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Abstract
To reduce the amount of energy consumed in wastewater treatment plants, nine methods were used to select the key operation 
parameters that affected energy consumption according to daily operation records, and an intelligent operation management 
system based on a genetic algorithm was constructed by mapping the relationships between energy consumption and the 
key operation parameters. The results showed that the prediction and management of energy consumption could be achieved 
by incorporating the strengthened elastic genetic algorithm into the extreme gradient boosting model. The main parameters 
affecting energy consumption were the influent flow rate, effluent total nitrogen,  NH4

+–N loading rate, etc., and the energy 
consumption could be reduced by 13–27% (with an average of 22%). The parameters were all selected from the daily opera-
tion records of the wastewater treatment plant, and no additional complex data acquisition system was needed to collect spe-
cific parameters. This study provided a cost-effective strategy to reduce energy consumption in wastewater treatment plants.

Keywords Energy saving · Extreme gradient boosting (XGB) · Genetic algorithm optimization · Carbon neutrality · 
Wastewater treatment

Introduction

With obvious climate change occurring during the last dec-
ade, reducing carbon emissions is an urgent need (Yang et al. 
2022). Wastewater treatment is one of the most energy-con-
suming industries in China; it consumed 18.4 billion kWh in 
2020, and its consumption level continues to increase every 
year (Chang et al. 2021). Large amounts of greenhouse gases 
(GHGs), such as  CO2,  N2O, and  CH4, are generated during 

wastewater treatment and have been identified as anthro-
pogenic sources of GHG emissions (Yoshida et al. 2014). 
Among the total energy consumption of wastewater treat-
ment plants (WWTPs), the electricity consumed during 
aeration accounts for 70–80% of this amount, followed by 
pumps and chemicals (Yang et al. 2021). At present, the 
aeration control process in Chinese WWTPs is slipshod 
and mostly manual, and excess aeration is always supplied, 
which generates unnecessary energy consumption (Yang 
et al. 2021), especially in small-scale WWTPs. In most 
European WWTPs, the SCADA system has been installed 
to precisely control the aeration process. However, most 
Chinese WWTPs are only equipped with facilities to check 
whether the effluent meets the imposed discharge stand-
ards. Currently, as discharge standards become stricter, the 
requirement for energy savings is increasing. It is necessary 
to determine the energy savings potential of the existing 
equipment, as well as meet these standards.

During the last decade, with the rapid development of 
information technologies such as big data and artificial intel-
ligence (AI), new energy saving solutions have been provided 
by constructing intelligent management systems (Wang et al. 
2022). Machine learning (ML) is an AI technology that is 
used to recognize specific patterns and provide necessary 
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data for prediction or classification. Benefiting from its high 
precision based only on data relationships, ML is becoming 
more popular in various fields, such as effluent prediction and 
process optimization (Picos-Benítez et al. 2020). Since waste-
water treatment is a nonlinear process, it is often difficult to 
construct simple models, while a data-driven approach based 
on ML is preferable (Bagherzadeh et al. 2021). Many studies 
have verified the feasibility of ML in wastewater treatment 
tasks. Nourani et al. (2021) proposed an approach based on 
black-box models, including a feedforward neural network, 
support vector regression (SVR) and an adaptive neuro-fuzzy 
inference system, to predict effluent biological oxygen demand 
 (BOD5) and chemical oxygen demand (COD). Ly et al. (2022) 
investigated and compared six ML algorithms for predicting 
effluent total phosphorus (TP). El-Rawy et al. (2021) com-
pared the performance of different models for predicting the 
removal efficiencies of total suspended solids, COD,  BOD5, 
and  NH4

+–N (ammonia nitrogen). Wan et al. (2022) proposed 
a model based on a convolutional neural network, weight-
sharing long short-term memory and Gaussian process regres-
sion for paper-making wastewater treatment, which exhibited 
a comprehensive forecasting ability. Das et al. (2021) used 
standard mean absolute error (MAE) and root mean square 
error (RMSE) metrics as evaluation indices to compare four 
ML algorithms, and a gated recurrent unit was selected as the 
best model. Żyłka et al. (2020) evaluated the least-squares lin-
ear regression model for predicting electricity consumption 
and found that the main parameters were the organic loading 
rate and temperature.

However, to date, research using ML in wastewater treat-
ment scenarios has mainly focused on effluent quality, while 
few studies has been conducted on energy consumption. In 
addition, some factors for determining energy consumption 
have not been considered, and their influence has not yet been 
fully evaluated; thus, model performance is strongly deter-
mined by the accuracy of the input data.

In this study, a mapping relationship between energy con-
sumption and management parameters was established, and 
an energy-saving strategy for WWTPs was developed based 
on a genetic algorithm. Daily operation parameters were 
ranked through regression analysis, and then the top-ranking 
parameters were selected as inputs to establish an XGB model 
for predicting energy consumption. Furthermore, an energy-
saving control strategy was evaluated, which is expected to 
offer an instant energy-saving strategy for WWTPs in practical 
applications.

Materials and methodology

Background of the target WWTP

An urban WWTP (an anaerobic anoxic aerobic process) 
located in Henan Province (China) had a designed flow rate 

of 30,000  m3  day−1, and it followed the Chinese discharge 
standard of GB18918-2022. The sludge was dewatered 
by a belt filtering press and then treated by a sanitary 
landfill (Fig. 1). The operation data were collected for 
353 days from 1st January to 31st December 2020, which 
consisted of the influent flow rate (IFR), influent  NH4

+–N 
concentration (IAN), influent COD (ICOD), influent TN 
(ITN), influent TP (ITP), effluent  NH4

+–N concentration 
(EAN), effluent COD (ECOD), effluent TN (ETN), efflu-
ent TP (ETP), mixed liquid suspended solids (MLSS) of 
the aerobic tank, DO at the end of the aerobic tank (DO), 
ORP at the end of the anoxic tank (ORP), organic load-
ing rate (OLR),  NH4

+–N loading rate (ANLR) and energy 
consumption per cubic metre (EC). The units and statistics 
of each feature are shown in Table 1.

Feature selection

Ordinary least squares

Ordinary least squares (OLS) is a method that 
can be used for variable selection. For a dataset 
D = {

(
x1, y1

)
,
(
x2, y2

)
,… ,

(
xn, yn

)
} , where x ∈ ℝ

d, y ∈ ℝ , 
one of its basic expressions is as follows. The fitting criterion is 
to minimize the sum of squared residuals between y and f (x) . 
The parameters without zero coefficients are selected.

where �T and � are undetermined coefficients.

Least absolute shrinkage and selection operator

To avoid overfitting during OLS, a penalty function with the 
 L1 norm is added to the objective function to simplify the 
structure and decrease the empirical risk in the least absolute 
shrinkage and selection operator (Lasso). Compared with ridge 
regression, which adapts the  L2 norm, the Lasso more easily 
obtains sparse solutions and selects features.

Smoothly clipped absolute deviation

The smoothly clipped absolute deviation (SCAD) 
approach was proposed by Fan and Li (2001). Compared 
with the Lasso, this method reduces the bias of parameter 

(1)f (x) = �
Tx + �

(2)min
n∑
i=1

�
yi − f

�
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��2

(3)min
n∑
i=1

�
yi − f

�
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��2
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estimation. The basic principle behind the imposed pen-
alty is similar to MCP, but the difference is the utilized 
transition method. The penalty function of SCAD is 
defined as Eq. 4.

where � ≥ 0 and 𝛾 > 2.

(4)p𝜆,𝛾 (𝜃) =

⎧⎪⎨⎪⎩

𝜆𝜃, 𝜃 ≤ 𝜆

−
𝜃2−2𝛾𝜆𝜃+𝜆2

2𝜃−2
, 𝜆 < 𝜃 ≤ 𝛾𝜆

(𝛾+1)𝜆2

2
, 𝜃 > 𝛾𝜆

Fig. 1  Treatment process of the WWTP

Table 1  Dataset

Parameter Units Abbreviation Mean Std Min Max

Influent flow rate m3  d−1 IFR 29,269.01 4983.09 21,238 45,672
Influent ammonia nitrogen mg  L−1 IAN 36.68 8.93 16.62 63.85
Influent COD mg  L−1 ICOD 364.34 133.05 150.5 934.8
Influent TN mg  L−1 ITN 48.49 9.68 26.49 85.09
Influent TP mg  L−1 ITP 5.66 2.69 1.21 17.66
Effluent ammonia nitrogen mg  L−1 EAN 0.66 0.65 0.03 3.95
Effluent COD mg  L−1 ECOD 28.06 4.80 12.1 44.74
Effluent TN mg  L−1 ETN 8.24 2.37 3.53 17.98
Effluent TP mg  L−1 ETP 0.18 0.08 0.04 0.52
Mixed liquid suspended solids of the 

aerobic tank
mg  L−1 MLSS 6379.86 797.92 4472.5 7861

DO at the end of the aerobic tank mg  L−1 DO 0.95 0.34 0.42 3.65
ORP at the end of the anoxic tank Mv ORP − 40.19 30.77 − 178.06 46.52
Organic loading rate kgBOD·(kgMLSS·d)−1 OLR 0.10 0.03 0.03 0.27
Ammonia nitrogen loading rate Kg  m−3  d−1 ANLR 0.01 0.00 0.00 0.02
Energy consumption per cubic metre kWh  m−3 EC 0.54 0.12 0.28 0.90
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The objective function used by SCAD is as follows:

Cp criterion

Mallow's Cp is used for variable selection through the sum of 
the residual squares obtained from an OLS regression model 
(James et al. 2021). The independent variable subset that 
minimizes Cp is selected, and the regression equation cor-
responding to this independent variable subset is the optimal 
regression equation.

where �̂2 is an estimate of the variance of the residuals, d is 
the number of parameters, and n is the sample size.

The above methods are based on a linear regression 
model. By adding a penalty item, the coefficients of the input 
variables are compressed to varying degrees, and this plays 
a role in the feature selection process.

Akaike information criterion

The Akaike Information Criterion (AIC) is widely used to 
evaluate the fitness levels of statistical models, and it works 
as follows. The first term reflects fitness, and the second term 
reflects the number of parameters. The best model is the one 
with the minimum AIC (Ingdal et al. 2019).

where L̂ is the likelihood estimator and d is the number of 
parameters.

Bayesian information criterion

Similar to the AIC, the Bayesian information criterion (BIC) 
is also a basic method for decision-making tasks involving 
statistical models, and it helps to strike a balance between 
simplicity and mapping ability. The standard expression 
of the BIC is as follows. Different from the AIC, its sec-
ond term is concerned with both the number of parameters 
and the sample size. The model with the minimum value 
achieves the best balance between simplicity and mapping 
ability (Liu et al. 2022b).

where L̂ is the likelihood estimator, d is the number of 
parameters, and n is the sample size.

(5)min
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�

(6)Cp =
SSRd

�̂�2
− n + 2d

(7)AIC = −2 ln L̂ + 2d

(8)BIC = −2 ln L̂ + d ln n

Minimum redundancy–maximum relevance

The minimum redundancy-maximum relevance (mRMR) 
algorithm is used to solve the problem that due to the exist-
ence of redundant variables, the best eigenvalue obtained by 
maximizing the correlation degree between a feature and the 
target variable does not necessarily obtain the best predic-
tion accuracy (Ding and Peng 2003).Mutual information is 
used to measure the correlation between two variables. The 
mutual information I of two discrete random variables x and 
y is defined as follows:

where p(x, y) is the joint probabilistic distribution of two 
variables x and y , and p(x) and p(y) are the marginal prob-
abilities of x and y , respectively.

For the mRMR algorithm, the mutual information I(x, c) 
is used to find the feature subset S among the m features that 
are most closely related to category c.

The minimum redundant feature condition is:

Then, the maximal correlation-minimal redundancy fea-
ture set S is:

By selecting the subset of variables that minimize or 
maximize the target value, the redundant variables can be 
eliminated.

Model construction

XGB

XGB is an optimized version of boosting (Chen and Gues-
trin 2016). When a tree is added, a new function f (x) can 
be obtained to fit the residual of the last prediction. Once K 
trained trees are obtained, every tree falls to a correspond-
ing leaf node, and every node corresponds to a score. The 
predicted value is the summation of the scores produced by 
different trees, which is calculated as follows:
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∑
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p
�
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where K is the number of trees and fk
(
xi
)
 is the score of 

each tree.
The objective function consists of a loss function and a 

regularization penalty:

where l
(
yi, ŷi

)
 is the error of the i-th sample and Ω

(
fk
)
 is the 

regularization penalty term of the k-th tree.

where T  is the total number of leaf nodes in the t-th tree, 
�j is the weight of the j-th leaf node, and α, λ are scalars. � 
controls the number of leaf nodes, and � guarantees that the 
weights of the leaf nodes are small.

For the t-th iteration, the objective function can be 
expressed as follows:

where ft
(
xi
)
 is the newly added t-th tree and C is the com-

plexity of the previous t−1 trees, that is, C =
∑k−1

i=1
Ω
�
fi
�
.

With a descending constant term l
(
yi, ŷ

(t−1)

i

)
 and C , the 

second-order Taylor expansion is employed to approximate the 
original loss function:

where Gj =
∑

i∈Ij
�ŷ(t−1)l

�
yi, y

(t−1)
�
,Hj =

∑
i∈Ij

�2
ŷ(t−1)

l
�
yi, y

(t−1)
�

When the partial derivative of the objective function Obj(t) 
with respect to ωj equals 0, the optimal weight value can be 
obtained as follows:

The optimal objective function value is

Multilayer perceptron artificial neural network

As a robust ML technology, the multilayer perceptron arti-
ficial neural network (MLPANN) model has been widely 
used for prediction in various energy systems. The basic 
MLPANN consists of three layers: an input layer, a hidden 
layer and an output layer (Faegh et al. 2021). Given a series 
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of characteristics X = (x1, x2, ...) and a target Y  , a multilayer 
perceptron can learn the relationships between the features 
and targets for classification or regression purposes.

Light gradient boosting machine

The light gradient boosting machine (LightGBM) is a dis-
tributed gradient boosting framework based on a decision 
tree algorithm. For a given training set, the LightGBM can 
obtain a strong classifier by combining multiple classifica-
tion and regression trees (Sun et al. 2022).

Support vector regression

Support vector regression (SVR) is a powerful approach for 
problems with small sample sizes and high dimensionality 
(Huang et al. 2022). With the SVR algorithm, a regression 
plane can be found, and the distance between all data in a 
set and the plane can be minimized.

Model evaluation

To evaluate different models in terms of energy consump-
tion prediction, the coefficient of determination (R2), MAE, 
mean absolute percentage error (MAPE), and RMSE can be 
calculated as follows:

where n is the sample size, yi is the actual value, ŷi is the 
predicted value and i is the index.

R2 is a classic indicator for evaluating the fitness between 
actual and predicted values. Both the MAE and RMSE are 
not sensitive to dimensions, but the RMSE magnifies the 
gap between larger errors. A MAPE of 0% indicates a per-
fect model, while a value greater than 100% indicates an 
inferior model.
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SEGA The genetic algorithm is a heuristic algorithm origi-
nating from the Darwin evolutionary system that simulates 
natural selection as reproduction, crossover, and mutation 
in DNA. During the evolutionary process, individuals with 
low adaptability are eliminated. Through continuous selec-
tion and the 3 behaviors of DNA, the optimal result can be 
obtained. However, it has been proven that the canonical 
GA, which only uses the selection, crossover and mutation 
operators with crossover and mutation probabilities between 
(0,1), cannot converge to the optimal value. Thus, an elitism 
strategy is adopted to select the best individual and copy it 
to the next generation without a crossover operator (Fig. 2).

Results and discussion

Parameter selection results

If all the existing parameters are used as the inputs of the 
constructed model, its complexity will be very high, which 
may result in a long training time and poor performance. 
Therefore, it is necessary to select inputs first, which is cru-
cial to model performance (Chu et al. 2009). Both the linear 
and nonlinear selection methods mentioned above were used 

to select the input parameters (Table 2). The eight parame-
ters with the highest frequencies were selected as the inputs, 
and they could be classified into three categories: water 
quantity (IFR), water quality (ETN, IAN, ITP and ETP) and 
management regulation (DO, ANLR and ORP) parameters. 
Furthermore, a Kendall correlation analysis was carried out 
between all parameters and the energy consumption level to 
evaluate the above results (Fig. 3). The absolute values of 
the correlation coefficients between the selected parameters 
and the energy consumption level were mostly at the top, 
which confirmed that the selected results were reasonable. 
Among the eight selected parameters, ETP and ANLR had 
limited correlations with energy consumption (0 < r < 0.2) 
(Khamis 2008).

In terms of water quantity, the IFR exhibited a strong 
negative correlation with EC. This can be attributed to the 
fact that most equipment cannot operate under effective 
energy conditions when the IFR deviates from the designed 
value (Hanna et al. 2018). In addition, poor management and 
limited regulation may also account for the excessive energy 
consumption of small-scale WWTPs (Vaccari et al. 2018).

In terms of water quality, the ETN was closely related to 
nitrogen removal performance. The conventional nitrogen 
removal process consists of nitrification and denitrification. 
To achieve sufficient nitrification, a large amount of energy 

Fig. 2  Flow chart of the strengthen elitist genetic algorithm
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is consumed for aeration. Once the needed oxygen is sup-
plied, excessive aeration not only wastes energy but also 
increases the effluent  NO3

−–N (Liu et al. 2022a). When the 
MLSS is low, the phosphorus removal process is mainly 
dependent on the performance of phosphorus-accumulating 

organisms. The biological phosphorus removal process con-
sists of phosphorus release and phosphorus uptake. Electron 
acceptors such as oxygen are necessary to uptake phospho-
rus, so more aeration is needed when the ITP is larger.

Table 2  Parameter selection frequency

Parameter Water quantity Water quality Management regulation

1 2 3 4 5 6 7 8 9 10 11 12 13 14

IFR IAN ICOD ITN ITP EAN ECOD ETN ETP MLSS DO ORP OLR ANLR

OLS * * * * * * * *
Lasso * * * * * * * * * *
SCAD * * * * * * * *
Cp criterion * * * * * * * *
AIC * * * * * *
BIC * * * * * * * *
mRMR * * * * * * * *
Selected times 7 7 0 2 6 2 0 6 6 2 5 7 0 6
Select results * * * * * * * *

Fig. 3  Heatmap of the Kendall correlation coefficient
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In terms of management regulation, a lower OLR implied 
a longer SRT, which increased the MLSS. Hence, less 
 NH4

+-N was associated with a lower ANLR, and DO should 
theoretically have a negative correlation with the OLR. Due 
to the excess aeration strategy, DO usually changed more 
violently than the OLR requirement. With the increases in 
the OLR and influent COD, excessive aeration was sup-
plied to ensure that the effluent COD satisfied the discharge 
standard, and DO was positively correlated with the OLR. 
The excessive DO at the end of the aerobic tank reflowed 
to the anaerobic tank through external reflow, resulting in a 
higher ORP. Therefore, the correlation between the energy 
consumption level and the ORP at the end of the anaerobic 
tank was weak. However, when the influent COD decreased, 
aeration control fell behind the actual demand, resulting in 
excessive energy consumption for aeration.

Performance analysis of the XGB model

An XGB model and three other models were established 
based on the relationships between energy consumption and 
the selected parameters. The first 70% of the data were used 
as the training set, and the other 30% were used as the test 
set. A grid search was used to optimize the hyperparam-
eters of all models in Table 3. The prediction performance 
is shown in Table 4 and Fig. 4. Compared with the other 
methods, XGB is the best model. Although a gap remains 
between the real and predicted values, their variation trends 

are almost the same, which verifies that the model is feasible 
for predicting energy consumption.

Parameter impact analysis

The F score was used to evaluate the influence of each input 
on energy consumption (Fig. 5). The effect of each param-
eter in descending order was IFR, DO, IAN, ITP, ETN, 
ANLR, ORP, and ETP. It was found that this order was simi-
lar to that obtained by the Kendall analysis. If a significant 
parameter changes obviously, the energy consumption also 
changes significantly.

Among the uncontrollable parameters, the IFR, IAN and 
ITP had large influences. This means that once the treat-
ment process and designed flow rate have been selected, 
the energy consumption levels has almost been determined. 

Table 3  Hyperparameters of 
each model

Model Hyper parameter Value Model Hyper parameter Value

Learning_rate 0.06 boosting_type gbdt
Max_depth 6 metric L2
n_estimators 22 learning_rate 0.02

XGB min_child_weight 1 LightGBM num_leaves 30
Gamma 0 max_depth 4
Subsample 0.9 subsample 0.8
Colsample_bytree 0.6 colsample_bytree 0.8
Alpha 0 n_estimators 60
Input layer 8 kernel rbf
Hidden layer 1 (Relu) 14 C 350
Hidden layer 2 (Relu) 15 gamma 1E-7
Hidden layer 3 (Relu) 30 epsilon 0.1
Hidden layer 4 (Relu) 40 coef0 0.01

MLPANN Hidden layer 5 (Relu) 30 SVR max_iter -1
Hidden layer 6 (Relu) 15 degree 5
Hidden layer 7 (Relu) 5 shrinking False
Hidden layer 8 (Relu) 3 tol 1E-7
Output layer 1
Loss L1
Optimizer Adam

Table 4  XGB model evaluation indicators

Model Dataset R2 MAE MAPE RMSE

XGB Train 0.808 0.041 0.074 0.056
Test 0.722 0.023 0.043 0.029

MLPANN Train 0.978 0.009 1.662 0.019
Test 0 0.064 10.787 0.089

LightGBM Train 0.79 0.044 0.083 0.058
Test 0.364 0.037 0.077 0.051

SVR Train 0.754 0.053 0.101 0.063
Test 0.145 0.047 0.094 0.059
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Among the controllable parameters, ETN, DO, and ANLR 
can influence energy consumption.

Energy saving performance

The energy savings achieved under different conditions were 
evaluated. For each parameter, the average, maximum and 
minimum values were taken in the established model, while 
the other seven variables remained unchanged from their 
average values (Fig. 6). The energy saving efficiency was 

most sensitive to the influent flow rate, which was consistent 
with its maximal correlation coefficient. Furthermore, the 
energy saving efficiency variations were also in accord with 
the Kendall correlation coefficient. In addition, the amount 
of energy saved under the maximum (or minimum) values 
was always similar to the amount of energy wasted under the 
minimum (or maximum) values.

In practical applications, these parameters often change 
simultaneously. Considering the synergy among the differ-
ent parameters, the SEGA was used to optimize the energy 

Fig. 4  Comparison between the values predicted by XGB and the actual values. a Training set; b testing set

Fig. 5  F score of XGB
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consumption level, and XGB served as the mapping func-
tion between the eight parameters and EC. In the SEGA, 
eight parameters are the genes of the population, and the 
EC calculated by XGB is the fitness function. The upper 
and lower bounds (UBs and LBs, respectively) of the eight 
input parameters were determined by the discharge standard 
and the extreme values contained in the historical data. Due 
to the randomness of the SEGA, several optimization steps 
were performed (Table 5).

In scenarios 1–3, the UBs and LBs of the eight param-
eters were set to investigate the resulting changes in the 
optimal EC. In scenario 1, the UBs of ETN and ETP were 
the maximum allowed values, which were 15 mg  L−1 and 
0.5 mg  L−1, respectively. The other UBs were the historical 
maximum, and the LBs were zeros (except that of ORP). 
The UBs of scenario 2 were the same as those of scenario 
1, but its LBs were the historical minima. The UB of ORP 
in scenario 3 was set to 0, and the other boundary condi-
tions of scenario 3 remained the same as those in scenario 
2. The restriction imposed on the search area of ORP did 
not affect the final energy savings. However, the practical 
water quality and quantity were unfeasible to regulate, so 
their UBs and LBs were set as the mean values in scenario 4. 
The management regulation parameters were optimized by 
setting their boundary conditions according to the historical 
extreme values.

The DO and ORP probes are widely used in practical 
applications. Based on previous research, the DO concen-
tration at the end of the aerobic tank was 1–5 mg  L−1 (Qiu 
et al. 2017), and to achieve biological phosphorus removal, 
the ORP in an anaerobic environment should be no larger 

than − 50 mv (Tae et al. 2005; Tang et al. 2012). The opti-
mal parameters obtained from the GA were basically within 
reasonable ranges. According to the above results, 13–27% 
of the total energy consumption could be saved (with an 
average of 22%) by optimizing the management process, 
and the effluent could meet the discharge standard all the 
time. When the IFR was maximized, the IAN was close to 
the average value and the ANLR was high, the minimum 
energy consumption level could be obtained. Specifically, 
energy savings could be achieved by setting the manage-
ment regulation parameters near the optimization results. 
For ORP, its optimal value could be achieved by adjusting 
the internal reflow rate. Flexibly opening and closing the air 
pumps and adjusting the air supply could make DO reach 
the value given by the GA. For the ANLR, due to the uncon-
trollable IAN, the difference between IAN and EAN was 
the determining factor. This showed that energy savings in 
WWTPs can be achieved by adjusting the operation param-
eters through the GA, which provides a simple and feasible 
energy saving strategy.

Conclusions

The energy consumption levels of WWTPs can be predicted 
and optimized by XGB and the SEGA. In terms of predic-
tion, the XGB model achieved good performance, which 
was verified by a series of indicators, such as the R2, MAE, 
MAPE, and RMSE metrics. The most important parameter 
influencing energy consumption is the influent flow rate. 

Fig. 6  Energy saving efficiency
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Therefore, compared with small-scale WWTPs, large-scale 
WWTPs with high IFR values need less EC and lower 
operating costs. In terms of optimization, 13–27% of the 
total energy consumption (with an average of 22%) could 
be saved by the optimized management regulation param-
eters obtained from the SEGA model. This research pro-
vides a convenient and reliable strategy for saving energy in 
WWTPs, which can be used in other treatment processes in 
practical applications.
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