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Abstract
River water pollution is one of the most important environmental issues. Advection–dispersion equations are used to study 
the temporal changes in pollutant concentration along the study river reach. The use of advection–dispersion equations in 
investigating how the concentration of pollution is transformed requires a lot of data including river cross-section charac-
teristics, dispersion coefficient, and upstream and downstream boundary conditions, etc. therefore, the corresponding cal-
culations are very costly, difficult and time-consuming. In the present study, instead of using the mentioned equations, the 
linear Muskingum method (used in previous studies for flood routing) and the particle swarm optimization (PSO) algorithm 
was used for the first time to calculate the temporal changes in pollution concentration at different stream locations. The 
presented solution in the presented study is very accurate and only requires the temporal changes in concentration in the 
upstream and downstream of the study river reach and for this reason, it is very low-cost and easy to use and requires less 
time to collect data and perform calculations. In the proposed method, the parameters (X, K, ∆t) of the linear Muskingum 
method were optimized using the PSO algorithm, and by dividing the temporal changes in the input concentration into three 
areas of the beginning (the input concentration is greater than the output concentration), the peak (the maximum input and 
output concentrations) and the end (the output concentration is greater than the input concentration) areas, the accuracy of 
the calculations increased. The mentioned method was studied for different lengths (first case of x = 50 m (up) and x = 75 m 
(down), second case of x = 50 m (up) and x = 100 m (down), third case of x = 75 m (up) and x = 100 m (down)) and the mean 
relative error (MRE) of the total, peak area and the relative error of the maximum concentration using constant parameters 
for the first case were calculated as 7.08, 1.02, and 2.34 percent, for the second case as 7.41, 11.06 and 6.69 percent, and for 
the third case as 6.75, 3.59 and 5.42 percent, respectively. If three parameters of (X, K, ∆t) are used, the mentioned values 
improved by 31.3, 63.7 and 65.5 percent, respectively compared to the case of using constant parameters.

Keywords Advection–dispersion equations · River water pollution · Linear Muskingum method · Particle swarm 
optimization (PSO) algorithm

Introduction

Water is an indispensable resource for human beings (Ye 
et al. 2018). Water scarcity, in turn, can pose significant 
challenges to the security of energy supplies (Ali and 
Kumar 2017). Surface water is among Earth’s most impor-
tant resources (Downing et al. 2021). Several factors such 

as the loss of trees on a large scale, physical and biogeo-
chemical processes change the hydrologic flow paths and 
can cause surface water pollution (Mikkelson et al. 2013). 
In addition, agricultural adaptation to climate changes 
affects water quality (Fezzi et al. 2017). Pesticide con-
centrations in surface water occasionally exceed regulated 
values due to seasonal events or intermittent discharges (Li 
et al. 2022). Su et al. (2022) studied physical and chemi-
cal characteristics of water including Permanganate index, 
chemical oxygen demand, biochemical oxygen demand 
(BOD5) using the ingle factor pollution index method and 
the Nemerow pollution index method and analyzed the 
temporal and spatial changes of water quality. Yang et al. 
(2020); Núñez-Delgado et al. (2019); Yan et al. (2021); 
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Weng (2022) investigated water pollution and ways to 
control it using different methods. Shamshirband et al. 
(2019) used the ensemble models with the Bates-Granger 
approach and least square method to develop the multi-
wavelet artificial neural network (ANN) models with the 
aim of studying the proposed models for estimating the 
chlorophyll concentration and water salinity. They also 
performed uncertainty analysis to study the efficiency 
of the proposed neural network models. AlDahoul et al. 
(2022) used machine learning classifiers such as Extreme 
gradient boosting, random forest, support vector machine, 
multi-layer perceptron and k-nearest neighbors to classify 
suspended sediment load (SSL) in rivers. Tao et al. (2021) 
presented a plan for models and applications based on arti-
ficial intelligence (AI) to model sediment transport in riv-
ers. They also analyzed several related hydrological and 
environmental aspects. Alizadeh et al. (2018) used water 
quality parameters such as salinity, temperature and tur-
bidity and flow data to study the river-flow-induced effects 
on the performance of machine learning models such as 
artificial neural network, extreme learning machine and 
support vector regression models to predict water quality. 
Kouadri et al. (2021) used different artificial intelligence 
algorithms to calculate the water quality index (WQI) 
based on the two scenarios of reducing the time consump-
tion and water quality variation in the critical cases.

The transfer and dispersion of pollution in rivers has 
a significant impact on the environment and agriculture. 
The classical advection–dispersion equation (ADE) is a 
parabolic partial differential equation and is obtained from 
the combination of continuity equation and Fick’s first law 
(Eq. 1) (Taylor 1954):

where A is the flow area, C is the solute concentration, Q is 
the volumetric flow rate, D is the dispersion coefficient, λ is 
the first order decay coefficient, S is the source term, t is the 
time and x is the distance.

Using the above equation has many complications, 
including the followings:

1. The dispersion coefficient (D) depends on the fluid char-
acteristics, the hydraulic characteristics of the flow and 
the river geometry or the shape of the cross-section and 
the river path.

2. Upstream and downstream boundary conditions are 
required, for which there are many methods to study 
and calculate and is time-consuming and expensive in 
many cases.

3. Considering the water surface changes and the non-
prismatic characteristics of the river section, the 
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meshing process in the study river reach will be non-
uniform and complex.

4. Data survey of the river cross-sections (A) at appropri-
ate intervals and measuring the flow discharge (Q) is 
time-consuming and expensive, and with the passage of 
time the river and the corresponding parameters would 
change that need to be checked and calculated again.

According to the above explanations, the investigation 
of river water pollution using the above equation requires 
a lot of data and is very expensive, time-consuming and 
complicated. In the present study, a solution is presented 
with appropriate accuracy to calculate temporal changes in 
concentration using the linear Muskingum method. The pro-
posed solution does not require flow data, characteristics of 
river cross-sections and dispersion coefficient, etc., and only 
need the temporal changes in concentration in the upstream 
and downstream of the study river reach.

The Muskingum method was first proposed by McCarthy 
(1938) based on the studies conducted on the Muskingum 
River, Ohio. In the linear Muskingum method, continuity 
and storage equations were used as Eqs. (2) and (3):

Continuity:

Storage:

where S is storage, I is inflow, O is outflow, t is time, ΔS = Δt 
is the rate of storage change during the time interval Δt, K 
is storage time constant, and X is dimensionless weighting 
factor that represents the inflow and outflow effects on stor-
age, and ranges between 0 and 0.5 for reservoir storage and 
0.3 for stream channels (Mohan 1997). This weighting factor 
describes the relative importance of inflow and outflow to 
storage (O’Sullivan et al. 2012).

Yadav and Mathur (2018) The extended VPMM method 
and SVM and WASVM has been used for flood routing and 
the results suggest that to predict flood wave movement, 
the extended VPMM is accurate compared to SVM and 
WASVM models. Chu and Chang (2009) optimized the 
parameters in the nonlinear Muskingum method using the 
PSO algorithm. The comparison between this method and 
previous ones, including Harmony Search (HS), Linear 
Regression (LR) and Genetic Algorithm (GA) indicates 
the higher accuracy and speed of the PSO algorithm in 
estimating the parameters of the nonlinear Muskingum. 
Moghaddam et al. (2016) proposed a new four-parameter 
model for the nonlinear Muskingum method that was used 
for four flood routings. Norouzi and Bazargan (2020) used 
the PSO algorithm and two basic floods to optimize the 
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≈

ΔS
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(3)S = K[XI + (1 − X)O]
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parameters of the linear Muskingum method. Okkan and 
Kirdemir (2020) They used a combination of PSO with the 
Levenberg–Marquardt (LM) algorithms to optimize the 
parameters of the Muskingum method. Wang et al. (2023) 
used a combination of the mathematical techniques and 
evolutionary algorithms to develop the Muskingum method. 
Owing to low computational time, algorithms are very 
capable of optimizing the parameters of the Muskingum 
method. Increasing the number of parameters of the 
Muskingum method will lead to the increased calculation 
time of algorithm, while the accuracy of results does not 
change significantly (Farahani et al. 2018).

The use of Advection–dispersion equation (Eq. 1) requires 
a lot of data such as characteristics of river cross-sections 
and discharge, upstream and downstream boundary condi-
tions, and the dispersion coefficient in the river. Collecting 
the mentioned data is very costly and time-consuming, and 
considering the non-prismatic section of the rivers, the mod-
eling is also complicated. For this reason, in the present study, 
using the linear Muskingum method and the PSO algorithm, 
a suitable solution for calculating the temporal changes in the 
concentration of pollution at different locations was presented. 
In other words, in previous studies, the temporal changes in 
discharge (Chow 1959, Vatankhah 2014, Hirpurkar and Ghare 
2014, Moghaddam et al. 2016, Bazargan and Norouzi 2018, 
Norouzi and Bazargan 2020, Norouzi and Bazargan 2021, 
Bozorg-Haddad et al. 2021) and temporal changes of depth 
(Norouzi and Bazargan 2022) have been calculated using the 
linear Muskingum method. However, in the present study, con-
sidering the changes in the pollution mass and the continuity 
equation, an equation was presented to calculate the temporal 
changes in concentration with appropriate accuracy.

It is worth noting that, in the proposed solution, only the 
temporal changes in concentration in the upstream and down-
stream of the study river reach are required.

Materials and methods

Data used

The accuracy of numerical methods can be studied using 
analytical solutions (Barati Moghaddam et al. 2017). The dis-
solved material with a concentration of 5 mg/m3 was injected 
into the flow for a period of 100 min and temporal changes in 
concentration at distances of 50, 75 and 100 m are shown in 
Fig. 1 (Barati Moghaddam et al. 2017).

The relation between water mass accumulation 
in the Muskingum method and pollution mass 
accumulation in rivers

Equation (3) shows the mass of water stored between the 
upstream and downstream sections in the linear Muskingum 
method. In the present study, equations were presented for the 
first time to calculate temporal changes in the concentration 
of pollution with regard to the pollution mass (M). The mass 
of pollution in rivers is calculated using Eq. (4).

According to the continuity equation (Eqs. 2 and 4), the 
temporal changes of the pollution mass in the steady flow 
condition are expressed as Eq. (5).

(4)M = C.Q.Δt

Fig. 1  Temporal changes in concentration at different distances
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The linear Muskingum equation in flood routing and 
water mass accumulation study is as Eq. (3), which can be 
expressed as Eq. (6) in the case of pollution mass accumula-
tion in rivers.

where M is the pollution mass (Kg), CI and CO are the 
changes in the pollution concentration in the upstream (inlet) 
and downstream (outlet) sections (Kg/m3), Q is the steady 
flow discharge  (m3/s) and ∆t is the time changes.

Using finite difference method, Eq. (5) is expressed as 
Eq. (7).

According to the continuity, Eq.  (6) is expressed as 
Eq. (8).

where  CJ and  CJ+1 are the concentration at t and t + 1, 
respectively.

By equating Eqs. (7), (8), and (9) is obtained.

where  H1,  H2 and  H3 are given as:

The above equations which are presented for the first 
time in the present study indicate that the equations of 
the linear Muskingum method for calculating temporal 
changes in concentration are exactly equal to the equations 
for calculating temporal changes in flow discharge. In other 
words, if the temporal changes in pollution concentration 
at the inlet and outlet of the study river reach are known, 
the parameters of the linear Muskingum method (X, K, 
∆t) and consequently, the temporal changes in pollution 
concentration in the downstream of the study river reach 
can be calculated. Using the obtained parameters in the 
Muskingum method, the temporal changes in concentration 
of any other pollution in the same river reach can be 
calculated.
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Particle swarm optimization algorithm (PSO) has been 
used in water quality management (Afshar et al. 2011; Lu et al. 
2002; Chau 2005), the linear Muskingum method (Chu and 
Chang 2009; Norouzi and Bazargan 2021, 2022) and porous 
media hydraulics (Norouzi et al. 2022a, 2022b). In other 
words, the efficiency and speed of the mentioned algorithm 
have been proven in previous studies, and for this reason, in 
the present study, the PSO algorithm with objective function 
Eq. (13) and presented flowchart in Fig. 2 was used to optimize 
the parameters of the Muskingum method.

(13)MRE =
1

n

n∑

i=1

||
|
|

Ci − ci

Ci

||
|
|
∗ 100

Fig. 2  Flowchart of the particle swarm optimization (PSO) algorithm
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where Ci and ci are the calculated and observed concentra-
tions in the downstream, respectively and n is the number 
of data.

Results and discussion

In general, the present study includes the followings:

1. Using the linear Muskingum method equations in flood 
routing and determining the changes in the mass of pol-
lution instead of the volume of stored water, an equation 
was presented to calculate the temporal changes in the 
concentration of pollution, which is highly accurate and 
efficient. It is worth noting that the proposed solution is 
much simpler than advection–dispersion equations and 
requires much less data.

2. The temporal changes in the input and output concentra-
tions, the mentioned equations and the PSO algorithm 
were used to optimize constant values of the param-
eters (X, K, ∆t). In other words, all the data related to 
the changes in the concentrations in the upstream and 
downstream have been used to calculate the mentioned 
parameters.

3. The input concentration in the beginning area is greater 
than the output concentration, the input and output 
concentrations are maximum in the peak area, and the 
output concentration is greater than the input concen-
tration in the end area. In addition, the parameters (X, 
K, ∆t) are also a function of the input and output con-
centrations. For this reason, to increase the accuracy 
and efficiency of the solution presented in the present 
study, three different values for the mentioned param-
eters were optimized using the PSO algorithm. In other 
words, the temporal changes in the input concentration 
were divided into three parts for which different values 
were optimized and used in calculations.

In order to study the pollution in the rivers using the advec-
tion–dispersion equations (Eq. 1) a lot of data are required 
including river cross-section characteristics in the study river 
reach at appropriate intervals, dispersion coefficient (D), and 
upstream and downstream boundary conditions, etc., which 
is very expensive and time-consuming. However, the linear 
Muskingum method only requires temporal changes of concen-
tration in the upstream and downstream, and for this reason, it is 

very low cost. In previous studies, the Muskingum method was 
used for flood routing. However, in the present study, instead of 
using the stored volume of water in the Muskingum equation 
(Eq. 3), the pollution mass (M) in the steady flow condition is 
used, according to Eq. (6). In other words, the temporal changes 
of concentration in spatial distances (Upstream and Down-
stream) are similar to the temporal changes of discharge dur-
ing floods, and for this reason, the linear Muskingum method 
is also suitably efficient and accurate in pollution routing. The 
calculated temporal changes in concentration considering an 
upstream point of X = 50m and downstream points of X = 75m 
and X = 100m, an upstream point of X = 75m and a downstream 
point of X = 100m are shown in Fig. (3). In addition, the param-
eters (X, K, ∆t) in different conditions and the total MRE, MRE 
of the peak area and the relative error of the peak concentration 
(DPO) are listed in Table 1.

If instead of using a constant value for the parameters (X, 
K, ∆t), three different values are used for the starting, peak 
and ending areas, the accuracy of the Muskingum method 
in calculating the output hydrograph is increased (Bazargan 
and Norouzi 2018). For this reason, in the present study, three 
different values were used for the mentioned parameters, and 
the accuracy of the calculations in estimating the temporal 
changes in concentration (Fig. 3) increased. The values of the 
mentioned parameters in different cases and the values of total 
MRE, MRE of the peak area and DPO are listed in Table 2.

Estimating the peak pollution concentration is very 
important. According to Table 2, the use of three different 
values for the parameters of the linear Muskingum method 
(X, K, ∆t) is more accurate in comparison to using a con-
stant value for the mentioned parameters. In other words, the 
DPO value in the case of using three different parameters 
and a constant parameter for X = 50 m (Up) and X = 75m 
(Down) was equal to 1.28 and 2.34%, respectively, for 
X = 50 m (Up)) and X = 100 m (Down) was equal to 1.46 
and 6.69%, respectively, and for X = 75 m (Up) and X = 100 
m (Down) was equal to 1.87 and 5.42%, respectively.

In other words, the results presented in Fig. 3 and Tables 1 
and 2 indicate that according to the changes in the concen-
tration of pollution in the three areas of the beginning, peak 
and end, and since the parameters of the linear Muskingum 
method (X, K, ∆t) are also a function of the pollution con-
centration, the use of three different values for the mentioned 
parameters increased the accuracy of the proposed solution 
in estimating the output concentration.

Table 1  Parameters of the linear 
Muskingum method considering 
constant parameters and errors

X (Up) (m) X (Down) (m) X (-) K (s) Δt(s) MRE (Total)% MRE (Peak 
section)%

DPO %

50 75 0.0001 4.80 1.23 7.08 1.02 2.34
50 100 0.137 10.72 1.38 7.41 11.06 6.69
75 100 0.016 3.20 0.88 6.75 3.59 5.42
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Fig. 3  Temporal changes of concentration in different conditions
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Fig. 3  (continued)



 Applied Water Science (2024) 14:6868 Page 8 of 9

Conclusions

Investigating pollution and how it is transferred and its pre-
diction is very important in water engineering and environ-
mental engineering. To study the temporal changes in the 
concentration using the advection–dispersion equations, a 
lot of data are required including the characteristics of river 
cross-sections at appropriate intervals, dispersion coefficient 
(D), upstream and downstream boundary conditions, etc., and 
is therefore very expensive and time-consuming. In the pre-
sent study, the pollution mass (M) was used for the first time 
instead of the stored water volume (S) in the linear Musk-
ingum method and highly accurate and efficient equations 
were presented to calculate temporal changes in the concen-
tration. The proposed equation only requires the temporal 
changes of concentration in the upstream and downstream 
of the study river reach (far less than that of the advection-
transfer equations) and consequently, requires less cost in the 
process of analysis and calculations. It is worth noting that in 
previous studies, the linear Muskingum method was used to 
calculate the temporal changes in discharge and flow depth.

The results of the present study include the followings:

1. Total Mean relative (MRE), peak area and DPO errors 
in the case of using different parameters (X, K, ∆t) for 
x = 50 m (Up) and x = 75 m (Down) were equal to 6.52, 
0.59 and 1.28 percent, respectively, for x = 50 m (Up) 
and x = 100 m (Down) were equal to 2.34, 0.95 and 1.46 
percent, respectively, and for x = 75 m (Up) and x = 100 
m (Down) were equal to 5.57, 1.53 and 1.87 percent, 
respectively.

2. If the Muskingum method and constant parameters are 
used in calculation of the temporal changes in concentra-
tion, the mentioned values are equal to 7.08, 1.02 and 
2.34%, 7.41, 11.06 and 6.69% and 6.75, 3.59 and 5.42%, 
respectively.

In other words, the proposed solution has a good accu-
racy in calculating temporal changes in concentration, and 

if instead of using constant parameters, three different val-
ues are used for the mentioned parameters, the accuracy of 
the calculations is increased.

The proposed method can be used by researchers in 
the fields related to water pollution and environment. In 
future studies, other hydrological routing methods and 
other algorithms can be used to study the temporal changes 
in the concentration.
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