
Vol.:(0123456789)

Applied Water Science (2024) 14:102 
https://doi.org/10.1007/s13201-024-02162-x

ORIGINAL ARTICLE

Contribution to advancing aquifer geometric mapping using machine 
learning and deep learning techniques: a case study of the AL 
Haouz‑Mejjate aquifer, Marrakech, Morocco

Lhoussaine El Mezouary1   · Abdessamad Hadri1 · Mohamed Hakim Kharrou1 · Younes Fakır2,3 · 
Abderrahman Elfarchouni1 · Lhoussaine Bouchaou3,4 · Abdelghani Chehbouni1,3

Received: 1 December 2023 / Accepted: 16 March 2024 / Published online: 13 April 2024 
© The Author(s) 2024

Abstract
Groundwater resources in Morocco often face sustainability challenges due to increased exploitation and climate change. 
Specifically, the Al-Haouz-Mejjate groundwater in the Marrakesh region is faced with overexploitation and insufficient 
recharge. However, the complex subsurface geometries hamper hydrogeological modeling, characterization, and effective 
management. Reliably estimating aquifer substrate topography is critical for groundwater models but is challenged by lim-
ited direct measurements. This study develops nonlinear machine learning models to infer substrate depths by fusing sparse 
borehole logs with regional geospatial data. A Gaussian process regression approach provided robust holistic mapping, 
leveraging flexibility, and uncertainty quantification. Supplementary neural network architectures focus on isolating specific 
variable relationships, like surface elevation–substrate. Model accuracy exceeded 0.8 R-squared against validation boreholes. 
Spatial visualizations confirmed consistency across landscape transects. Elevation and piezometric data proved most predic-
tive, though multivariate inputs were required for the lowest errors. The results highlight the power of statistical learning 
to extract meaningful patterns from disparate hydrological data. However, model opacity and the need for broader training 
datasets remain barriers. Overall, the work demonstrates advanced machine learning as a promising avenue for illuminat-
ing complex aquifer geometries essential for sustainability. Hybrid approaches that use both data-driven and physics-based 
methods can help solve long-standing problems with hydrogeological characterization.

Keywords  Aquifer geometry prediction · Aquifer substrate assessment · Geospatial parameters · Supervised machine 
learning

Introduction

Morocco is a country with limited water availability, pos-
sessing a total annual renewable resource of 29 billion cubic 
meters (BCM), which includes 4 BCM of groundwater, 
providing over 60% to 70% of potable water supply nation-
ally, certain deep aquifers are non-renewable or have lim-
ited recharge capacity (Faysse et al. 2010; Hssaisoune et al. 
2020). However, rapid development and agricultural expan-
sion have resulted in aquifer overexploitation, with extrac-
tion exceeding natural recharge rates in most major basins 
(Bouchaou 2004; Ait Brahim et al. 2017; Eslamian et al. 
2017; Echogdali et al. 2023). This groundwater depletion 
is further threatened by increased water stress induced by 
climate change projections in the region (Bahir et al. 2021). 
Addressing sustainability thus remains a key challenge. 
The Tensift-AL Haouz basin, encompassing the Al-Haouz 
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aquifer system near Marrakech city, exemplifies this issue, 
is currently undergoing severe depletion, with water levels 
decreasing by up to 65 m over a period of several decades 
(Hssaisoune et al. 2020). Studies of stable isotopes, water 
balance, and flow modeling indicate substantial modern 
recharge but an alarming decline in groundwater levels 
(Boukhari et al. 2015; Hadri et al. 2021; Kamal et al. 2021). 
As the expansion of irrigation drives abstraction, better char-
acterization of these aquifers is needed to support manage-
ment for sustainability.

A key research gap lies in delineating complex subsur-
face geometries to constrain hydrogeological models (El 
Mezouary 2016; Zuffetti et al. 2020). The vastness of the 
region, insufficient and lack of direct measurements on aqui-
fer depths, and spatial heterogeneity create uncertainty (Her-
mans et al. 2023). Characterizing aquifer substrate topog-
raphy is crucial for accurate and successful groundwater 
modeling, analysis, and management. The height and form 
of the bedrock or other limiting boundary under an uncon-
fined aquifer exert first-order control over system behav-
ior (Fetter 2018; Somers and McKenzie 2020). Substrate 
topography influences critical parameters such as saturation 
thickness, transmissivity, flow velocities, and boundary con-
ditions (Tokunaga 2009). Neglecting complex heterogene-
ous substrates might result in incorrect model assumptions 
and predictions (Xu and Valocchi 2015; Jing et al. 2019). 
Oversimplified flat or sloping substrate representations, for 
example, cannot account for the effects of hidden valleys, 
bedrock highs, or low-permeability inclusions (Deutsch and 
Siegel 2020; Song et al. 2020; van Woerkom et al. 2021). 
However, direct sampling of aquifer bottom elevations is 
expensive and geographically constrained, making high-
resolution mapping impossible.

Traditionally, characterizing aquifer geometry relied 
heavily on direct subsurface measurements from boreholes 
and wells. The purpose of hand-drawn cross sections and 
contour maps is to accurately define hydrostratigraphic sur-
faces and boundaries by filling in the gaps between sparsely 
sampled points (Maliva 2016). To adequately confine intri-
cate three-dimensional aquifer structures, extensive drilling 
was necessary. Geophysical techniques such as ground-pen-
etrating radar, resistivity, and seismic surveys offer addi-
tional and complementary imaging of the subsurface in the 
areas between boreholes (Bechtel et al. 2014). Nevertheless, 
uncertainties in geophysical inversion constrain the ability to 
accurately determine the detailed characteristics of an aqui-
fer. Furthermore, traditional hydrogeological models faced 
difficulties in incorporating various datasets and accurately 
representing complex geometries (Turner 2006). Statisti-
cal methods such as kriging enhance property mapping by 
integrating spatial correlations (Kitanidis 1997). However, 
the computational requirements limit the use of simulations 
with a large number of parameters. In the end, the ability to 

accurately understand complex aquifer systems using tradi-
tional methods was hindered by significant data limitations 
and methodological constraints.

The application of machine learning (ML) and deep 
learning (DL) techniques has recently led to significant pro-
gress in the diverse domain. Advanced statistical learning 
algorithms that use large datasets have made it possible for 
the modeling of complex systems to get a lot better. This 
has led to the discovery of novel insights and enhanced 
predictive abilities. ML and DL techniques have greatly 
accelerated progress in the interconnected fields of geology, 
hydrology, water resource management, and hydrogeologi-
cal characterization. For example, ML and DL have proved 
to be highly valuable in the field of geology for mineral 
exploration. It is capable of identifying subtle patterns in 
geophysical and geochemical data that indicate the pres-
ence of mineral deposits beneath the Earth's surface (Zhao 
et al. 2016; Zuo 2017). Deep learning enables the analysis 
of seismic data using innovative approaches, resulting in sig-
nificantly improved subsurface exploration through precise 
structural interpretation (Di et al. 2018; Wang et al. 2018). 
These applications facilitate the identification of concealed 
patterns within geological datasets, thereby exposing practi-
cal and actionable insights.

Advanced machine learning algorithms that utilize 
meteorological and streamflow data have made significant 
advancements in flood forecasting and early warning sys-
tems (Shamshirband et al. 2020; El Mezouary et al. 2022). 
Long short-term memory neural networks greatly improve 
river discharge and rainfall–runoff predictions (Fang et al. 
2017; Kratzert et al. 2018), enabling more informed water 
management. Deep learning revolutionizes the capabilities 
of satellite remote sensing by offering unparalleled preci-
sion in capturing land surface characteristics (Kattenborn 
et al. 2021; Aboutalebi et al. 2022; Eshetie et al. 2023). 
ML also aids in the monitoring of drought (Docheshmeh 
Gorgij et al. 2022; Shahfahad et al. 2023), projecting res-
ervoir inflow (Gupta and Kumar 2022; Latif and Ahmed 
2023), and forecasting water demand (Xu et al. 2022; Zanfei 
et al. 2022). The unparalleled adaptability of contemporary 
statistical learning methods is enabling the exploration of 
novel hydrologic modeling capabilities. Machine learning 
(ML) enhances the monitoring of water distribution systems 
(Fu et al. 2022; Yu et al. 2023) and accurately forecasts the 
inflow of water into reservoirs (Huang et al. 2022; Saab et al. 
2022) in the field of water resources engineering. Within the 
field of hydrogeology, multiple studies have also adopted 
machine learning for aquifer mapping by extracting infor-
mation from geophysical surveys and auxiliary datasets 
(Shirmard et al. 2022; Bonogo et al. 2023), machine learn-
ing (ML) is utilized to forecast the groundwater level and 
quality (Singha et al. 2021; Tao et al. 2022; Deng et al. 2023; 
Ko and Yoo 2023), optimize pumping strategies (Gaur et al. 
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2018), and generate detailed maps of groundwater potential 
(Mousavi et al. 2017). Physics-informed neural networks 
exhibit potential for constructing comprehensible hydrogeo-
logical models (Raissi et al. 2019; Li et al. 2022).

Previous studies have primarily examined subregions 
rather than the entire aquifer due to the intricate nature of 
the Al-Haouz-Mejjate system. For instance, Rmiki et al. 
(2021) conducted research in the central AL Haouz region, 
whereas Rochdane et al. (2018) developed a three-dimen-
sional model specifically for the eastern section of the 
basin. Rochdane et al. (2015) and other similar initiatives 
analyzed the geometry of the eastern AL Haouz and Tas-
saout aquifers. Other localized studies conducted in the AL 
Haouz region include electrical resistivity tomography in 
the eastern AL Haouz (Rochdane et al. 2022), gravimetric 
analysis in the western AL Haouz, and structural diagram 
of AL Haouz-Mejjate (El Goumi et al. 2010; Chouikri 
et al. 2016). While this research pioneers the integration 
of geospatial datasets with machine learning and deep 
learning models to map aquifer substrates. By combining 
sparse borehole data with terrain, geology, hydrology, and 
other features, the models reveal complicated interactions 
to produce accurate high-resolution maps. The method-
ology enables advanced analysis of substrates, improv-
ing hydrogeological understanding and sustainability in 
the vital AL Haouz-Mejjate region a crucial economic, 
agricultural, and touristic hub for Morocco facing water 

scarcity pressures. The research offers multiple innova-
tions, including fusing diverse data sources, applying 
state-of-the-art algorithms to discern subtle patterns, and 
enhancing limited existing knowledge on regional aquifer 
architectures. By illuminating these hidden aquifer fresh-
water systems through data and artificial intelligence, 
the study provides a foundation for refined groundwater 
modeling and management amidst rising demands in the 
region. The unprecedented detailed substrate visualiza-
tions will prove invaluable for securing water resources in 
this preeminent tourist destination and beyond.

Study area

The AL Haouz-Mejjate basin of Marrakech is located in 
central Morocco and is surrounded by a number of sig-
nificant physiographic features. The northern limit is 
defined by the Jebilet massif, while the western boundary 
is defined by the Essaouira and Chichaoua plateaus. The 
High Atlas Mountains' foothills may be found to the east 
and south. This combination of uplands generates a big 
enclosed depression with an extent of 6800 km2 (Fig. 1). 
The basin is divided into three major subregions: western 
AL Haouz (Mejjate Plain), central AL Haouz, and eastern 
AL Haouz (Bernet and Prost 1975; Sinan 2000).

Fig. 1   Map illustrating the geographic location and geology of the AL Haouz-Mejjate plain, with structural anomalies referenced from El Goumi 
et al. (2010), Rochdane et al. (2015), and Chouikri et al. (2016)
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Groundwater resources in EL Haouz‑Mejjate Aquifer

The AL Haouz plain surrounding Marrakech, which is a 
crucial agricultural and urban hub, experiences a particularly 
severe situation. The AL Haouz aquifer system in Marrakech 
is a crucial water source, with potable water demands reach-
ing 65 MCM in 2014 (Zhao et al. 2019). However, the act 
of pumping water excessively poses a significant threat to 
system equilibrium. This highlights the need for enhanced 
knowledge in hydrogeology to ensure long-term sustainabil-
ity. The investigation of AL Haouz's intricate sedimentary 
aquifer system is impeded by limited direct sampling.

The hydrogeological basin of the Tensift-AL Haouz, 
including the AL Haouz aquifer, has a semiarid climate 
with an average annual rainfall of roughly 240 mm, with 
the majority of it falling between November and April 
(AGR, 2008). Mountain runoff and groundwater reservoirs 
provide water supplies. Agriculture is one of the most sig-
nificant socioeconomic activity made possible by irrigation. 
Large-scale hydraulic networks, small to medium hydraulic 
systems, and individual private irrigation on farms are the 
three principal irrigation technologies used. Irrigated areas 
cover around 120,000 hectares and are dominated by grain 
agriculture as well as olive and fruit orchards (Bzioui 2004; 
Water 2008).

Geological context and hydrogeologic of AL 
Haouz‑Mejjate Aquifer

The AL Haouz Plain is a tectonic sedimentary basin filled 
with siliciclastic deposits generated from Neogene and Qua-
ternary erosion of the uplifted High Atlas range (Ambroggi 
and Thuille 1952; Bernet and Prost 1975; Ferrandini and 
MARREC 1982). On a hydrogeological level, geological 
structures such as faults, flexures, anticlines, and synclines 
have a strong influence on reservoir geometry and ground-
water circulation (Sinan 2000; El Goumi et al. 2010; Roch-
dane et al. 2015; Chouikri et al. 2016).

By conducting deep soundings in the south of the plain, 
it is possible to locate the aquifer reservoirs in the middle 
and eastern parts of AL Haouz. These reservoirs bevel very 
quickly (Fig. 2a, and b), putting the Neogene rock right on 
top of the bedrock. The existence of deep layers is therefore 
not possible, and the secondary and neogene terrains meet 
directly with the more recent formations (Bernet and Prost 
1975). The AL Haouz Occidental (Mejjate) basin has two 
main layers, which can be seen in the geological cross sec-
tion (Fig. 2c): an upper unconfined aquifer that is buried in 
thick Quaternary and Mio-Pliocene formations, while the 
Mejjate region exhibits both an unconfined and deep-con-
fined aquifer that rests on impermeable substrate and is made 
up of Miocene clays and marls (Ambroggi and Thuille 1952; 
Bernet and Prost 1975; Sinan 2000). These sediments were 

carried and deposited by an Atlasian wadi network, resulting 
in large alluvial fans and fluvial structures. This basin fill is 
made up of alternating permeable pebble, gravel, and sand 
lenses interspersed with virtually impermeable clay and marl 
layers. It sits unconformably on an impermeable Miocene 
clay and marble base (Sinan 2000).

The principal water-bearing formations are the Plio-Qua-
ternary alluvial layers, which are recharged by Atlas Moun-
tain streamflow (Bouimouass et al. 2020; Fakir et al. 2021; 
Hajhouji et al. 2022). The depth of the marly substrate varies 
regionally. Triassic or Paleozoic schist bedrock surfaces pro-
vide the basis in some regions. This multilayered structure 
serves as a significant unconfined aquifer system, supplying 
a key source of water to the region (Bernet and Prost 1975; 
Boukhari et al. 2015). Of the two primary aquifers within the 
AL Haouz Plain, this study focuses specifically on the high-
resolution characterization of the upper unconfined layer 
buried within Quaternary and Mio-Pliocene sediments. As 
an alluvial-free aquifer system, the geometry and properties 
of this layer are heavily influenced by the underlying sub-
strate surface (Sinan 2000; Rochdane et al. 2015).

Methods

Data preprocessing

To support aquifer characterization, lithological data from 
635 reconnaissance boreholes and production wells were 
obtained from the Tensift Hydraulic Basin Agency (ABHT). 
These logs contain stratigraphic profiles that indicate mate-
rial types and depth transitions. Some include date informa-
tion as well as piezometric observations. Originally scanned, 
this data was digitized and converted into a standardized 
readable format suitable for geographic information system 
(GIS) analysis. Unique identifier, surface elevation, depth 
of each stratigraphic unit, lithological facies codes, piezo-
metric level, outflow rate, permeability, transmissivity, and 
water inflow are among the key metrics collected. Missing 
attributes were filled using data from other ABHT datasets, 
such as the 1971 and 2011 piezometric surveys, pumping 
tests surveys, and the USGS digital elevation model (DEM).

Stratigraphic columns were divided into three hydrogeo-
logical units. The first hydrogeological unit, UHF-1, assumes 
responsibility for enclosing the upper unconfined aquifer 
system. This structure is distinguished by high permeabil-
ity, or a mixture of permeable materials that are elevated 
above the water table. Its boundaries contain a variety of 
geological elements, such as sand, gravel, and conglomerate 
formations (Duffield 2019). These substances have a remark-
able capacity to facilitate water flow, making them essential 
components of the functioning of the aquifer system. Within 
this category, UHF-2 semipermeable stands out because it 
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reveals the presence of limestone formations that have been 
further enhanced by a mixture of sands, gravels, clay, or marl 
(Lewis et al. 2006; Duffield 2019). This geological domain's 
complexity and importance are highlighted by the variety of 
materials found in the upper aquifer.

The third unit, aptly referred to as UHF-3, represents 
the aquiline substrate in stark contrast. This particular unit 
stands out because it is made up of impervious layers that 
are positioned below the aquifer materials mentioned above. 
These layers, which primarily consist of marls, clays, and 
shales, naturally have low permeability (Lewis et al. 2006; 
Duffield 2019; Neuzil 2019). This innate quality restricts 
water's vertical movement and plays a crucial part in hydro-
geology. Unit 3's impervious layers frequently act as vital 
barriers that keep groundwater contained within the aquifer 
system. Figure 3 shows an example of a classified log that 
exemplifies the importance of three categorizations in map-
ping substrate depth.

A total of 168 boreholes fully penetrated the aquifer sys-
tem to access the deepest aquifer, thereby yielding substrate 
elevation limits based on the 635 compiled logs. Their spa-
tial distribution is as follows: 51% in western AL Haouz, 
30% in center AL Haouz, and 19% in eastern AL Haouz 
(Fig. 4). To avoid biasing the substrate estimates, the remain-
ing 467 logs were excluded due to incomplete information 
or because they did not reach the substrate.

Synthetic data processing

Aquifer substrate elevations in areas with limited available 
measurements were estimated using a multi-step methodol-
ogy incorporating machine learning (ML) and deep learn-
ing (DL) models, geostatistical interpolation, and the inte-
gration of actual and simulated data points. The goal was 
to fill spatial data gaps and improve the subsurface map-
ping resolution (Chaplot et al. 2006; Bamisaiye 2018). To 

Fig. 2   Subfigures a and b illustrate geological cross sections through the eastern and middle parts of AL Haouz, respectively, while subfigure c 
shows a cross section from the western AL Haouz-Mejjate plain. Image from Boukhari et al. (2015)
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Fig. 3   Illustration of an example 
of borehole classification, 
showcasing borehole Log No. 
IRE 397/52-ABHT before 
and after analysis, classified 
into three-unit classes. UHF-1 
and UHF-2 denote permeable 
and semipermeable materials, 
respectively, while UHF-3 rep-
resents impermeable materials 
corresponding to the substrate 
bedrock level

Fig. 4   Comprehensive map illustrating the distribution of real reconnaissance boreholes (depicted by green points) and synthetic reconnaissance 
boreholes (depicted by black points) across the study area
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expand the coverage, synthetic boreholes (green points in 
Fig. 4) were generated in locations without direct subsurface 
measurements from reconnaissance boreholes (black points 
in Fig. 4). These synthetic boreholes effectively simulate 
possible subsurface logs at unsampled points by leveraging 
relationships and patterns learned from real measurement 
sites (Chen et al. 2023; Zhang et al. 2023). They provide 
realistic virtual borehole readings that supplement the spatial 
density when interpolated into maps. Simultaneously, geo-
logical formations, lithological details, and diverse hydro-
logical properties were compiled from accessible sources to 
thoroughly describe the geological context within the study 
area. This contextual data aids in constraining and validat-
ing the synthetic data. The integration of real measurements 
and modeled synthetic logs enables expanded subsurface 
characterization.

After gathering the necessary data, machine learning 
(ML) and deep learning (DL) models were developed to 
forecast the elevations of the aquifer substrate. The models 
were trained using the 168 real borehole substrates (Fig. 4). 
The training phase was crucial in allowing the models to 
acquire intricate input–output relationships that capture the 
intricate interaction between hydrogeological parameters 
and substrate elevations. Afterward, the ML and DL models 
that had been trained were utilized on the synthetic borehole 
locations created in the previous step. These locations are 
visually depicted as green points in Fig. 4. The models accu-
rately predicted the substrate elevations at these synthetic 
locations by using the appropriate hydrogeological param-
eters as input. Subsequently, the real and synthetic data were 
combined in order to unify the recorded and projected sub-
strate measurements. The process of combining this data 
resulted in an expanded dataset, which greatly increased the 
extent of spatial coverage and improved the overall depic-
tion of substrate information throughout the study area. The 
combination of real measurements and synthetic predictions 
yielded a comprehensive dataset that formed the basis for 
the subsequent interpolation processes (Corchado and Aiken 
2002; Tunkiel et al. 2022). Ordinary kriging, a geostatistical 
interpolation technique, was used to create a high-resolu-
tion substrate surface map. Kriging utilizes spatial patterns 
within the dataset to estimate substrate elevations at loca-
tions that were not sampled. Importantly, the incorporation 
of synthetic generated predicted points enabled the extrapo-
lation of substrate elevations across sparsely collected actual 
measurements.

Machine learning and deep learning architectures

The synthetic data depicted in Fig. 4 is employed to assess 
a diverse array of traditional machine learning algorithms 
and contemporary deep neural networks for the purpose of 
mapping aquifer substrates. Linear regression (LR) assumes 

a linear relationship between the geospatial inputs and the 
target substrate aquifer (Hastie et al. 2009). Regression trees 
(tree) capture hierarchical interactions between parameters 
through recursive binary splits (Elith et al. 2008). Ensem-
ble methods like random forests improve generalizability 
by averaging many individual decision trees (Prasad et al. 
2006; Bernard et al. 2009). Support vector machines (SVM) 
find optimal hyperplanes for classification and regression 
(Shmilovici 2010). Through the Gaussian process regres-
sion (GPR) models handles nonlinearity in a flexible man-
ner (Snelson 2008; Saul et al. 2016). The quadratic kernel 
enables us to model data that varies at various scales. This is 
a very useful algorithm in spatial statistics and geostatistics, 
where multivariate statistical analysis on metric spaces is 
performed (Park 2011). These techniques provide breadth 
across linear, tree, and kernel-based learners. Deep artifi-
cial neural networks (ANN) are also assessed, implemented. 
Feedforward networks with multiple hidden layers learn 
hierarchical feature representations. Various activation func-
tions, regularization schemes, and optimization algorithms 
are tested. Hyperparameter optimization identifies ideal 
model configurations (Cho et al. 2020). Partial dependence 
plots help visualize internal network workings. By propa-
gating signals through stacked nonlinear transformations, 
deep learning can uncover subtle geospatial relationships 
unattainable to classical methods (Camps-Valls et al. 2021).

To mitigate dimensionality, we employed principal com-
ponent analysis (PCA) to derive six principal components 
capturing 95% of the variance across all models. In terms of 
feature selection techniques, we utilized the minimum redun-
dancy maximum relevance (MRMR) (Shirzad and Keyvan-
pour 2015), ANOVA F-statistic (FTest) (Elssied et al. 2014), 
and RReliefF algorithms (Relevance ReliefF). Our analysis 
of machine learning models, aimed at identifying the most 
influential parameters for aquifer substrate prediction, was 
multifaceted. Sensitivity analysis was conducted by system-
atically perturbing inputs and monitoring resultant output 
changes (Montavon et al. 2018). Additionally, we employed 
partial dependence plots to visualize the marginal impact of 
individual parameters on predicted substrate (Molnar 2020). 
In the case of the Gaussian process model, our focus was on 
examining the learned length-scale hyperparameters (Mac-
Kay 2003).

All techniques are trained on standardized data with 
stratified sampling. Cross validation prevents overfitting 
during hyperparameter tuning (Charilaou and Battat 2022). 
Model evaluation uses out-of-sample testing on borehole 
substrate measurements. The following goals are specific: 
1) gathering representative datasets; 2) analyzing diverse 
ML/DL architectures; 3) finding critical predictive factors; 
4) creating 3D substrate representations with uncertainty; 
and 5) comparing model accuracy against observed data. 
Meeting these goals will reveal insights into the linkages 
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that drive aquifer geometry and demonstrate the benefits of 
cutting-edge ML and DL for lighting of complicated subsur-
face systems. This approach is shown in Fig. 5 as a diagram 
architecture that evaluates each method's ability to distill 
predictive multivariate patterns that accurately generalize 
across the domain. By harnessing both classical and modern 
machine learning, the mathematical foundation of each tech-
nique and its potential benefits for illuminating subsurface 
geometries given available geospatial datasets are described 
in the following sections.

Linear regression

Linear regression (LR) models the relationship between 
explanatory variables x and response y as:

where the � terms are model coefficients and � is an error 
term. Ordinary least squares minimize the sum of squared 
residuals to solve for the coefficients (Draper and Smith 
1998). Regularization methods like ridge regression reduce 
overfitting on the training data (Tibshirani 1996).

Support vector machines

Support vector machines (SVMs) find an optimal hyperplane 
to separate classes or predict values using:

where  w is the normal vector to the hyperplane, Φ(x) maps x 
to a higher-dimensional space, and b is the bias. The solution 
maximizes the margin between classes. The dual Lagrangian 
form enables kernel methods like SVRs for nonlinear func-
tions (Smola and Schölkopf 2004).

(1)y = �0 + �1x1 +⋯ + �pxp + �

(2)y(x) = wTΦ(x) + b

Gaussian process regression

A Gaussian process regression (GPR) defines a distribu-
tion over functions, which are represented as:an activation 
function like the sigmoid:

where μ(x) is the mean function and k(x, x�

) is the covari-
ance kernel function. This provides a flexible nonparametric 
Bayesian model for regression. The predictive distribution at 
a point is Gaussian with a mean and variance tuned on the 
data (Rasmussen 2003).

Ensemble methods

Ensembles combine multiple weak learners like decision 
trees into one predictive model for improved performance. 
Algorithms like random forests bootstrap training data and 
attributes to build diverse trees and average their predic-
tions (Breiman 2001). Boosting methods like XGBoost 
incrementally add models to focus on difficult instances 
(Chen and Guestrin 2016).

Decision trees

Decision trees (tree) make predictions by greedily split-
ting the feature space into partitions based on criteria like 
information gain or reduction in variance (Quinlan 1986). 
Recursive binary splitting forms branches and nodes that 
segment the data. Pruning and ensemble techniques pre-
vent overfitting on trees.

(3)f (x) ∼ GP
(
�(x), k

(
x, x�

))

Fig. 5   Comprehensive illustration of the architectural framework employed for substrate elevation prediction in the zone area, encompassing 
data acquisition, methodology, analysis, model results, and predictive outcomes
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Artificial neural networks

Artificial neural networks (ANN) are computing systems 
inspired by biological neural networks and designed to 
identify patterns in data. They comprise interconnected 
nodes or "neurons" which transform input signals using 
an activation function like the sigmoid:

The model can be represented as:

where  xj is input features, Wij is learned weights,  bi  is 
biases, and  f  is the activation function. By stacking lay-
ers of neurons, very complex relationships can be modeled 
(Goodfellow et al. 2016). Neural networks are trained using 
backpropagation and gradient descent to iteratively mini-
mize a loss function like mean squared error (Ruder 2016). 
Regularization methods like dropout prevent overfitting 
(Srivastava et al. 2014).

Evaluation metrics

The rigorous quantitative validation was used to create 
models and evaluate the machine learning techniques 
considered for high-resolution characterization of aqui-
fer substrate. On out-of-sample data, core performance 
indicators were root mean squared error (RMSE), mean 
squared error (MSE), R-squared, and mean absolute error 
(MAE). The RMSE and MSE measure the absolute differ-
ences between predicted and measured values, with lower 
scores indicating more accuracy (Chai and Draxler 2014; 
Hodson 2022). R-squared 

(
R2

)
 calculates the proportion 

of variance explained, with values close to one indicating 
stronger explanatory power (Rights and Sterba 2019). The 
average magnitude of errors is provided by MAE. These 
measurements, used together, provide complimentary 
insights into precision, bias, and representation capabili-
ties (Willmott and Matsuura 2005).

Mean squared error

The mean squared error (MSE) is a common metric for 
regression model performance that quantifies the average 
squared difference between the predicted and true target 
values:

where yi is the true value, ŷi is the predicted value, and n is 
the number of samples. MSE penalties larger errors more 

(4)yi = f

(
∑

j

Wijxj + bi

)

(5)MSE =
1

n

n∑

i=1

(yi − ŷi)
2

strongly than mean absolute error. Lower MSE indicates bet-
ter model performance.

Root mean squared error

The root mean squared error (RMSE) takes the square root 
of the mean squared error:

This returns error in the same units as the target data, 
facilitating interpretation. Like MSE , lower RMSE denotes 
higher predictive accuracy.

Mean absolute error

The mean absolute error (MAE) calculates the average 
magnitude of errors without squaring:

Because MAE avoids amplifying outliers, it can be more 
robust than MSE or RMSE in some applications. Lower 
MAE signifies better model performance.

R‑squared

R-squared 
(
R2

)
 measures how well a model fits the actual 

data compared to a naive baseline:

where SSres is the residual sum of squares and SStot is the 
total sum of squares. R2 ranges from 0 to 1 , with higher val-
ues indicating more variance explained by the model.

These metrics were calculated on both validation and 
independent test sets, which is critical. The ability to com-
pare performance allowed for the examination of model 
generalization and the possibility of overfitting (Raschka 
2018). Divergence signified overfitting to the validation 
data, but techniques that maintained accuracy from valida-
tion to testing generalized well.

(6)RMSE =

√√√√1

n

n∑
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(yi − ŷi)
2

(7)MAE =
1

n
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|yi − ŷi|

(8)R2 = 1 −
SSres
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=
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Results and Discussion

Machine Learning and Deep Learning Multivariate 
Model Performance

To comprehensively assess the accuracy of substrate pre-
diction, Table 1 compiles validation and testing metrics 
across categorized machine learning approaches to quan-
tify trade-offs in predictive accuracy. Root mean squared 
error (RMSE) constitutes the primary evaluation criterion. 
Additionally, other vital statistics like mean absolute error 
(MAE), model explanatory power (R-squared), computa-
tional configuration, and hyperparameters detail compara-
tive capability. Together, the multiple comparative graph-
ics (Figs. 6 and 7) and evaluation indices within Table 1 
enable standardized scoring of predictive capacity. Lower 
errors and higher cluster density confirm model utility and 
generalizability. We present comprehensive results below 
to empower selection of the optimal approach based on 

application-specific accuracy thresholds while accounting 
for real-world uncertainty through independent testing.

The scatterplots presented in Fig. 6 depict a thorough 
comparison between the real borehole substrate eleva-
tions and the predicted elevations generated by a variety 
of machine learning (ML) and deep learning (DL) models 
during the validation step. Specifically, subplots (Fig. 6a.1) 
to (Fig. 6f.1) showcase the performance of linear regres-
sion (LR), decision trees (tree), support vector machines 
(SVM), Gaussian process regression (GPR), artificial neu-
ral networks (ANN), and ensemble methods (ensemble), 
respectively. Each subfigure plots the borehole record num-
ber along the x-axis and the corresponding substrate eleva-
tion response along the y-axis. The vertical distance between 
the true and predicted elevation for each borehole quantifies 
the prediction error. Moreover, the residual error distribu-
tions are visualized in subplots (Fig. 6a.2) to (Fig. 6f.2) to 
further assess disparities between predictions and measure-
ments. Observing residual patterns aids in discerning areas 
for improvement to refine model parameters and enhance 

Table 1   Comparison of model performance metrics (MSE, MAE, and R-squared) for validation and test phases across various machine learning 
and deep learning architectures (GPR, ANN, SVM, tree, ensemble, and linear regression), with details of preset architectures

Model Numbr Model Type RMSE 
(Valida-
tion)

R-squared 
(Valida-
tion)

MAE (Validation) MAE (Test) RMSE (Test) R 
Squared 
(Test)

Preset

4.15 Ensemble 76.72 0.78 58.98 50.73 68.57 0.86 Bagged Trees
4.14 Ensemble 79.81 0.76 62.21 46.72 63.81 0.88 Boosted Trees
4.16 GPR 64.37 0.84 49.77 43.59 61.15 0.89 Squared Exponential GPR
8.00 GPR 64.37 0.84 49.77 43.59 61.15 0.89 Custom Gaussian Process 

Regression
4.19 GPR 64.37 0.84 49.77 43.59 61.15 0.89 Rational Quadratic GPR
4.17 GPR 64.40 0.84 49.74 43.56 61.17 0.89 Matern 5/2 GPR
4.18 GPR 69.04 0.82 53.53 46.22 62.21 0.88 Exponential GPR
4.10 LR 63.01 0.85 48.85 45.47 66.45 0.88 Linear
4.30 LR 63.14 0.85 48.71 46.17 65.62 0.88 Robust Linear
4.20 LR 67.77 0.83 52.31 45.50 63.03 0.88 Interactions Linear
4.23 ANN 73.19 0.80 55.79 47.07 60.80 0.89 Bilayered Neural Network
4.20 ANN 82.29 0.75 55.18 39.09 54.14 0.91 Narrow Neural Network
4.24 ANN 94.81 0.66 62.39 58.08 72.10 0.84 Trilayered Neural Network
4.21 ANN 94.84 0.66 60.65 45.44 57.50 0.90 Medium Neural Network
4.22 ANN 235.08  − 1.07 135.66 91.44 120.07 0.57 Wide Neural Network
4.40 LR 65.09 0.84 50.69 44.04 62.07 0.88 Stepwise Linear
4.80 SVM 64.12 0.85 49.11 45.34 65.48 0.87 Linear SVM
4.13 SVM 69.91 0.82 54.13 53.68 67.48 0.86 Coarse Gaussian SVM
4.90 SVM 74.10 0.79 56.64 48.66 63.62 0.88 Quadratic SVM
4.12 SVM 76.66 0.78 58.78 47.44 62.49 0.88 Medium Gaussian SVM
4.11 SVM 118.69 0.47 86.65 78.12 96.61 0.72 Fine Gaussian SVM
4.10 SVM 120.79 0.45 69.41 40.65 56.13 0.91 Cubic SVM
4.50 Tree 84.75 0.73 65.82 67.99 85.42 0.78 Fine Tree
4.60 Tree 87.32 0.71 66.52 61.07 84.60 0.79 Medium Tree
4.70 Tree 125.19 0.41 101.00 96.78 116.59 0.59 Coarse Tree
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accuracy. Both scatterplots and residual plots enable com-
prehensive evaluation of precision and efficiency across 
machine learning and deep learning model configurations 
(Zhang et al. 2018). A reduced scatterplot distance signifies 
enhanced precision, while residuals dispersed approximately 
symmetrically around zero, and evenly distributed about 
zero, signify a well-fitted model.

Figure 7 is dedicated to assessing correlation strength 
through coefficient analysis and 1:1 ideal fit plotting. By 
comparing these visualizations, we can ascertain whether 
complex patterns truly underlie subsurface responses or if 
simpler assumptions suffice in explaining variance without 
succumbing to overfitting noise. These figures meticulously 
scrutinize the correlation between observed and predicted 
subsurface values, spanning both validation (depicted in sub-
plots Fig. 7a.1 to Fig. 7f.1) and testing phases (illustrated in 
subplots Fig. 7a.2 to Fig. 7f.2). The graphical representa-
tions offer insights into the alignment of actual and predicted 
values, essential for evaluating the models' capability to cap-
ture nuances in subsurface elevation (Verma et al. 2024). By 
discerning these correlation patterns and trends, research-
ers can refine model architectures and parameter configura-
tions to enhance predictive accuracy and reliability (Chou 

et al. 2011). Notably, a closer alignment of markers with the 
45-degree correlation line indicates heightened precision, 
while discrepancies in metrics or patterns between valida-
tion and new data testing phases indicate potential instability 
risks.

Analyzing Table 1 results, the linear regression (LR) 
methods demonstrate simplicity, while more sophisticated 
tree ensembles and support vector machines (SVM) attempt 
to extract subtle intimations within intricate response pat-
terns. Gaussian process regression (GPR) occupies the mid-
dle ground by smoothing assumptions and enabling slight 
nonlinear deviations. Delving into specifics, the customized 
rational quadratic Gaussian process regression (Wang et al. 
2021) achieves a validation RMSE of 64.37 m alongside a 
MAE of 49.77 m and R-squared of 0.84 (Table 1, Model 8, 
and model 4.19). Critically, residual errors on unseen test 
data remain highly consistent at 61.15 m RMSE, 43.59 m 
MAE, and 0.89 R-squared (Figs. 6d and 7d). This demon-
strates remarkable generalization capacity unmatched by 
other approaches. In contrast, the interactions linear regres-
sion (LR) fits training variation well per the 63.01 m valida-
tion RMSE but fails to translate to reality with markedly 
higher 66.45 m test error (Table 1, Model 4.1). Capturing 

Fig. 6   Comparison of Aquifer Subsurface Elevation Prediction Mod-
els. Subfigures (a.1 to f.1) depict scatterplot maps showing actual 
vs. predicted values for each ML model, while subfigures (a.2 to 
f.2) illustrate residual analysis maps for validation data of each ML 

model. The models are denoted as follows: a: LR (linear regression), 
b: tree (decision tree), c: SVM (support vector machine), d: GPR 
(Gaussian process regression), e: ANN (artificial neural network), 
and f: ensemble
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complex geology transcends simplistic assumptions. Moving 
to ensemble approaches, the boosted trees model delivers 
validation accuracy near 80 m RMSE, bested by all mod-
els except the fine tree model. However, larger deviations 
emerge when applied to real-world scenarios, with testing 
errors ballooning over 20 m higher. The pairing of Subfig-
ures 6a and 7a spotlights this model deficiency via dispersed 
data clusters and residuals spiking over + 120 m (Table 1, 
Model 4.14). Overly flexible deep neural networks display 
this overturning phenomenon more egregiously, fitting noise 
in validation then diverging wildly on test data (Figs. 6e and 
7e).

Amidst the model options, Gaussian process regression 
(GPR) stands apart as optimally balancing accuracy and con-
sistency (Zhao et al. 2022). The smooth kernel functions 
estimate nonlinear trends while retaining generalizability. 
The quantification and visualization synergy between low 
residual test MAE near 43 m (Fig. 6e.2) and high 0.89 test-
ing R-squared proves GPR’s mettle for reliable, accurate 
subsurface insights.

The analysis of the MRMR, FTest, and RReliefF feature 
ranking algorithms (Table 2) revealed that elevation-based 
features, such as digital elevation model (DEM) data and 

piezometric levels from the year 2011, consistently ranked 
highest across models, followed by permeability. This 
observation aligns with the strong physical relationship 
between elevation and subsurface properties. Additionally, 
permeability estimated from pumping tests emerged as a 
key parameter, containing valuable information about sub-
surface geology. Our analysis provides valuable insights 
into the significant factors and relationships crucial for 
accurate aquifer substrate mapping.

Fig. 7   Correlation between actual and predicted subsurface values 
during the validation phase (a.1 to f.1) and test step (a.2 to f.2). The 
models represented are: a: LR (linear regression), b: tree (decision 

tree), c: SVM (support vector machine), d: GPR (Gaussian process 
regression), e: ANN (artificial neural network), and f: ensemble

Table 2   Feature ranking results using MRMR, F TEST, and RReliefF 
algorithms applied to the input model, with features represented in 
rows and ranking algorithms in columns

Feature MRMR FTest RReliefF

Digital elevation model 
(DEM-30 m)

0.7503 111.0432 0.0163

Piezometric-2011 0.5039 105.2091 0.0057
Permeability 0.3884 7.4329  − 0.0107
Piezometric-1971 0.3718 106.262 0.0063
Y_coordinate 0.2827 40.3881  − 0.0005
X_coordinate 0.2631 9.5827 0.0002
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ML and DL Multivariate Substrate Model 
Visualization

The investigation into the AL Haouz aquifer system through 
machine learning (ML) and deep learning (DL) models, vali-
dated by visualization techniques, provides a comprehen-
sive understanding of its complex subsurface architecture. 
Figures 8, 9, 10, and 11 offer crucial insights into the aqui-
fer geometry. Figure 8 presents anticipated substrate char-
acteristics via contour plots, peaks, and depression zones 
obtained from various ML and DL models. These visualiza-
tions provide valuable information about the spatial distri-
bution of substrate surfaces and the presentation quality of 
the physical properties of aquifer substrates using different 
ML and DL models. Figure 9 delineates the positions of 
four cross sections within the aquifer region, showcasing 
topography, piezometric level data from 2011, and aqui-
fer substrate predictions generated by the GPR ML model. 
The projections of tested boreholes along identical cross-
section lines facilitate a clear understanding of the relation-
ship between topography, piezometric levels, and substrate 
forecasts. Vertical substrate-piezometric-DEM profiles 

superposed on tested borehole logs further elucidate pre-
diction uncertainty for the GPR model. It is noteworthy that 
the GPR models accurately capture the substrate elevation 
for all test boreholes, with a few instances of overestimation 
observed, such as at boreholes 3844/53, 3744/53 (Fig. 9a), 
and 1723/53 (Fig. 9d). This overprediction can be attributed 
to the overlap of confined and unconfined subsurface lay-
ers in the Mejjate part and the western limits of the central 
AL Haouz-Mejjate aquifer, as affirming this characteristic 
geometry by Sinan (2000).

Insights into the complex aquifer geometry in the AL 
Haouz-Mejjate region are provided in Fig. 10, with aquifer 
thickness (Fig. 10a) and six DEM-substrate profiles depicted 
(Fig. 10b-g). Profiles 1–4 consist of vertical transects run-
ning from north to south, while Profiles 5–6 depict hori-
zontal sections extending from east to west. These profiles 
reveal morphological disparities among the western, mid-
dle, and eastern regions of the AL Haouz aquifer area. Dis-
tinct boundaries, as described in earlier literature (Bernet 
and Prost 1975), are evident, such as between the western 
and central Houz parts near the Nfiss stream, and between 
the central and eastern Houz at the R’dat river (Fig. 10a, 

Fig. 8   Comparison of modeled substrate elevation using machine learning and deep learning models. Subfigures a–f represent GPR, ANN, 
SVM, LR, ensemble, and tree models, depicted as contours, peaks, and depressions
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g). The set of south–north profiles in Fig. 10 (profiles 3–6) 
catalog aquifer thickness variations and confirm basin-scale 
synclinal subsurface architecture that structurally constrains 
modern flow patterns. The central and western zones exhibit 
significant sediment thickness, likely occurring through 
shifting fluvial channel migration and overbank flood-
ing under paleoclimatic fluctuations. Meanwhile, minimal 
strata deposits and erosion in the northwestern manifest as 

shale bedrock outcrops, as verified in our analysis by abrupt 
substrate elevation gains west the Nfiss River (Profile 1 in 
Fig. 10b). Regarding variations in substrate depth, noticeable 
discrepancies exist across Profiles 1 to 4 (Fig. 10a to d). The 
presence of shallow thickness below 10 m in the northwest-
ern and northeastern region indicates either significant ero-
sion or limited deposition. Conversely, the western–southern 
region and the middle-southern region consist of more than 

Fig. 9   Subfigures a to d depict cross sections illustrating DEM, pie-
zometric, and simulated substrate data overlaid on reserved, tested 
real borehole data. UHF-1 and UHF-2 denote permeable and semi-

permeable materials, respectively, while UHF-3 represents imperme-
able materials associated with the substrate bedrock level. The color 
scale indicates the piezometric level
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100 to 200 m of aquifer, suggesting a significant amount of 
accessible potential reservoirs (Sinan and Razack 2009; El 
Goumi et al. 2010; Chouikri et al. 2016).

The delineated cross sections offer parallel representa-
tions of different geospatial characteristics, demonstrat-
ing the accuracy of the ML model in capturing subsurface 
elevation. Vertical substrate-piezometric-DEM profiles 
further elucidate prediction uncertainty, encompassing a 
wide range of actual borehole substrate levels. The aquifer 
thickness map and multiple vertical transects spotlight the 
clear differentiation of western, central, and eastern areas 
via rapid changes in substrate elevations. This confirms 
earlier findings based on geological descriptors and water 

table contours. The substrate surfaces within the western, 
central, and eastern zones display largely parallel, uniform 
south–north progression as expected for layered sedimentary 
units, affirming interpretations by Bernet and Prost (1975). 
However, substantial depressions and valleys characterize 
the full region subsurface, likely associated with buried 
ancient drainage networks and structural events.

Lastly, Fig. 11 offers a 3D perspective of the modeled 
aquifer system, highlighting how surface topography influ-
ences subsurface materials and groundwater levels. This 
validation of the consistency of the GPR model across the 
study area reinforces the utility of machine learning tech-
niques in understanding complex hydrogeological systems.

Fig. 10   a Aquifer thickness map. Subfigures b to g depict cross-section profiles from north to south and west to east, illustrating DEM and simu-
lated substrate in multiple aquifer locations
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Comparative analysis: machine learning/deep 
learning vs. kriging vs. gravimetric maps

While subsurface architecture has been conceptualized 
through our previous ML and DL investigations (Fig. 6–10), 
accurately validating these map models requires several 
comparisons with previous studies and several conventional 
interpolation methods.

In this section, we conducted a comparative analysis 
between the GPR, ANN, basic conventional kriging (CK), 
and gravimetry substrate model maps. The sub-Fig. 12a–d 
shows that the GPR and ANN maps substantially outperform 
simplistic kriging interpolation, instead aligning with gravity 
signals developed by El Goumi et al. (2010). The machine 
learning substrate models presented in Fig. 12a (GPR), and 
12b (ANN) quantifiably and visually surpass simplistic krig-
ing interpolation (Fig. 12c). While the convolutional kriging 
map displays smoothed uniformity, the GPR and neural net-
work approaches exhibit nuanced relief aligned with gravi-
tational signals indicating structural anomalies (El Goumi 
et al. 2010; Chouikri et al. 2016) (Fig. 12d). Quantitatively, 
ML and DL models achieved significantly lower root mean 
squared errors of 61 m and 54 m, respectively, versus krig-
ing’s 100 m value (R2 = 0.63), highlighting predictive gains. 

The capacity to ingest diverse datasets and represent nonlin-
ear relationships allows efficient identification of concealed 
depositional and structural patterns.

Figures 6, 7, 8, 9, and 10 present in previous subsec-
tion spotlight through vertical and lateral sections how data 
fusion exposes sharp structural compartment boundaries 
between western, central, and eastern areas, corroborating 
concealed faults and asymmetric synclinal folding noted in 
earlier conceptual models (Rochdane et al. 2015; Mandour 
Abdennabi et al. 2016; Rochdane et al. 2018; Rochdane et al. 
2022). The angular subsurface transitions and rapid eleva-
tion changes over short distances manifest these Cenozoic 
tectonic events that dictate modern aquifer productivity dif-
ferences. Capturing this geological legacy, a feat unachiev-
able through individual soundings, underscores machine 
learning’s revelations of complexity from scattered meas-
urements. While interpolation relies on surface continuity 
assumptions (Li and Heap 2008), multivariate data-driven 
methodologies efficiently extract signals from indirect prox-
ies to reconstruct intricacy beyond direct sampling. Revela-
tion of the interconnected conduit-barrier architecture via 
computational harmonization of decades of field evidence 
provides the key inputs needed for next groundwater model 
of AL Haouz-Mejjate.

Fig. 11   3D visualization illustrating aquifer thickness between substrate elevation from the GPR model and topographic DEM, from multiple 
angle views
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Deep learning bivariate model

Factors most predictive

Our comparative assessment provides insights into the pri-
mary factors governing accurate mapping of aquifer sub-
strate characteristics. Foremost among these is elevation 
topographic data (DEM), as digital elevation models and 
piezometric levels consistently ranked as the most predictive 
individual features (Smith 2021). This finding aligns with 
the known dependence of subsurface geometries and aquifer 
properties on topographic relief and water table heights. By 
helping to explain variance in substrate observations, eleva-
tion provides critical predictive power. However, our find-
ings also highlight the importance of collective nonlinear 
effects between geospatial variables in producing accurate 
maps (Luo et al. 2023). Models that could flexibly represent 
complex variable interactions and non-stationary relation-
ships significantly outperformed traditional linear tech-
niques. This suggests that while elevation offers the strongest 
individual predictive signal, precise aquifer mapping relies 
heavily on modeling intricate multivariate dependencies. 
Developing methods to effectively capture these nonlinear 
relationships while avoiding overfitting remains an open 
research need.

While the multivariate machine learning model incorpo-
rates diverse datasets for holistic substrate mapping, analyz-
ing the specific dependency between surface and subsurface 

elevations could reveal additional hydrogeological insights. 
Numerous previous studies have shown strong correlations 
between topographic attributes and aquifer geometry, given 
their common response to geomorphological factors (Kumar 
and P 2022; Ruuska et al. 2023). The feature importance 
ranking results also highlighted digital elevation model 
(DEM) data as highly influential (see Table 2). To directly 
model the relationship between digital elevation model 
(DEM) input data and observed aquifer substrate eleva-
tions, a customized feedforward neural network architecture 
was developed in MATLAB. This comparatively shallow 
nonlinear topology leveraged 168 paired data instances to 
flexibly represent complex mapping functions between the 
variables (Koçak and Şiray 2021). The paired elevation data 
instances enabled supervised learning to produce substrate 
depths from surface inputs (Goodfellow et al. 2016).

Bivariate training model process

The network was trained using the Levenberg–Marquardt 
backpropagation algorithm, an efficient technique com-
bining gradient descent and Gauss–Newton methods 
(Ampazis and Perantonis 2000; Yu and Wilamowski 
2018). Mean squared error loss was optimized during 300 
epochs of training. To improve generalization, the data was 
divided with a 70/15/15 ratio into training, validation, and 
testing sets using random sampling. The network inputs 
and outputs were min–max normalized to aid convergence. 

Fig. 12   Comparative visualization of substrate elevation estimation 
techniques: a Gaussian process regression contour and relief maps; 
b neural network contour and relief maps; c simple kriging; and d 

gravimetry map for the aquifer area. Structural anomalies referenced 
from El Goumi et al. (2010), (Rochdane et al. 2015), and (Chouikri 
et al. 2016)
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Various performance metrics were monitored throughout 
training, including the mean squared error (MSE) loss 
on the training, validation, and test partitions. The final 
model achieved good predictive accuracy with a test set 
R-squared of 0.85 against measured borehole data. The 
MATLAB environment enabled rapid prototyping and 
visualization for this bivariate neural network modeling 
case study.

The original multivariate model used data from many dif-
ferent sources to make a complete map of the substrate. This 
bivariate analysis, on the other hand, was meant to focus on 
the relationship between surface topography and subsurface 
levels. Therefore, the input layer was reduced to accept only 
the 30 m DEM raster. The output layer consisted solely of 
the measured borehole substrate elevations. This simplifica-
tion to just two variable domains allowed directly quantify-
ing and modeling their linkage, which was revealed to be 
critical in feature importance analyses. The hidden layer size 
was adjusted to maintain the complexity required to rep-
resent nonlinear interactions without overparameterization 
(Allen-Zhu et al. 2019). No additional geospatial data was 
provided in order to examine the DEM-substrate association 
in isolation. However, their physical correlation may inte-
grate influences from other factors like lithology and drain-
age. Still, concentrating on the elevation pairing through a 
tailored neural network provided insights into this important 
connection complementary to the high-dimensional model. 
The architecture adaptations balance representation power 
and interpretability for unpacking this specific subsystem 
interaction critical to aquifer geometry. Specialized variable 

analyses will form a growing toolkit for granular process 
understanding.

Bivariate model convergence

Tables 3 and 4, respectively, the model training progress 
and the model training result, the neural network model 
was trained for 10 epochs. The mean squared error (MSE) 
loss declined from an initial 1.76E + 05 to 3.53E + 03 for 
training by the stopped epoch 10 (Table 3). The best valida-
tion MSE of 8883 occurred at epoch 4 in the performance 
plot (Fig. 13e). Thereafter overfitting caused validation/test 
divergence. Within 4 epochs, the model achieved the tar-
geted validation checks and gradient. By epoch 4, R-squared 
reached 0.935 training, 0.8467 validation, and 0.8586 test. 
The training MSE decreased each epoch, reaching the mini-
mum at completion. After the optimal epoch 4, overfitting 
increased validation/test MSE versus training. Analyz-
ing convergence and performance enabled identifying the 
ideal trained model at epoch 4 before overfitting effects 
prevailed. The performance plot and metrics demonstrate 
efficient learning of the DEM-substrate relationship given 
the constraints.

Regression plots visualized the relationship between pre-
dicted substrate outputs and actual targets for the training, 
validation, test, and overall data (Fig. 13a-d). Strong linear 
correlations are evident, with minimal deviation from the 
1:1 line across all partitions. The training data exhibits the 
tightest fit given its direct use optimizing model parameters. 
The validation and test sets overlay closely, with similar 
scatter around the ideal fit line. This limited overfitting is 
quantified by their comparable R-squared values of 0.85 
for test and 0.84 for validation. The consistent alignment 
highlights the network’s capability to accurately represent 
the elevation–substrate relationship on both optimized train-
ing and new out-of-sample data. The overall data regression 
achieved a very high R-squared of 0.91, further demonstrat-
ing the excellent model fit. Together, the regressions validate 
the neural network successfully learned meaningful subsur-
face patterns linking surface elevations and aquifer substrate 
depths.

The error histogram (Fig. 13f) visualizes uncertainties 
by plotting substrate elevation prediction errors for train-
ing, validation, and test data. Tight distributions centered on 
zero confirm minimal overall bias. The similar spread and 
symmetry indicate consistent normal error variance across 
partitions (Bishara and Hittner 2015). No fat tails exist. A 
large spike at ~ 2 m shows many highly accurate predictions. 
The validation/test overlay evidences negligible overfitting. 
While some larger errors occur in the tails, they are minimal, 
with only ~ 3–5 beyond ± 100 m. The tight clustering around 
zero substantiates proficient generalization beyond the train-
ing data (Brunton et al. 2021). Together with regression and 

Table 3   Model training progress: initial, stopped, and target values 
for parameters of the bivariate ANN model (epoch, elapsed time, per-
formance, gradient, Mu, validation checks)

Initial value Stopped value Target value

Epoch 0 10 1000
Elapsed Time – 00:00:00 –
Performance 1.76E + 05 3.53E + 03 0
Gradient 5.00E + 05 272 1.00E-07
Mu 0.001 10 1.00E + 10
Validation Checks 0 6 6

Table 4   Model training results for the bivariate ANN model, display-
ing MSE, RMSE, and R-square values for training, validation, and 
test datasets

Observation MSE RMSE R2

Training 118 3.60E + 03 59.99 0.935
Validation 25 8.88E + 03 94.25 0.8467
Test 25 5.19E + 03 72 0.8586
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MSE metrics, the error analysis lends confidence in the net-
work reliably modeling the intricate DEM-substrate relation-
ships. Minor deviations are expected, but the predominance 
of small errors underscores precise modeling of the complex 
geospatial correlations governing aquifer geometries.

Nonlinear bivariate model function fit

By connecting DEM inputs to substrate depth outputs, the 
neural network model learned a complex, nonlinear fit sur-
face (Fig. 14). With a test RMSE of 72 m and an R2 of 0.85, 
the excellent accuracy is highlighted by the close clustering 
of training, validation, and test points around the fit curve 
(Fig. 14a). In regions with higher elevations than 700 m, 
substrate depth rises by more than 200 m for every 100 m of 
DEM rise, indicating a nearly 1:1 correspondence. The slope 
is shallower between 500 and 700 m, at about 100 m sub-
strate for every 100 m of surface rise (Almalki and Angelides 
2022). The surface flattens to less than 50 m per 100 m 
below 500 m as the aquifer is limited. Larger deviations up 
to 100 m are shown in the associated error plot (Fig. 14b) 
in elevation regions DEM range of 500–600m, which con-
tains the majority of measurement, suggesting modulating 
factors like lithology and structural events. But errors are 
tightly clustered near zero across the bulk DEM range of 

200–400 m, and 700–800 m. This measures the model's 
interpolation ability under suitable constraints. Combining 
this with the 72 m test RMSE shows effective generalization.

Even though the fit surface is complicated, the high R2 
and many small errors show that the neural network is able 
to find important subsurface patterns from sparse elevation 
data. The model strikes a balance between regularization to 
prevent overfitting given the constraints and flexibility to 
represent real-world complexities. In addition to providing 
quantitative metrics to increase confidence, the visualization 
provides qualitative validation of learning.

Comparison of multivariate and bivariate model 
performances

The original multivariate Gaussian process regression 
(GPR) model incorporating additional data sources attained 
superior performance with a lower test RMSE of 61.15 m 
and 54.1 m for the multivariate neural network (Table 1), 
whereas the bivariate neural network model achieved 
impressive accuracy for mapping substrate from DEM 
with a test RMSE of 72 m (Table 4). This shows the benefit 
of integrating all available data rather than concentrating 
on individual variable pairs. To improve prediction accu-
racy, the GPR model makes use of supplementary data 

Fig. 13   Subfigures a to b display regression plots comparing the 
ANN bivariate predicted model with the actual substrate for the train-
ing, validation, test, and all sets. Subfigure e illustrates the model 

convergence plots, indicating the training and validation losses across 
epochs. Subfigure f presents histograms depicting the distribution of 
prediction errors for the training, validation, and test set
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from piezometric, geologic, and permeability measure-
ments. However, the DEM-substrate relationship is more 
thoroughly explained by the specialized bivariate network. 
Additionally, the streamlined model could offer baseline 
elevation-based estimates in regions lacking ancillary data. 
Accuracy and interpretability are traded off in the multivari-
ate and bivariate approaches. Combining them could lead to 
increased performance and transparency (Ismail et al. 2020), 
for example, by initializing the holistic GPR model with 
DEM-substrate fits. This emphasizes the value of multifac-
eted modeling for thorough hydrogeological understanding.

This focused analysis of directly modeling subsurface 
elevations from surface topography alone is in line with the 
original goal of figuring out why the relationship between 
elevation and substrate is so important. Even though the 
multivariate model uses data from many different sources 
to map an aquifer as a whole, focusing on the DEM-substrate 
pairing made it possible to look at this connection in more 
detail. The customized neural network architecture, non-
linear fit plot, and specialized regression metrics all gave 
more information about this variable linkage than the high-
dimensional model could (Pasupa and Sunhem 2016). The 
results impart new details on how surface elevations govern 
subsurface geometries across the watershed. And isolating 

this bivariate behavior facilitates transferring insights to 
regions where only minimal elevation data is available. By 
trading off some holistic accuracy for an in-depth look at a 
key physical correlation, this study exemplifies the value of 
targeted modeling approaches for unlocking specific hydro-
geological knowledge. The findings will help refine future 
multivariate models and illuminate linkage intricacies essen-
tial for robust aquifer characterization.

Advantages of using deep learning and machine 
learning approach

This study demonstrates the benefits of specialized deep 
learning architectures for targeted predictive insights into 
the complex AL Haouz aquifer system. Bivariate neural net-
works isolate and examine the relationship between surface 
elevation and subsurface depth, while multivariate Gaussian 
processes integrate diverse regional datasets more broadly. 
The nonlinear subsurface fit plot revealed local intricacies 
by concentrating solely on the elevation–substrate connec-
tion. Simplified statistics facilitated detailed analysis, trading 
some generalizability for enhanced interpretability (Kratzert 
et al. 2018). However, Gaussian processes achieved superior 

Fig. 14   a Feature fit plots illustrating the learned mapping from DEM to substrate elevations. b Associated error plot depicting the function fit 
result from the ANN bivariate model
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overall mapping performance due to greater flexibility in 
representing uncertainty (Vasudevan et al. 2009).

As shown through feature importance ranking, focused 
deep networks can extract key associations between topog-
raphy and burial depth that drive aquifer structure in the AL 
Haouz basin. Though partial, these targeted insights support 
and enhance multivariate models by separating influential 
signals from indirect proxies. This two-pronged approach 
of specialized and generalized learning combines accuracy 
with transparency for subsurface characterization (Naghibi 
and Pourghasemi 2015).

Continued advances in multi-objective deep learning 
(Vahdat-Aboueshagh et al. 2022) and physics-aware neural 
networks (Raissi et al. 2019; Roy et al. 2023) should expand 
possibilities for focused statistical hydrogeology in the AL 
Haouz region. Machine learning creates new observational 
windows by concentrating computational power on elucidat-
ing interactions between variables controlling this complex 
aquifer system (Shen 2018). As demonstrated here, strategic 
deep learning reveals intricacies obscured within immense 
regional datasets, supporting more holistic modeling of the 
vital AL Haouz water resource.

Limitations, model uncertainties, and perspectives

The study presents promising capabilities for aquifer sub-
tratum characterization through the application of machine 
learning and deep learning models. However, it also reveals 
several key perspectives and limitations that warrant fur-
ther consideration. Primarily, the reliance on limited data 
availability, especially regarding borehole substrate meas-
urements, introduces uncertainties into the models' training 
and evaluation processes. Sparse spatial coverage of these 
measurements, particularly in the Houaz Eastern region, 
hampers the models' accuracy and generalization. The lack 
of borehole data and its uneven distribution, particularly in 
the eastern regions, limit the use of multivariate machine 
learning in AL Haouz. Since bivariate deep learning only 
looks at elevation–substrates, it does not take into account 
how valuable more hydrogeological data could be.

Addressing this limitation would require more extensive 
reconnaissance drilling of aquifer properties to improve 
model performance (Hubbard et al. 1999; Adombi et al. 
2021; Rödiger et al. 2023). Additionally, the interference 
between single-layer and multilayer systems, particularly 
evident in the western Hoauz, poses challenges to accurately 
predicting subtratum heights in this region. Furthermore, 
the study highlights the potential benefits of incorporating 
supplementary data sources beyond core geospatial datasets 
like topography, piezometry, and permeability. Integration 
of hydraulic head time series, recharge estimates, geophysi-
cal surveys, and geological maps could provide added con-
straints for data-driven modeling and enhance prediction 

capabilities (Yeh et al. 2008; Abowarda et al. 2021). How-
ever, the scarcity of such ancillary measurements precluded 
their inclusion in the current study, suggesting avenues for 
future research and data collection efforts.

Moreover, while the explainability of machine learning 
models, such as the Gaussian process regression (GPR) 
model, provides valuable insights, the black-box nature 
of neural network models hinders understanding of their 
internal workings and diagnosing mispredictions. Adopting 
optimized interpretable algorithms could aid in enhancing 
trustworthiness and diagnostic capabilities of the models 
(Razavi 2021; Tabasi et al. 2022; Alshehri and Rahman 
2023) Additionally, advancements in subsurface measure-
ment technologies and diverse data integration hold prom-
ise for unlocking the full potential of machine learning for 
robust aquifer geometry characterization.

Despite the significant potential demonstrated by machine 
learning and deep learning models in revealing subsurface 
structures, there are still limitations to their overall applica-
bility, particularly in the context of the AL Haouz region. 
To address these challenges, the integration of enhanced 
field observations, infusion of domain knowledge, and 
fusion of specialized deep learning techniques with holistic 
machine learning approaches are recommended to enhance 
the robustness of illuminating complex aquifer architectures. 
This multifaceted approach could lead to more accurate and 
reliable predictions, facilitating better management and con-
servation of groundwater resources in semiarid regions like 
AL Haouz.

Conclusions

This study demonstrates the novel capabilities of data-driven 
modeling for high-resolution aquifer base mapping, integrat-
ing sparse borehole data with regional datasets to produce 
accurate three-dimensional substrates. The Gaussian process 
model achieved remarkable generalization capability, evi-
dent in consistent validation and testing errors around 60 m 
RMSE alongside exceptional 0.84 R2 performance. Visuali-
zations and multiple vertical transects confirmed clear dif-
ferentiation of western, central, and eastern zones via abrupt 
substrate changes, affirming geological interpretations on 
structural constraints governing modern flow.

Aquifer thickness maps revealed significant deposits in 
western and central areas, likely from paleoclimatic fluvial 
shifts. Meanwhile, minimal strata and erosion manifested 
as shale outcrops in the north. The complex morphologies 
of valleys and depressions correspond to intricate patterns 
along subsurface profiles, highlighting how paleodrain-
age systems and structural events still influence modern 
reservoirs.
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Comparisons showed multivariate models incorporat-
ing diverse data sources achieved superior accuracy over 
specialized bivariate networks. However, concentrating 
on key elevation–substrate relationships offered valuable 
interpretability and transferability. Isolating this linkage 
provided new details on how surface topography governs 
subsurface geometries, imparting insights applicable even 
in data-scarce regions.

By generating high-fidelity 3D aquifer architecture maps 
without direct drilling, the demonstrated methodology can 
guide groundwater modeling and sustainability amidst 
development pressures. Expanding model fusion and phys-
ics-infused training further offer untapped potential. Over-
all, by unraveling the hidden intricacies of vital systems, 
this study establishes machine learning’s indispensable role 
in illuminating aquifers to meet rising water challenges not 
only in the AL Haouz-Mejjate region but also in similar 
areas worldwide.
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