9996 and 0.9999, respectively, 
during training and 0.9987, 0.0374 mm/day, 0.9987 and 
0.9997, respectively during testing. The residual plot for 
the training and testing periods (Fig. 10) shows that the 
highest errors occur in the range of − 0.01 to 0.13, − 0.3 
to 0.23 mm, respectively.

MNLR model

This study calibrated the MNLR model using a training 
data set of selected input variables to predict  ETo. The per-
formance of the developed model was evaluated with the 
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Fig. 10  Residual plot of predicted  ETo in ANFIS-06 (trap 2) model: (a) training and (b) testing periods
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Fig. 11  Comparison of MNLR model in estimating FAO-56 PM  ETo in GKVK Bengaluru station: (a) training period and (b) testing period
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testing data set by comparing the expected values of daily 
 ETo to that of the observed one. The mathematical equa-
tion of the developed MNLR model can be expressed in the 
form as:

where  ETo is the daily reference evapotranspiration (mm/
day),  RHmean is the daily basis mean relative humidity (%), 
 U2 is the daily wind speed (km/hr), SH is the daily sunshine 
hour (hours/day), es and ea represent the saturated and actual 
vapour pressure (kPa), and Rs is the daily solar radiation 
(MJ/m2/day).

Qualitatively, the predicted values of reference evapotran-
spiration agree with computed values of  ETo (PM), which 
was observed through the time series graph during the train-
ing and testing periods, as shown in Fig. 11, respectively. 
However, the selected MNLR model slightly under-pre-
dicted medium and high values of  ETo as indicated through 
a 1:1 line of scatter plot with an R2 value of 0.9737 during 
training and slightly over-predicted and under-predicted high 
values of  ETo with an R2 value of 0.9718 during testing, 
which is also shown in Fig. 11, respectively.

The performance evaluation indices for developing the 
MNLR model are presented in Table 8. It was revealed that 
the values of R2, RMSE, CE and WI for the MNLR model 
were observed to be 0.9737, 0.1644 mm/day, 0.9737 and 
0.9933, respectively, during training and 0.9718, 0.1725 
mm/day, 0.9714 and 0.9927, during testing. The residual 

(13)ETo = f
(
RHmean,ws, Sh, es, ea,Rs

)

plot for the training and testing periods (Fig. 12) shows that 
the highest errors occur in the range − 1.0 to 1.0, − 0.9 to 
1.8 mm, respectively.

Sensitivity

The concept of sensitivity analysis was applied to the 
best-selected model to obtain the parameters that have the 
greatest effect on the performance of the best-developed 
model. Based on the results of performance indicators  (R2, 
RMSE, CE and WI), the ANN-10 model was selected as 
the best model developed using selected climatic variables 
to predict daily reference evapotranspiration. Selected 
climatic variables such as  RHmean, ws, Sh, es, ea, and Rs 
obtained from the gamma test were used for the ANN-10 
model. The sensitivity analysis was done by varying the 
input variables up to ± 10%. For each selected input param-
eter of testing period data, this procedure was repeated to 
evaluate the sensitivity of the predicted reference evapo-
transpiration concerning change in input parameter chosen 
value based on the best-selected ANN-10 model. Using 
Eq.  14, the relative sensitivity corresponding to each 
selected input parameter was determined. The sensitivity 
order of selected input parameters was found based on 
relative sensitivity results. As presented in Table 9, the 
values of performance indicators such as  R2, RMSE, CE 
and WI were determined based on the sensitivity of the 
original predicted  ETo with 10% variation (increasing or 
decreasing) in each selected input parameter during the 

Table 8  Results of different 
performance indicators for 
MNLR-based  ETo prediction 
models

Model Training Testing

R2 RMSE CE WI R2 RMSE CE WI

MNLR 0.9737 0.1644 0.9737 0.9933 0.9718 0.1725 0.9714 0.9927
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Fig. 12  Residual plot of Predicted  ETo in MNLR model: a training and b testing periods
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testing period of ANN-10 model to see the effect of each 
input parameter on the performance of the model.

As seen from Table 10, the relative sensitivity values of 
the selected climatic variables such as  RHmean, ws, Sh, es, ea, 
and Rs for the ANN-10 model were found to be − 450.71, 
226.16, 295.17, 770.76, − 166.82.2 and 1382.37, respec-
tively. Based on these results, the order of sensitivity of 
selected climatic variables was obtained as Rs > es >  RHmean 
> Sh > ws > ea. Solar radiation was considered the most sen-
sitive parameter, which greatly influenced the prediction of 
reference evapotranspiration. While actual vapour pressure 
was considered the least sensitive parameter, it was found 
that this parameter has an inverse relation with  ETo due to 
negative signs.

On the other hand, the sensitivity analysis result was 
found based on the change in output concerning variation 
in input. As seen from Table 10, it was obtained as the vari-
ation of  ETo (%) concerning a 10% increase in each selected 

climatic variable based on the best-selected ANN-10 model 
during the testing period. The percentage values of  ETo 
change concerning  RHmean, ws, Sh, es, ea, and Rs were found 
as − 3.17, 1.63, 2.10, 5.42, − 1.05 and 9.72, respectively. 
Negative and positive signs indicate the inverse and direct 
relationship between input and output variables, respec-
tively. The sensitivity order of selected input parameters 
based on these results was similar to the relative sensitivity 
results. Finally, it was concluded that solar radiation was the 
most relevant parameter.

In contrast, actual vapour pressure was the most irrel-
evant parameter among all parameters for developing the 
ANN-10 model to predict  ETo for the GKVK station. Due to 
this, actual vapour pressure can be eliminated from the best-
developed model for simplicity and performance enhance-
ment of the developed model for future study. The developed 
models can be directly integrated with web/mobile-based 
applications for real-time estimation of reference evapo-
transpiration, assisting researchers and other stakeholders 
in predicting water requirements.

Discussion

Based on qualitative and quantitative performance evalu-
ation indicators (R2, RMSE, CE and WI), the best models 
were selected from each technique, which were further com-
pared with each other to choose the most reliable model for 
the simulation of daily reference evapotranspiration. The val-
ues of numerical metrics for the best-selected models of each 
technique are presented in Table 11 to evaluate predictive 

Table 9  Sensitivity analysis 
of wavelet artificial neural 
networks (ANN-10) model 
during the testing period

Parameter Parameter values R2 RMSE CE WI Relative sensitivity

RHmean RHmean − 10%  RHmean 0.9864 0.1652 0.9741 0.9236 − 450.71
RHmean 0.9992 0.0299 0.9991 0.9998
RHmean + 10%  RHmean 0.9856 0.1856 0.9673 0.9158

ws ws − 10% ws 0.9965 0.1039 0.9897 0.9492 226.16
ws 0.9992 0.0299 0.9991 0.9998
ws  + 10% ws 0.9970 0.0854 0.9931 0.9616

Sh Sh − 10% Sh 0.9928 0.1220 0.9859 0.9449 295.17
Sh 0.9992 0.0299 0.9991 0.9998
Sh + 10% Sh 0.9914 0.1417 0.9809 0.9319

es es − 10% es 0.9917 0.2755 0.9279 0.8495 770.76
es 0.9992 0.0299 0.9991 0.9998
es + 10% es 0.9901 0.2539 0.9388 0.8681

ea ea − 10% ea 0.9925 0.1012 0.9903 0.9597 − 166.82
ea 0.9992 0.0299 0.9991 0.9998
ea + 10% ea 0.9930 0.1035 0.9898 0.9553

Rs Rs − 10% Rs 0.9866 0.4720 0.7884 0.7398 1382.37
Rs 0.9992 0.0299 0.9991 0.9998
Rs + 10% Rs 0.9890 0.4308 0.8237 0.7740

Table 10  The sensitivity of reference evapotranspiration  (ETo) corre-
sponds to the selected input climatic variables for the ANN-10 model

Selected input parameters ETo (%)

RHmean ± 10%  RHmean − 3.17
ws ± 10% ws 1.63
Sh ± 10% Sh 2.10
es ± 10% es 5.42
ea ± 10% ea − 1.05
Rs ± 10% Rs 9.72
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performance during both training and testing periods. From 
Table 11, the values of various indices showed a minor dis-
tinction between the two models (except the MNLR model). 
However, in the case of the WI indicator, a significant dif-
ference was found among all models during training and 
testing periods. The values of R2, RMSE, CE and WI var-
ied from 0.9737 to 0.9996, 0.0214–0.1644, 0.9737–0.9996 
and 0.9255–0.9903, respectively, during training while 
during testing, the values of R2, RMSE, CE and WI varied 
from 0.9467 to 0.9938, 0.0814–0.2390, 0.9457–0.9936 and 
0.9281–0.9816, respectively.

As shown in Table 11, the ANFIS model performed as 
the best model among all models during training. However, 
the ANN-10 model performed better during testing than the 
other models using all performance indices (R2, RMSE, CE 
and WI). Because the value of WI was found to be good 
for the ANN model during testing, the best model should 
be chosen by assuming its predictive performance dur-
ing the testing period. Therefore, the Haar wavelet-based 
ANN-10 model was considered the best model among all 
models during the training and testing periods, presented 
in Table 11. Moreover, the ANFIS-06 (trap-2) model per-
formed better than the WANN model during the training and 
testing. Among all models, the MNLR model showed poor 
performance in daily reference evapotranspiration predic-
tion despite mapping the nonlinear relationship of hydro-
logical processes. The values of performance indices, viz. 
R2, RMSE, CE and WI, for the best-selected Haar wavelet-
based ANN model were 0.9995, 0.0236, 0.9995 and 0.9999, 
respectively, during training 0.9992, 0.0299, 0.9991 and 
0.9998, during testing.

During the training and testing phases, radar charts and 
Taylor diagrams were used to visually assess the perfor-
mance of the ANN, ANFIS, WANN and MNLR models 
in monthly  ETo estimates (Figs. 13 and 14). In training 
and testing at KVGK stations, the created models' radar 
charts show how they performed. As can be seen from 
these graphs, the ANN-10 and ANFIS-06 (trap-2) models 
outperformed the others during training (Fig. 13a). They 
outperformed all other models during testing (Fig. 13b). 
Based on observed data, Taylor diagrams may highlight 
the correctness and efficiency of models; they demonstrate 

two distinct characteristics (i.e. correlation coefficient 
and standard deviation). As shown in Fig. 14a, b, the four 
models above were tested and trained at KGVK stations. 
RMSE, standard deviation and correlation coefficient are 
shown in a single polar plot on the Taylor diagram. These 
diagrams demonstrate the better performance of ANFIS-
06 (trap-2) than ANN-10, WANN-11 and MNLR for study 

Table 11  Comparison of 
performance evaluation of 
ANN, WANN, ANFIS and 
MNLR models for prediction 
of  ETo

Bold value shows the best model based on the minimum RMSE and highest  R2 and model efficiency (CE 
and WI) values

Model Training Testing

R2 RMSE CE WI R2 RMSE CE WI

ANN-10 0.9995 0.0236 0.9995 0.9999 0.9992 0.0299 0.9991 0.9998
WANN-11 0.9995 0.0761 0.9944 0.9986 0.9939 0.0808 0.9937 0.9984
ANFIS-06 (trap-2) 0.9996 0.0214 0.9996 0.9999 0.9987 0.0374 0.9987 0.9997
MNLR 0.9737 0.1644 0.9737 0.9933 0.9718 0.1725 0.9714 0.9927

Fig. 13  Radar chart showing the statistical performance of the best 
selection of ANN-10, WANN-11, ANFIS-06 (trap-2) and MNLR 
during a training and b testing periods



Applied Water Science (2024) 14:138 Page 21 of 26 138

stations in the training period (Fig. 14a), and ANN-10 per-
formed better ANFIS-06 (trap-2), WANN-11 and MNLR 
for study stations in the testing period (Fig. 14b). The best 
performance was found for the ANN-10 model, closely 
followed by the ANFIS-06 (trap-2), WANN-11 and MNLR 
models for the training period, and the ANN-10 model 
closely followed by the ANFIS-06 (trap-2), WANN-11 
and MNLR models for a testing period at KGVK stations 
(Fig. 14b). Figure 15 shows the mean bias (MBE) and 
mean-squared error (MSE) evaluation of the best ANN, 

WANN, ANFIS and MNLR models in testing. Both 
parameters show very little differences among all models. 
The order of superiority for reference evapotranspiration 
simulation was observed as ANN, ANFIS, WANN and 
MNLR models. ANN-10 model was considered superior 
to other models because wavelet transform unveils the hid-
den signal (information) of original time series data into 
sub-components (sub-series). Finally, the ANN model was 
found to be the most reliable model in  ETo prediction for 
the area of GKVK.  

In this study, using measured daily weather variables, i.e. 
Tmin, Tmax, RH percentage, U2 and Sh, four machine learn-
ing (ML) models were developed and compared for model-
ling daily reference  ETo, i.e. the ANN, ANFIS, WANN and 
MNLR. The models were applied during the dry (a critical 
time for the growing season) and humid seasons to provide 
a general view of the feasibility of machine learning for  ETo 
modelling. In this study, an approach of applying the Gamma 
test technique (GT) to weather data not only ensured that the 
best and suitable variables for modelling  ETo were accu-
rately selected but also was a successful means of selecting 
the best input combination. In addition to this finding, it was 
found that coupling the ANN with wavelet decomposition 
helps improve the ML model's performance. Similar to the 
results of several auteurs, it was found that the inclusion of 
the two-air temperature, i.e. Tmin, Tmax, plays a significant 
role in modelling the  ETo and improved model predictions.

Although there have been many studies comparing sev-
eral ML models for  ETo modelling, the comparisons were 
conducted in particular, taking into account the combina-
tion of various weather variables. Ye et al. (2022) proposed 
a modelling Framework based on the hybridisation of a 
dynamic evolving neural-fuzzy inference system (DENFIS) 
and multivariate adaptive regression spline (MARS) with 
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Fig. 14  Taylor diagrams of estimated and observed monthly  ETo val-
ues by ANN-10 (6-10-1), WANN-11 (24-11-1), ANFIS-06 (trap-2) 
and MNLR models for the a testing and b testing period at GKVK 
Bengaluru station
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Fig. 15  Mean bias error (MBE) and mean-squared error (MSE) eval-
uate the best ANN, WANN, ANFIS and MNLR models in testing
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whale optimisation algorithm (WOA) and bat algorithm 
(BA). The hybrid models, i.e. MARS-WOA, MARS- BA, 
DENFIS-WOA and DENFIS-WOA, were found to be accu-
rate, exhibiting an R2 value of approximately ≈0.940, less 
than the value obtained in our present study (R2≈0.998). 
Similar results occurred over the northeast of the Inner 
Mongolia Autonomous Region, China, while agreement 
between measured and predicted  ETo was much more accu-
rate (Zhang et al. 2022). They showed that the availabil-
ity of many weather variables is beneficial to the analysis 
of several scenarios generated under temperature-based, 
humidity-based and radiation-based models. More precisely, 
they compared random forest regression (RFR), K-nearest 
neighbours (KNN), light gradient boosting machine (LGB), 
ANN, long short-term memory (LSTM) and temporal con-
volutional neural network (TCN), showing that the biggest 
R2 value obtained by all models does not exceed ≈0.935, 
which are less than the value obtained in our study by the 
WANN, ANN and ANFIS models (R2≈0.998).

The findings by Muhammad et al. (2022) help to explain 
the results from this study, suggesting that in high moun-
tains in the central region of Peninsular Malaysia (former 
Malaya), the gene expression programming (GEP) model 
was found to be an excellent and powerful tool for evap-
otranspiration modelling. They obtained an R2 value of 
approximately ≈0.98, slightly less than the value obtained 
in our study. Using the multi-layer perceptron (MLPNN) and 
radial basis function (RBFNN), Dimitriadou and Nikola-
kopoulos (2022) demonstrated that  ETo was directly linked 
to Tmean, Sh and solar radiation (Rs) in the Peloponnese is a 
peninsula in Southwestern Greece, suggesting that MLPNN 
and RBFNN are correctly capturing the variability of  ETo 
with an R2 of approximately ≈0.980 nearly equal to the value 
obtained in our study. In a Modelling study by Wang et al. 
(2022), a priori knowledge of fewer weather variables shows 
that when Tmax, Tmin, U2 and Sh are introduced as input vari-
ables to the machine learning, the  R2 value shifts towards 
higher values, but not for all algorithms. More precisely, by 
comparing three ML families, i.e. three tree-based models, 
neural network-based and three multifunction-based models, 
the comparison was conducted between ten algorithms. It 
was a statement to say that the generalised regression neural 
network (GRNN) and the RBFNN models will give excel-
lent R2 values greater than ≈0.999 and ≈0.997 and RMSE 
values less than 0.01, which all are better than the values 
obtained in our study. The findings by Tejada et al. (2022) 
show that  ETo is related to Tmax, Tmin, U2 and Rs at Region 
IV-A, Philippines. The support vector machines (SVM) and 
extreme learning machines (ELM) were a good alternative 
for estimating the  ETo with high accuracies for which the 
 R2 reached the values of ≈0.985 and ≈0.999, respectively.

Using weather variables collected at two stations in Tabriz 
and Shiraz, Iran, Mehdizadeh et al. (2021) concluded that the 

hybridisation of the ANFIS model using the shuffled frogleap-
ing (SFLA) and invasive weed optimisation (IWO) algorithms 
has allowed to obtain excellent  ETo prediction reaching an 
 R2 of approximately ≈0.998 and ≈0.999 obtained using the 
ANFIS-SFLA and the ANFIS-IWO, respectively, which was 
similar the results obtained in our present study, despite that 
the same weather variables were included as input variables. 
From the results by Kadkhodazadeh et al. (2022), it follows 
that among six ML algorithms, i.e. MARS, M5Tree, RFR 
and least squares boost (LSBoost), the  ETo prediction with its 
input of even standards meteorological data was very appro-
priate for homogeneous and heterogeneous locations, such as 
Tabriz, Urmia and Mahabad located in Iran. It is emphasised 
that excellent  R2 values were obtained, reaching the value of 
≈0.999 in the light of the results obtained in the present study, 
and this has strong implications for the use of ML for  ETo 
estimation. Furthermore, the linear regression ML algorithms, 
i.e. multiple linear regression (MLR) and polynomial regres-
sion (PR) developed by Kim et al. (2022), have shown poor 
to moderate predictive accuracy. In this way, the R2 values do 
not exceed the values of ≈0.694, which are less than the values 
obtained in our study. Alternatively, there is a tremendous need 
for the application of the ensemble ML methods for predict-
ing  ETo. For example, Liu et al. (2021) compared RFR and 
extreme gradient boosting (XGBoost) models for modelling 
 ETo using data collected across the humid region of China. 
From the obtained results, it was found that XGBoost was 
slightly better than the RFR, exhibiting  R2 values of approxi-
mately ≈0.867 and ≈0.862, respectively, and the combination 
of Tmax, Tmin and Rs as inputs guaranteed the best predictive 
accuracies.

Basically, a large amount of ML models were proposed and 
successfully applied for modelling  ETo. A typical difference 
between the analysed models revealed that all were based on 
linking weather variables to  ETo, and a learning process with 
and without hybridisation was adopted. However, one of the 
most challenging aspects of ML is certainly the use of deep 
learning for solving regression tasks. For example, Sharma 
et al. (2022) applied two deep learning models, namely, con-
volution-long short-term memory (Conv-LSTM) and convolu-
tion neural network-LSTM (CNN-LSTM) for modelling  ETo. 
They demonstrated that deep learning models are robust tools 
for which excellent R2 values were obtained (R2≈0.991) nearly 
equal to the value obtained in our study. However, considering 
the obtained RMSE values (RMSE≈0.019), deep learning was 
slightly better than the WANN and ANN proposed in our pre-
sent study. Xing et al. (2022) applied the deep beliefs networks 
(DBN) and the LSTM deep learning models for modelling  ETo 
and reported good predictive accuracies with  R2 exhibiting a 
value of ≈0.940. Roy et al. (2022) compared deep learning, 
i.e. LSTM and BiLSTM, and a suite of ML models, i.e. SVM, 
MARS, M5Tree, ANFIS, probabilistic linear regression (PLR) 
and Gaussian process regression (GPR) for modelling  ETo. 
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It was found that BiLSTM was more accurate and exhibited 
excellent predictive accuracies with  R2 nearly equal to the 
value of ≈0.996.

The potential uncertainties associated with the input 
meteorological variables used in the models, such as meas-
urement errors or data gaps. The proposed modelling frame-
work does not have any limitation such as data requirements, 
computational resources or model calibration. It was pro-
posed to enhance the computation performance.

Suggested future works

This study was conducted at a single station to assess the 
accuracy of MNLR, ANN, ANFIS and WANN techniques. 
To enable a more comprehensive comparison of these 
models, future research should involve multiple locations 
simultaneously. Additional investigation could be directed 
towards examining the efficacy of alternative soft com-
puting methodologies or machine learning algorithms in 
forecasting daily reference evapotranspiration  (ETo) within 
tropical savanna ecosystems, extending beyond the scope 
of the models scrutinised in this inquiry. Future research 
should explore how including more meteorological vari-
ables or trying different combinations of input data affects 
the accuracy and effectiveness of models predicting  ETo. 
By doing so, researchers can pinpoint which variables have 
the most significant impact on the predictions and conse-
quently enhance the overall predictive capabilities of the 
models. It would be beneficial to conduct field validation 
experiments to assess the practical applicability and reli-
ability of the proposed modelling framework in real-world 
scenarios. This can help validate the model's performance 
and provide insights into potential limitations or areas for 
improvement.

Additionally, the investigation could delve into incorpo-
rating remote sensing data or satellite imagery to augment 
the precision and spatial resolution of  ETo predictions, espe-
cially in areas where ground-based meteorological data is 
scarce. Furthermore, forthcoming research endeavours could 
explore the viability of ensemble modelling methodologies, 
amalgamating various models or techniques to enhance both 
the accuracy and resilience of  ETo predictions within tropi-
cal savanna settings.

Conclusions

Reference evapotranspiration  (ETo) is an important com-
ponent of the hydrological cycle, and it is a critical step 
in the quantification of the crop water requirement. In the 
present study, various meteorological variables were used 

for the estimation of  ETo using CROPWAT 8.0 software 
based on the Penman–Monteith equation. The estimated 
reference evapotranspiration values were considered as 
observed values. Based on the best input combination iden-
tified through the gamma test, different artificial intelligence 
(ANN, ANFIS, WANN) and nonlinear regression (MNLR) 
techniques were applied to calibrate various  ETo models 
using MATLAB software in the present study. Statistical 
and hydrological performance indices, such as R2, RMSE, 
WI and CE, were evaluated to determine the most accu-
rate model for the prediction of  ETo. Finally, the concept of 
sensitive analysis was utilised for the best-developed model 
to see the effect of the most sensitive parameter on model 
performance.

According to the obtained results, some conclusions can 
be highlighted as follows:

(i) Based on performance criteria, the ANN-10 (6-10-1) 
model was found to be better than the other ANN mod-
els.

(ii) The wavelet-coupled ANN-11 (24-11-1) model was 
superior to the other WANN models for the study area.

(iii) ANFIS-06 model with trapezoidal type input MFs 
performed better than the other input MFs based on 
ANFIS models.

(iv) Based on the overall performance of ANN, ANFIS, 
WANN and MNLR models, the ANN-10 was found to 
be the best model for the prediction of daily  ETo of the 
study area.

(v) Solar radiation was found to be the most sensitive vari-
able. In contrast, actual vapour pressure was less sensi-
tive based on sensitivity analysis.

To enhance the accuracy of predictive models, the detailed 
explanation of the specific algorithms or mathematical prin-
ciples employed in the neural network models. This research 
demonstrates the application and performance evaluation 
of different soft computing models (ANN, WANN, ANFIS, 
MNLR) for  ETo prediction, and also delving into the underly-
ing theoretical foundations of these models by assessing their 
accuracy and performance as well.
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