
Vol.:(0123456789)

Applied Water Science (2024) 14:46 
https://doi.org/10.1007/s13201-024-02103-8

ORIGINAL ARTICLE

Hybrid river stage forecasting based on machine learning 
with empirical mode decomposition

Salim Heddam1   · Dinesh Kumar Vishwakarma2   · Salwan Ali Abed3   · Pankaj Sharma4 · Nadhir Al‑Ansari5   · 
Abed Alataway6 · Ahmed Z. Dewidar6,7 · Mohamed A. Mattar6,7,8 

Received: 9 September 2023 / Accepted: 10 January 2024 / Published online: 15 February 2024 
© The Author(s) 2024

Abstract
The river stage is certainly an important indicator of how the water level fluctuates overtime. Continuous control of the water 
stage can help build an early warning indicator of floods along rivers and streams. Hence, forecasting river stages up to several 
days in advance is very important and constitutes a challenging task. Over the past few decades, the use of machine learning 
paradigm to investigate complex hydrological systems has gained significant importance, and forecasting river stage is one 
of the promising areas of investigations. Traditional in situ measurements, which are sometime restricted by the existing of 
several handicaps especially in terms of regular access to any points alongside the streams and rivers, can be overpassed by 
the use of modeling approaches. For more accurate forecasting of river stages, we suggest a new modeling framework based 
on machine learning. A hybrid forecasting approach was developed by combining machine learning techniques, namely 
random forest regression (RFR), bootstrap aggregating (Bagging), adaptive boosting (AdaBoost), and artificial neural net-
work (ANN), with empirical mode decomposition (EMD) to provide a robust forecasting model. The singles models were 
first applied using only the river stage data without preprocessing, and in the following step, the data were decomposed into 
several intrinsic mode functions (IMF), which were then used as new input variables. According to the obtained results, the 
proposed models showed improved results compared to the standard RFR without EMD for which, the error performances 
metrics were drastically reduced, and the correlation index was increased remarkably and great changes in models’ perfor-
mances have taken place. The RFR_EMD, Bagging_EMD, and AdaBoost_EMD were less accurate than the ANN_EMD 
model, which had higher R≈0.974, NSE≈0.949, RMSE≈0.330 and MAE≈0.175 values. While the RFR_EMD and the 
Bagging_EMD were relatively equal and exhibited the same accuracies higher than the AdaBoost_EMD, the superiority of 
the ANN_EMD was obvious. The proposed model shows the potential for combining signal decomposition with machine 
learning, which can serve as a basis for new insights into river stage forecasting.
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Introduction

Flood risk management has gained significant attention in 
recent years, and significant effort has been made to improve 
flood forecasting as well as the estimation methods over time 
and space (Hsu et al. 2010). The variation of river stage 
(RS) over time is mainly governed by several factors, i.e., 
land cover, precipitation, topography, and vegetation, and 
the interaction between surface water and groundwater has 
been well documented and highlighted (Marques et al. 2020; 
Shukla et al. 2021; Vishwakarma et al. 2023c). Accurate 
estimation of RS based on river models, i.e., channel and 

hydrological models, helps significantly in achieving and 
providing estimation of river flood, which can make rapid 
and quickly estimating records of wetlands zones (Liu et al. 
2021), and knowledge of RS is also an important factor in 
planning and management of watersheds, the development 
of water resources, and the watershed/aquifer management 
plans (Strupczewski et al. 2001; Khatibi et al. 2012; Shukla 
et al. 2021; Vishwakarma et al. 2023c). While the estima-
tion of RS can easily be obtained using hydrodynamic mod-
els, their high number of parameters makes them harder to 
use, and the need for data-driven models presents itself as a 
possible alternative (Panda et al. 2010). Chau (2006) com-
pared two machine learning models, multilayer perceptron 
neural network (MLPNN) and the MLPNN optimized using 
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particle swarm optimization training algorithm (MLPNN-
PSO), for forecasting RS at one, two and seven days in 
advance using data collected at the Shing Mun River, Hong 
Kong. The obtained results showed that the MLPNN-PSO 
was more accurate than the MLPNN at the three forecast-
ing horizons, with correlation coefficients (R) between 
0.92 and 0.99. Chau (2007) applied a split-step particle 
swarm optimization algorithm (SPS) for forecasting RS at 
one and two days ahead using data collected at the Shing 
Mun River, Hong Kong. The SPS was more accurate than 
the MLPNN, with R values of 0.986 and 0.979 for one and 
two days ahead, respectively. In order to predict daily RS in 
the Yangtze River, China, Wu et al. (2008) compared four 
machines learning models namely: support vector regres-
sion (SVR), nearest-neighbor regression (NNR), MLPNN, 
and linear regression (LR). The best accuracy was obtained 
using the SVR model (RMSE=0.211m), followed by the 
MLPNN optimized using genetic algorithm (RMSE= 
0.237m), the LR and the NNR with (RMSE=0.237m) and 
(RMSE=0.242m), respectively.

Adaptive neuro-fuzzy inference system (ANFIS), 
MLPNN, wavelet packet decomposition combined ANFIS 
(ANFIS-WPD), and wavelet packet decomposition com-
bined MLPNN (MLPNN-WPD) were the models that Seo 
and Kim (2016) compared between singles and hybrid 
data-driven models for forecasting RS. In order to predict 
the RS at the time (t), the authors used the RS measured 
at several previous lag times, i.e., from (t − 1) to (t − 6). 
The hybrid models, ANFIS-WPD (R2=0.999) and MLPNN-
WPD (R2=0.988), performed better than the single mod-
els, ANFIS (R2=0.963) and MLPNN (R2=0.963). Using 
grey neural network (GNN), Alvisi and Franchini (2012) 
proposed a new modeling approach for more accurate RS 
prediction. The GNN was developed using data collected 
at the Reno River, Italy, and the GNN was compared to the 
Bayesian neural network (BNN), showing its superiority. In 
different investigation, Fu et al. (2019) utilized the multiple 
additive regression trees (MART) for hourly RS forecasting 
at the Bazhang River basin in southern Taiwan. Three mod-
els were compared namely, the MART, real-time MART, 
and naïve MART models. The real-time MART was more 
accurate for all three-time steps, t + 1, t + 2, and t + 3, show-
ing low RMSE and High R values.

For forecasting RS at the Schuylkill River at Berne, 
Philadelphia, USA, Kisi (2011) developed a hybrid model 
(LR-DWT) using the discrete wavelet transform (DWT) and 
linear regression (LR). The authors demonstrated that the 
LR-DWT model outperformed the MLPNN model by high-
lighting the significant role that the DWT played in enhanc-
ing the linear model’s accuracy. Seo et al. (2016a) compared 
between hybrid wavelet packet decomposition combined 

SVR (SVR-WPD), ANFIS-WPD, MLPNN-WPD, SVR, 
MLPNN and ANFIS models in forecasting RS in the Gam 
Stream watershed, South Korea. Obtained results revealed 
the superiority of the SVR-WPD which gives R2, RMSE, and 
MAE of approximately 0.996, 0.0256, and 0.0127, respec-
tively. Seo et al. (2016b) used a variety of methods to opti-
mize the SVR parameters, including genetic algorithm (GA), 
grid search (GS), artificial bee colony (ABC), and particle 
swarm optimization (PSO). The SVR-PSO and SVR-ABC 
were more accurate than the others models showing higher 
R2 values and lower RMSE and MAE values, respectively, 
according to the results.

In order to maximize the usefulness of river stage studies, 
it is necessary to know the already published works in this 
subject. It is clear from the literature discussed above that 
machine learning was designed to meet the necessary quality 
of forecasting. Multiple algorithms have been developed and 
successfully applied. However, the major findings of the pre-
vious studies can be summarized as follow: (i) in the major 
cases studies discussed above, the proposed machine learn-
ing involves the combination of various features for improv-
ing the forecasting accuracy, and the comparison was done 
between standalone machine learning belonging to various 
categories, i.e., ANN, SVR, Neuroplus, among other, (ii) one 
major finding is that, the hybridization of machine learning 
with metaheuristics algorithms was found to be necessary 
for improving the performances of the developed models, 
making the comparability of the obtained results difficult, 
(iii) few investigations have highlighted the importance and 
the contribution of the preprocessing signal decomposi-
tion in improving the estimation of river stage, as signal 
decomposition help in capturing the high nonlinearity in the 
dataset. Furthermore, an important finding is that the ensem-
ble methods are rarely reported for river stage forecasting 
weather with or without signal decomposition.

Therefore, for extensive research on water resources and 
flood management, accurate estimation of RS is essential 
for large-scale studies. However, estimation of RS is dif-
ficult due to the large number of variables influencing its 
fluctuation. The above-discussed literature review makes it 
clear that RS prediction using machine learning was widely 
discussed in the literature and that many models had been 
proposed and successfully used. Although hybrid models 
based on signal decomposition have been suggested for RS 
forecasting, empirical mode decomposition (EMD) perfor-
mance studies have not been conducted to date. This paper 
therefore presents a new modeling strategy for better pre-
diction of RS using machine learning models [i.e., random 
forest regression (RFR), bootstrap aggregating (Bagging), 
adaptive boosting (AdaBoost), and artificial neural network 
(ANN)] with the EMD.
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Materials and methods

Study site

River stage data were collected from two USGS stations 
(Fig. 1): (i) the USGS 14210000 Clackamas River at Est-
acada, Clackamas County, Oregon (Latitude 45°18′00″, 
Longitude 122°21′10″ NAD27), and (ii) the USGS 
14211499 Kelley Creek at Se 159th drive at Portland, 
Multnomah County, Oregon (Latitude 45°28′37″, Lon-
gitude 122°29′50″ NAD27). Data were collected for the 
USGS 14210000 station between January 1, 2002, and 
December 31, 2019, and were recorded on a daily time 
scale (6574 data). These data were divided into training 
(70%) and validation (30%), with 4598 data being used for 
training and 1970 for validation. In a similar manner, data 
were collected for the USGS 14211499 station between 
April 9, 2000, and December 31, 2020 on a daily time 

scale (7572 data), which were spilt into training (70%) 
and validation (30%). As a result, 5297 data were used 
for training and 2269 for validation. For daily river stage 
(RS), we present the mean, maximum, minimum, standard 
deviation, and coefficient of variation values in Table 1 as 
follows: Xmean, Xmax, Xmin, Sx, and Cv. For better forecasting 
of daily rivers stage (RS) using only the RS measured at 
previous lag time. Consequently, the autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF) 
were used to choose the best relevant time lags (Fig. 2). 
River stage measurements at times (t − 1), (t − 2), (t − 3), 
(t − 4), (t − 5), and (t − 6) were chosen and used as input 
variables according to Fig. 2, while the output variable 
started at the time (t). The original chosen input variables, 
i.e., river stage measured at various previous lags, were 
divided into several intrinsic mode functions (IMF) in 
the second stage of the investigation using the empirical 
mode decomposition (EMD) approach (Fig. 3). The IMF 
obtained using the EMD were used as input variables. We 

Fig. 1   Map showing the location the two USGS stations
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used an eight-level decomposition in the current study, and 
the RFR, Bagging, AdaBoost and ANN all had forty-eight 
input variables. Figure 4 shows a flowchart of the sug-
gested modeling approaches used in the current.

Artificial neural network (ANN)

The structure of the artificial neural network (ANN) used in 
the present study can be seen in Fig. 5. The network consists 
of three distinct parts that fit together. First, the input layer 
that collects the independent variables (i.e., the predictors) 
for which one neuron was attributed to each input variable. 
Second, the hidden layers with several processing neurons, 

and third, the last layer, or the output layer, with only one 
neuron (Shukla et al. 2021; Elbeltagi et al. 2022). This kind 
of ANN model is called a multilayer perceptron (MLP). The 
mathematical operations for each layer can be described 
briefly as follow: Each neuron in the hidden layer computes 
a weighted sum of the independent variables available in 
the input layer (Saroughi et al. 2023); hence, for each one, 
we have:

(1)�j =

m∑
j=1

(Wij × xi) + �j

Table 1   Statistical parameters 
of the river stage for the two 
stations

Xmean mean, Xmax maximum, Xmin, minimum, Sx standard deviation, Cv coefficient of variation

Variables Subset Unit Xmax Xmean Xmin Sx Cv

USGS 14210000
RS Training Feet 21.030 12.168 10.350 1.411 0.116

Validation Feet 20.580 12.180 10.350 1.424 0.117
All data Feet 21.030 12.172 10.350 1.425 0.117

USGS 14211499
RS Training Feet 7.480 3.098 2.280 0.503 0.163

Validation Feet 5.720 3.077 2.300 0.504 0.164
All data Feet 7.480 3.092 2.280 0.504 0.163

Fig. 2   Sample autocorrelation (ACF) and partial autocorrelation function (PACF) for daily river stage (RS)
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δj is the weighted sum of the hidden neuron j, θj is the bias 
of the hidden neuron j, Wij is the weight linking the input 
neuron i to the hidden neuron j, and xi corresponds to one 
of the inputs variables. The computed δj should be moved 
through an activation function; in general, the transfer non-
linear activation function is the sigmoid:

The obtained yj value for each hidden neuron is then 
transferred to the output neuron as follow:

The term γ corresponds to the activation value of the 
single output neuron; Wjk is the weight linking the hidden 
neuron j to the output neuron k (k = 1), and � is the bias of 
the output layer. Similar to the hidden neurons, the output 
neuron uses an activation function for providing the final 
response, which is the linear activation function. Hornik 
et al. (1989); Hornik (1991); Simon (1999) all provide 
additional information on the ANN paradigm.

(2)yj =
1

1 + e−�

(3)�k =

m∑
j=1

(Wjk × yj) + �1

Random forest regression (RFR)

Random forest regression (RFR), developed by Breiman 
(2001), is an improved version of the original classifica-
tion and regression tree (CART), and it is a combination 
of a set of decision trees (DT) models (Wang et al. 2021; 
Achite et al. 2023; Kumar et al. 2023), for which each 
one, i.e., each DT uses only a part of the overall dataset 
(Sun et al. 2021; Kumar et al. 2023); hence, it takes on 
board only their subset (Fig. 6). It is important to note that 
the dependent variables were included in the subset with 
respect to their equal probability, and the weak tree should 
be repartee on a different sample subset, while the final 
response of the RFR model is obtained by majority voting 
between all single trees (Bhadoria et al. 2021). The overall 
algorithm of the RFR can be summarized as follows: (i) 
the overall training dataset is randomly divided into K sub-
sets with replacement using the bootstrap sample method 
(Xue et al. 2021); (ii) one CART is used for each subset; 
(iii) approximately two-thirds of the dataset is used for 
growing each tree and the remaining one-third for calcu-
lating the out-of-bag (OBB) error, thus each tree grows as 

Fig. 3   Intrinsic mode functions (IMF) components of daily river stage (RS) dataset decomposed by the empirical mode decomposition (EMD) 
algorithm
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far as it becomes unable to continue the pruning process; 
(iv) whether used for classification or regression tasks, the 
final calculated output was provided by aggregation (i.e., 
regression) or majority voting (i.e., classification) (Xue 
et al. 2021; Lin et al. 2021).

Bootstrap aggregating (Bagging)

The Bagging algorithm, which is an abbreviation of Boot-
strap aggregating, was developed by Breiman (1996). 

Bagging is an ensemble algorithm based on the idea of 
majority voting, and it was proposed for improving the per-
formances of weak classifiers through a bootstrap aggregat-
ing mechanism (Pham et al. 2017). The Bagging algorithm 
uses a series of parallel subsets, also called instances, from 
the original dataset (Fig. 7a), and it allocates a single train-
ing algorithm for each subset (Dou et al. 2020). While it 
was found that the size of each subset is nearly equal to the 
size of the original overall dataset, the random sampling 
with replacement helps in avoiding falling into the trap of 

Fig. 4   Flowchart of the EMD & RFR &ANN & AdaBoost & Bagg models
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“duplicates and/or omissions” compared to the original 
dataset (Hsiao et al. 2020; Gu et al. 2022). Using the same 
learning algorithm, the final response of the Bagging model 
should be obtained by aggregating the responses of all sub-
sets with majority voting (Tien Bui et al. 2016). During the 
last few years, several applications of the Bagging algorithm 
can be found in the literature, for example, flood probability 
mapping (Yariyan et al. 2020), prediction of PM2.5 concen-
tration (Qiao et al. 2020), and landslide susceptibility map-
ping (Hu et al. 2021).

Adaptive boosting algorithm (Adaboost)

Similar to the Bagging algorithm, the Boosting algorithm 
belongs to the category of ensemble algorithms. However, 
the most significant difference between the two is that 
(Fig. 7b), Boosting generates the weak models sequentially, 
which are dependent on previous prediction results, while 
Bagging can generate them in parallel (Zounemat-Kermani 
et al. 2021). Boosting was first proposed by Bartlett et al. 
(1998), and later, it was described more in-depth in Schapire 
(2003). From a computational point of view, the Boosting 
used the idea of weighting the weak learner’s tacking into 
account for its contribution to the final prediction during 
the training phase and also indirectly and proportionally to 
its calculated error (González et al. 2020). Thus, the boost-
ing algorithm uses a variety of weight for each learner and 
process by updating and optimizing the poorest calculated 

errors, hence, the training dataset should be reweighted to 
gives the poorest learner a new larger weight for the updated 
training dataset (Kotsiantis 2011).

One of the most well-known ensemble algorithms is the 
Adaboost (Freund and Schapire 1997), which consists of two 
distinct components: the forward "step-by-step" algorithm 
and the "addition" model (Tang et al. 2020). The Adaboost 
aggregates the outputs of a series of weak learners as follows 
(i.e., the ‘’addition’’ step):

Z(x) denotes a linear combination of the weak learners; 
ht(x) corresponds to one of weak learners; and Wt denotes 
the weight attributed to the corresponding weak learner. As 
it is an iterative algorithm, the weight values are updated 
iteratively at each step, and during the forward ‘’step-by-
step’’, the weak learner obtained during the previous itera-
tion is used for training the learner for the next step and 
expressed as follows (Kawakita et  al. 2005; Tang et al. 
2020):

The Z(x)m−1 represents the linear combination of all weak 
learners in the previous iteration (Kawakita et al. 2005; Tang 
et al. 2020). The Adaboost was successfully applied for 
solving several tasks, among them the prediction of fecal 

(4)Z(x) =

M∑
i=1

Wtht(x)

(5)Z(x)m = Z(x)m−1 +Wtht(x)

Fig. 5   Architecture of the ANN 
model
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coliforms in rivers (EL Bilali et al. 2021), crude oil price 
prediction (Busari and Lim 2021), and spatial modeling of 
snow avalanche susceptibility Spatial modeling of snow ava-
lanche susceptibility using hybrid and ensemble machine 
learning techniques (Akay 2021).

Assessment of the models' performance

Correlation coefficient (R), Nash-Sutcliffe efficiency (NSE), 
root mean square error (RMSE), and mean absolute error 
(MAE) were used to assess how well the machines learning 

models for daily River stage (RS) forecasting performed. 
These expressions are provided (Samantaray et al. 2022; 
Markuna et al. 2023; Saroughi et al. 2023; Vishwakarma 
et al.2023a, 2023b, 2023c):

(6)R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
N

N
∑

i=1

(

RSobs,i − RSobs
)(

RSest,i − RSest
)

√

1
N

n
∑

i=1

(

RSobs,i − RSobs
)2

√

1
N

n
∑

i=1

(

RSest,i − RSest
)2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (−1 < R ⩽ +1)

Fig. 6   Structure of the Random 
Forest regression (RFR) model. 
The OOB stands for Out-Of-
Bag
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RSobs and RSest are the mean measured and mean fore-
casted daily river stage (RS), respectively, RSobs and RSest 
specifies the observed and forecasted daily river stage (RS: 
feet) for ith observations, and N shows the number of data 
points.

(7)NSE = 1 −

⎡
⎢⎢⎢⎢⎣

N∑
i=1

[RSobs − RSest]
2

N∑
i=1

[RSobs,i − RSobs]
2

⎤
⎥⎥⎥⎥⎦
, (−∞ < NSE ⩽ 1)

(8)

RMSE =

√√√√ 1

N

N∑
i=1

[(RSobs,i) − (RSest,i)i]
2
, (0 ⩽ RMSE < +∞)

(9)MAE =
1

N

N∑
i=1

|RSobs,i − RSest,i| , (0 ⩽ MAE < +∞)

Results and discussion

Four machines leaning, namely the ANN, RFR, AdaBoost, 
and Bagging, were applied for river stage forecasting. The 
models were developed without signal preprocessing, i.e., 
without the EMD algorithm, and in a second stage, the EMD 
was used for signal decomposition. Based on the ACF and 
PACF, six input combinations were selected (Table 2), for 
which the river stage (RS) measured at the previous lag 
was used as an input variable. Only the results from the 
validation stage are highlighted and in-depth discussed; the 
obtained results from the two stations are presented and dis-
cussed below.

Results at the USGS 14210000

Results obtained at the USGS 14210000 station are 
reported in Table  3. Scatterplots of forecasted and 

Fig. 7   Bagging and boosting architectures: a the Bagging create multiple datasets through random sampling with replacement, and b the Boost-
ing create multiple datasets through random sampling with replacement over weighted data (adopted from Yang et al. (2019)
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measured daily river stage for the best models are shown 
in Fig. 8. In addition, comparison between forecasted and 
measured daily river stage is depicted in Fig. 9. Table 3 
shows that the ANN was slightly more accurate than the 
RFR, Bagging and AdaBoost models when using stan-
dalone models without EMD. This finding is supported 
by the mean values of the four numerical performances. 
The mean R, NSE, RMSE and MAE values obtained 
using the ANN models were ≈0.938, ≈0.879, ≈0.508 
and ≈0.219, respectively. These values were marginally 
better than those obtained using the RFR, which showed 
improvement rates of approximately ≈0.38%, ≈0.70%, 
≈2.72%, and ≈2.52%. The RFR models and bagging mod-
els performed similarly, with the mean R, NSE, RMSE 
and MAE values being 0.934, 0.872, 0.522, and 0.224, 
respectively. In contrast, the AdaBoost model performed 
the worst, with mean R, NSE, RMSE, and MAE values 
of ≈0.931, ≈0.866, ≈0.533, and ≈0.238, respectively. 
Comparing the models while taking the input combina-
tion into consideration, it is evident that increasing the 
number of input variables, or the number of lag times, 
significantly improves the model’s performance. From 
ANN1 to ANN5, the R, NSE, RMSE, and MAE values 
were improved by 1.20%, 2.20%, 8.48%, and 10.63%, 
respectively, and the best performances were achieved 
using ANN5, which is more accurate than all other mod-
els. Interesting improvement rates between RFR1 and 
RFR4 showed values of ≈1.60% and ≈3.00% for R and 
NSE values, and the RMSE and MAE values were notice-
ably reduced by values of ≈10.85% and ≈15.20%, respec-
tively. In terms of R, NSE, RMSE, and MAE, the Bagg4 
outperforms the Bagg1 by 1.50%, 2.90%, 10.179%, and 
14.45%, respectively. Finally, the improvement of the 
AdaBoost models was less than all other models for which 
the improvement rates of the R, NSE, RMSE, and MAE 
did not exceed the values of ≈0.50%, ≈1.00%, ≈4.008%, 
and ≈8.974%, respectively. In any case, the superiority 
of one model over another was less sensitive, and none 

of the proposed models could perform better by adding 
more input variables.

The empirical mode decomposition (EMD) algo-
rithm was used in the second stage of the investigation 
to decompose signals. Each input variable, or each river 
stage measured at a previous lag time, was then divided 
into several intrinsic mode functions (IMFs) and pro-
vided to the models as new input variables. Table 3 shows 
that all models have improved their performances when 
using the EMD, and it is evident that all models’ mean 
R, NSE, RMSE, and MAE have improved significantly. 
The best forecasting accuracies were achieved using the 
ANN5_EMD model, with improvement rates of approxi-
mately ≈2.78%, ≈5.35%, ≈26.40%, and ≈12.43%. The 
R, NSE, RMSE, and MAE were clearly improved when 
compared to the ANN5 without EMD, with improve-
ments of ≈3.30%, ≈6.50%, ≈33.47%, and ≈16.66%, 
respectively. This clearly illustrates the significant role 
that the EMD played in capturing the high linearity in 
the river stage dataset, particularly due to its capabili-
ties in reducing the errors metrics, i.e., the RMSE and 
MAE values. Beyond the ANN models, the improvement 
in forecasting accuracies of the other models was less sen-
sitive. For example, the mean R, NSE, RMSE, and MAE 
of the RFR were slightly improved by ≈0.71%, ≈0.98%, 
≈3.79%, and ≈1.26%, using the RFR_EMD, respectively. 
In addition, using the Bagg_EMD, negligible improve-
ment was obtained compared to the Bagg without EMD. 
The most significant concluding remark was about the 
AdaBoost_EMD compared to the AdaBoost, for which 
the improvement rates in terms of R and NSE did not 
exceed ≈0.2% and ≈0.33%, and the improvement rates of 
the RMSE and MAE were below the values of ≈1.4% and 
≈1.12%, respectively. Overall, the best forecasting accu-
racy was obtained using the ANN5_EMD, followed by 
the RFR5_EMD equally with the Bagg5_EMD, and the 
AdaBoost5 _EMD was the less accurate model. Finally, in 

Table 2   Input combinations for different models

RFR ANN Bagging AdaBoost Input combination Output

RFR1 ANN1 Bagg1 AdaBoost1 RS (t − 1) RS (t)
RFR2 ANN2 Bagg2 AdaBoost2 RS (t − 2), RS (t − 1) RS (t)
RFR3 ANN3 Bagg3 AdaBoost3 RS (t − 3), RS (t − 2), RS (t − 1) RS (t)
RFR4 ANN4 Bagg4 AdaBoost4 RS (t − 4), RS (t − 3), RS (t − 2), RS (t − 1) RS (t)
RFR5 ANN5 Bagg5 AdaBoost5 RS (t − 5), RS (t − 4), RS (t − 3), RS (t − 2), RS (t − 1) RS (t)
RFR6 ANN6 Bagg6 AdaBoost6 RS (t − 6), RS (t − 5), RS (t − 4), RS (t − 3), RS (t − 2), RS (t − 1) RS (t)
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Table 3   Effectiveness of 
various forecasting models at 
the USGS 14210000 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ANN1 0.944 0.892 0.464 0.213 0.929 0.862 0.542 0.235
ANN1_EMD 0.953 0.908 0.428 0.208 0.933 0.871 0.523 0.241
ANN2 0.948 0.900 0.447 0.194 0.938 0.880 0.506 0.215
ANN2_EMD 0.976 0.952 0.309 0.161 0.974 0.948 0.331 0.184
ANN3 0.950 0.902 0.442 0.193 0.940 0.883 0.498 0.216
ANN3_EMD 0.978 0.957 0.292 0.156 0.969 0.938 0.363 0.190
ANN4 0.951 0.904 0.437 0.192 0.938 0.880 0.505 0.218
ANN4_EMD 0.981 0.961 0.277 0.148 0.973 0.947 0.336 0.177
ANN5 0.951 0.905 0.436 0.192 0.941 0.884 0.496 0.210
ANN5_EMD 0.979 0.959 0.287 0.150 0.974 0.949 0.330 0.175
ANN6 0.950 0.903 0.439 0.192 0.939 0.882 0.502 0.217
ANN6_EMD 0.980 0.961 0.279 0.151 0.969 0.939 0.361 0.181
RFR1 0.954 0.910 0.423 0.201 0.923 0.852 0.562 0.250
RFR1_EMD 0.979 0.955 0.300 0.139 0.931 0.863 0.541 0.237
RFR2 0.969 0.938 0.352 0.151 0.936 0.875 0.515 0.218
RFR2_EMD 0.983 0.963 0.270 0.122 0.937 0.875 0.517 0.226
RFR3 0.970 0.939 0.347 0.149 0.935 0.873 0.519 0.222
RFR3_EMD 0.985 0.967 0.256 0.116 0.942 0.884 0.497 0.219
RFR4 0.975 0.950 0.316 0.131 0.939 0.882 0.501 0.212
RFR4_EMD 0.986 0.969 0.249 0.112 0.944 0.887 0.490 0.217
RFR5 0.975 0.949 0.318 0.132 0.936 0.876 0.513 0.218
RFR5_EMD 0.987 0.970 0.243 0.110 0.946 0.890 0.484 0.214
RFR6 0.974 0.947 0.324 0.135 0.933 0.871 0.524 0.225
RFR6_EMD 0.987 0.971 0.240 0.109 0.945 0.889 0.486 0.215
Bagg1 0.954 0.910 0.423 0.201 0.924 0.852 0.560 0.249
Bagg1_EMD 0.979 0.956 0.297 0.138 0.931 0.863 0.539 0.237
Bagg2 0.968 0.938 0.353 0.151 0.936 0.875 0.515 0.218
Bagg2_EMD 0.983 0.963 0.270 0.123 0.939 0.877 0.512 0.220
Bagg3 0.970 0.940 0.347 0.149 0.934 0.873 0.520 0.222
Bagg3_EMD 0.985 0.967 0.257 0.117 0.943 0.884 0.497 0.217
Bagg4 0.975 0.950 0.317 0.131 0.939 0.881 0.503 0.213
Bagg4_EMD 0.986 0.969 0.249 0.113 0.944 0.887 0.490 0.216
Bagg5 0.974 0.949 0.320 0.133 0.936 0.876 0.515 0.219
Bagg5_EMD 0.987 0.970 0.242 0.110 0.946 0.890 0.484 0.214
Bagg6 0.974 0.947 0.324 0.135 0.933 0.870 0.525 0.225
Bagg6_EMD 0.987 0.971 0.240 0.108 0.945 0.890 0.485 0.215
AdaBoost1 0.950 0.903 0.439 0.210 0.925 0.854 0.557 0.245
AdaBoost1_EMD 0.970 0.940 0.345 0.204 0.923 0.850 0.564 0.289
AdaBoost2 0.955 0.912 0.418 0.198 0.932 0.868 0.531 0.234
AdaBoost2_EMD 0.980 0.960 0.281 0.179 0.939 0.882 0.501 0.220
AdaBoost3 0.956 0.915 0.412 0.195 0.934 0.871 0.524 0.234
AdaBoost3_EMD 0.981 0.963 0.271 0.175 0.931 0.864 0.537 0.229
AdaBoost4 0.957 0.916 0.409 0.194 0.933 0.869 0.527 0.235
AdaBoost4_EMD 0.983 0.966 0.261 0.172 0.935 0.872 0.521 0.226
AdaBoost5 0.958 0.917 0.407 0.195 0.932 0.868 0.529 0.240
AdaBoost5_EMD 0.984 0.968 0.252 0.164 0.940 0.883 0.498 0.219
AdaBoost6 0.958 0.918 0.405 0.194 0.932 0.868 0.529 0.239
AdaBoost6_EMD 0.984 0.968 0.251 0.163 0.932 0.867 0.532 0.218
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Fig. 10, we summarized the best-obtained results in terms 
of Boxplot, Violin plot, Radar plot, and Taylor diagram.

Results at the USGS 14211499

Table 4 presents the findings from the USGS 14211499. 
Scatterplots of forecasted and measured daily river stage 
for the best models are shown in Fig. 11. In addition, 

comparison between forecasted and measured daily 
river stage is depicted in Fig. 12. Table 4 shows that the 
performance of the ANN models was marginally infe-
rior to that of the RFR and Bagg models, with mean R, 
NSE, RMSE, and MAE values of approximately ≈0.932, 
≈0.869, ≈0.182, and ≈0.084, respectively. With mean R, 
NSE, RMSE, and MAE values of approximately ≈0.935, 
≈0.874, ≈0.179, and ≈0.084, respectively, the RFR and 

Fig. 8   Scatterplots of measured against forecasted daily river stage (RS) for the validation stage at the USGS 14210000
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Fig. 9   A comparison of the measured and forecasted daily river stage (RS) for the validation stage at the USGS 14210000
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Fig. 10   Examples of graphs 
showing models performance 
for the best developed algo-
rithms during the validation 
stage at the USGS 14210000: a 
Boxplot, b Violin plot, c Radar 
plot, and d Taylor diagram
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Bagg models performed equally well. The AdaBoost 
models were the less accurate models with mean R, 
NSE, RMSE, and MAE values of approximately ≈0.914, 
≈0.832, ≈0.207, and ≈0.093, respectively. Only the 
AdaBoost models had numerical performances that were 
nearly identical, with barely detectable differences. Add-
ing more input variables from one to six do not always 
result in a decline in the error metrics, i.e., RMSE and 
MAE, or an increase in the R and NSE values. It is evi-
dent that, for the RFR and Bagg models, the sixth input 
combination, for which the previous six lag times of the 
river stage were included, produced the best accuracy 
results (see Table 2). Finally, when using the ANN mod-
els, the ANN4 model had the highest R (≈0.935) and 
NSE (≈0.874) values, the lowest RMSE (≈0.179) and 
MAE (≈0.083) values, and it was clear that the model’s 
performances declined after the fourth input combination. 
Using the EMD for improving forecasting accuracies, the 
ANN4_EMD was the best model, showing high R and 
NSE values of ≈0.935 and ≈0.913 and the lowest RMSE 
(≈0.149) and MAE (≈0.066). The ANN4_EMD improves 
the performances of the RFR6_EMD by≈1.40%, ≈3.00%, 
≈13.372%, and ≈31.25%, respectively, in terms of R, 
NSE, RMSE, and MAE. The Bagg_EMD models were 
relatively equal to the RFR_EMD with negligible differ-
ences, and the AdaBoost_EMD models were the poorest 
models, whatever the input combination. In Fig. 13, we 

summarized the best-obtained results in terms of Boxplot, 
Violin plot, Radar plot, and Taylor diagram.

Conclusion

An efficient, hybrid machine learning algorithm is proposed 
in this study to forecast river stage (RS) with high precision 
and accuracy. In the algorithm, the impact of preprocessing 
signal decomposition using empirical mode decomposition 
(EMD) on RS is investigated. Moreover, as our modeling 
framework is based on linking the RS at time (t) to the RS at 
previous lag time, the ACF and the PACF were considered 
for selecting the relevant input variables, and it was found 
that the RS measured at (t − 1) to (t − 6) were the most sig-
nificant input variables. In the second stage of our study, the 
selected six lag times were decomposed using the empiri-
cal mode decomposition (EMD), and the obtained intrinsic 
mode functions (IMF) were used as new input variables. 
Consequently, the in situ measured RS was estimated by 
the new hybrid models, and a comparison among the single 
models without the EMD was also done. The estimated daily 
RS was validated against in situ data collected at two USGS 

Fig. 10   (continued)



	 Applied Water Science (2024) 14:4646  Page 16 of 23

Table 4   Effectiveness of 
various forecasting models at 
the USGS 14211499 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ANN1 0.944 0.891 0.163 0.083 0.933 0.870 0.182 0.085
ANN1_EMD 0.954 0.910 0.148 0.080 0.938 0.879 0.175 0.084
ANN2 0.946 0.895 0.159 0.082 0.931 0.867 0.184 0.084
ANN2_EMD 0.964 0.930 0.130 0.072 0.948 0.899 0.160 0.079
ANN3 0.948 0.898 0.157 0.082 0.932 0.869 0.183 0.084
ANN3_EMD 0.968 0.935 0.125 0.063 0.947 0.895 0.164 0.071
ANN4 0.949 0.900 0.156 0.081 0.935 0.874 0.179 0.083
ANN4_EMD 0.968 0.936 0.125 0.068 0.955 0.913 0.149 0.066
ANN5 0.949 0.900 0.156 0.081 0.933 0.871 0.181 0.084
ANN5_EMD 0.970 0.942 0.119 0.066 0.955 0.912 0.150 0.077
ANN6 0.948 0.899 0.156 0.082 0.930 0.865 0.185 0.086
ANN6_EMD 0.968 0.936 0.125 0.072 0.952 0.905 0.156 0.080
RFR1 0.946 0.896 0.159 0.083 0.927 0.859 0.190 0.090
RFR1_EMD 0.975 0.949 0.111 0.051 0.917 0.835 0.205 0.120
RFR2 0.962 0.926 0.134 0.068 0.933 0.871 0.181 0.085
RFR2_EMD 0.978 0.956 0.103 0.046 0.935 0.870 0.182 0.104
RFR3 0.966 0.934 0.127 0.064 0.936 0.875 0.178 0.084
RFR3_EMD 0.980 0.960 0.098 0.043 0.940 0.879 0.175 0.099
RFR4 0.971 0.943 0.117 0.057 0.936 0.877 0.177 0.083
RFR4_EMD 0.981 0.962 0.096 0.042 0.940 0.881 0.174 0.096
RFR5 0.972 0.944 0.116 0.056 0.939 0.881 0.174 0.082
RFR5_EMD 0.981 0.962 0.096 0.041 0.939 0.881 0.174 0.096
RFR6 0.972 0.944 0.116 0.056 0.939 0.883 0.173 0.082
RFR6_EMD 0.981 0.962 0.095 0.041 0.941 0.883 0.172 0.096
Bagg1 0.947 0.896 0.159 0.083 0.927 0.859 0.190 0.090
Bagg1_EMD 0.975 0.949 0.111 0.051 0.920 0.841 0.201 0.118
Bagg2 0.962 0.926 0.134 0.068 0.933 0.871 0.181 0.086
Bagg2_EMD 0.978 0.957 0.103 0.046 0.936 0.872 0.181 0.103
Bagg3 0.966 0.933 0.127 0.064 0.936 0.876 0.178 0.084
Bagg3_EMD 0.980 0.960 0.099 0.043 0.940 0.881 0.174 0.098
Bagg4 0.971 0.943 0.118 0.057 0.937 0.878 0.177 0.083
Bagg4_EMD 0.981 0.961 0.097 0.042 0.939 0.879 0.175 0.098
Bagg5 0.972 0.944 0.117 0.056 0.939 0.881 0.174 0.082
Bagg5_EMD 0.981 0.962 0.095 0.041 0.940 0.881 0.174 0.096
Bagg6 0.972 0.944 0.116 0.056 0.940 0.883 0.173 0.082
Bagg6_EMD 0.982 0.963 0.095 0.041 0.940 0.882 0.173 0.096
AdaBoost1 0.942 0.887 0.166 0.084 0.914 0.834 0.206 0.091
AdaBoost1_EMD 0.954 0.908 0.149 0.076 0.920 0.845 0.199 0.107
AdaBoost2 0.943 0.889 0.164 0.083 0.913 0.831 0.207 0.092
AdaBoost2_EMD 0.964 0.928 0.132 0.067 0.918 0.836 0.204 0.116
AdaBoost3 0.943 0.890 0.164 0.083 0.913 0.829 0.208 0.093
AdaBoost3_EMD 0.965 0.930 0.130 0.065 0.921 0.845 0.198 0.116
AdaBoost4 0.945 0.892 0.162 0.083 0.914 0.832 0.207 0.093
AdaBoost4_EMD 0.965 0.931 0.130 0.064 0.912 0.830 0.208 0.122
AdaBoost5 0.945 0.892 0.162 0.083 0.914 0.832 0.207 0.094
AdaBoost5_EMD 0.966 0.933 0.128 0.062 0.922 0.849 0.196 0.112
AdaBoost6 0.945 0.893 0.161 0.083 0.914 0.833 0.206 0.094
AdaBoost6_EMD 0.967 0.933 0.128 0.062 0.910 0.821 0.214 0.120



Applied Water Science (2024) 14:46	 Page 17 of 23  46

stations. The obtained results indicated that the newly pro-
posed algorithm for RS retrieval could effectively retrieve 
RS with high accuracy and precision. The following conclu-
sions are drawn:

•	 Using single models, i.e., ANN, RFR, Bagging, and 
AdaBoost without decomposition, i.e., without EMD, 
the four models were relatively equal with slightly supe-

riority in favor to the ANN model, and it was shown 
that beyond the third input combination, i.e., using 
only Q(t − 1), Q(t − 2), and Q(t − 3) as input variables, 
improvement in models performances was negligible and 
marginal.

•	 Numerical results revealed that, for all models, the R, 
NSE, RMSE, and MAE ranged from 0.923 to 0.940, 
0.852 to 0.883, 0.498 to 0.562, 0.216 to 0.250 for the 

Fig. 11   Scatterplots of measured against forecasted daily river stage (RS) for the validation stage at the USGS 14211499
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Fig. 12   Comparison between measured against forecasted daily river stage (RS) for the validation stage at the USGS 14211499
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Fig. 13   Examples of graphs 
showing models performance 
for the best developed algo-
rithms during the validation 
stage at the USGS 14211499: a 
Boxplot, b Violin plot, c Radar 
plot, and d Taylor diagram



	 Applied Water Science (2024) 14:4646  Page 20 of 23

USGS 14210000 station, and from 0.913 to 0.940, 0.831 
to 0.883, 0.173 to 0.208, and 0.082 to 0.094 for the 
USGS 14211499 station, respectively.

•	 Using the EMD as a preprocessing signal decomposi-
tion contributed to a high and significant improvement 
in models performances, for which we have concluded 
that; increasing the number of lag times from one to six 
led to an increase in all numerical values for all crite-
ria, showing the R and NSE values reaching the maxi-
mal values of 0.974 and 0.949 at the USGS 14210000, 
and the maximal values of 0.955 and 0.913 at the USGS 
14211499, respectively, and the RMSE and MAE values 
were drastically decreased to their lowest values of 0.330 
and 0.175 at the USGS 14210000, and to the values of 
0.149 and 0.076 at the USGS 14211499, respectively.

•	 In fact, the obtained results in the present study 
appeared very consistent and very encouraging regard-
less of the considered period of record. However, 
extending the series of records and the forecasting 
horizon beyond the time (t), i.e., t + 1, t + 2, is more 
suitable for better conclusions.
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