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Abstract
Reports demonstrate that floods are among the most prevalent and deadliest natural disasters affecting 520 million people 
annually. The present study seeks to evaluate flood forecasting using the weather research and forecasting (WRF) model and 
the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. To this end, WRF and HEC-HMS 
were calibrated by comparing their results with the data observed at measuring stations. Then, the output rainfall data of the 
WRF model were implemented by the calibrated HEC-HMS model and were examined using the statistical indices, which 
were revealed to be 4.13, 3.42, and 2.67 for the flow volume and 6.2, 2.46, and 5.11 for the peak flow, suggesting the accurate 
performance of WRF model alongside HEC-HMS in the Talesh catchment.
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Introduction

Among all natural hazards capable of causing catastrophes, 
floods are the most prevalent ones that cause suffering to 
humans and extensive damage to buildings, infrastructures, 
crops, etc. World Water and Environmental Engineering 
Journal (London) has thus declared water to be the origin 
of half of natural disasters (Gore and Petts 1989). The per-
sistence of the flood phenomenon would leave irreparable 
damage to the soil and water resources of a country. Hence, 
understanding the factors and parameters involved in floods 
is of vital prominence in controlling and mitigating this phe-
nomenon. In other words, one would have to explore the 

behaviors of processes involved in flood before making any 
plans to control it (Singh et al. 2021; Kaya and Derin 2023).

In California, Anderson et al. used the MM5 model and 
forecasting data from the Eta model, and a rainfall calibrated 
with the prediction resulting from a mesoscale MM5 model 
and 48-h forecasting periods to simulate rainfall. The HEC-
HMS model was then calibrated using rainfall, time, and 
runoff hydrograph and implemented with MM5 rainfall 
forecasting data. The automation of this process brought 
about an invaluable reservoir management tool. The out-
puts of HEC-HMS calibrated for the same thunder were thus 
consistent with forecasting data from HEC-HMS and MM5 
models in terms of flow and effluent peak time (Anderson 
et al. 2002).

Weisman et al. (2008) presented an account of previous 
practices performing 36-h cumulus forecasts (4km resolu-
tion) using the advanced weather research and forecasting 
(WRF-ARW) over the springs and summers of 2003–2005 in 
the USA and compared the forecasts with operational 12km 
data from the Eta model. Their results suggested that land 
surface, microphysics, resolution, and PBL schemes played 
a more vital role than forecasting errors, indicating the need 
for further research to document the sources of such errors 
at these time scales. Moreover, their results indicated that a 
systematic orientation was also needed for the PBL scheme 
(YSU) emphasizing the need for persistent modification of 
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the physics of packages for practical forecasting (Weisman 
et al. 2008).

In the USA, Gilliam and Pliem performed a study in 2009 
by using the Pleim-Xiu land surface scheme, Pliem land 
surface scheme, and asymmetrical cumulus model (version 
2) to compare the simulations made using the new phys-
ics of the WRF model, simulations generated by the MM5 
model, and other WRF configurations. Results of their 
analyses revealed that in summer simulation, smaller errors 
were observed in the WRF simulation model that uses a 
new physics compared to the configuration similar to MM5 
across the whole domain. However, this simulation model is 
as generally inaccurate as others in winter although it indi-
cated a good performance at temperature categories under 
2m (Pleim and Gilliam 2009).

Zhang et al. (2011) used advanced weather research and 
forecasting (WRF-ARW) to enhance the demonstration and 
simulation of the modified boundary level (MBL) clouds 
over Southeast Pacific (SEP) for a whole month of October 
in southeast pacific. They employed the National Centers for 
Environmental Prediction Global Forecast System (NCEP 
(NFL)) as initial, lateral, and boundary conditions and obser-
vational sea surface temperature (SST) and compared the 
results with satellite observations. Results indicated that the 
modified Tiedtke scheme successfully captures the MBL 
structure’s main features and the model managed to simu-
late the large-scale atmospheric circulation in the eastern 
Pacific reasonably.

Roy et  al. (2013) used US Hydrological Engineer-
ing Center’s Hydrologic Modeling System (HEC-HMS) 
(employing the soil moisture accounting algorithm—SMA) 
in hydrological forecasting of the Subarnarkha River, east 
India. Their results suggested the model’s accurate perfor-
mance in simulating the current and, consecutively, water 
quantification. Moreover, using semi-annual parameter sets 
accounting for changes was revealed to have improved the 
model’s hydrological performance (Roy et al. 2013).

Nasiri and Talebi (2020) used the HEC-HMS software to 
rank the sub-basins in Chenarsukhteh watershed, Iran, with 
an area of 141.591 km2 in terms of flood risk. This study 
assessed the impacts of flood risk using the two physical 
criteria of flow volume and current peak discharge as the 
parameters involved in a flood. As a result, flood hydro-
graphs corresponding to rainfall were calculated for all 
sub-basins and each hydrograph's extent of influence was 
obtained in output flood generation by sequential sub-basin 
elimination, allowing the classification of the sub-basins in 
terms of the flood risk level.

Goodarzi et al. used WEF resources for sustainable city 
development for future climate change. Two scenarios Rcp2.6 
and Rcp8.5 from the fifth IPCC assessment report with the 
output of HADGEM2 model were used for the city of Boru-
jerd, Iran. The urban morphological dataset was used via 

ArcGIS and demonstrated that in the next period, the amount 
of precipitation will change 20 to 40 percent (Goodarzi et al. 
2022a, b).

In Ethiopia, Tedla et al. (2022) examined the WRF model's 
rainfall forecasting accuracy in a catchment, with results indi-
cating a high forecasting accuracy for 1–3-day rainfall fore-
casting periods while the accuracy would drop for periods of 
4–5 days. The model was also revealed to be more accurate in 
simulating light rains (less than 6mm daily) than medium and 
heavy rains (over 6mm daily) (Tedla et al. 2022).

In Spain, Merino et al. (2022) investigated used the weather 
research and forecasting (WRF) model to investigate hourly 
precipitation for 45 extreme precipitation events (EPEs) using 
two planetary boundary layers (PBLs) and microphysics 
schemes. Their results indicated that the microphysics scheme 
was more accurate than the planetary boundary layers (PBLs) 
(Merino et al. 2022). This is very important to choose the basin 
that has the most locations of rain gauge and hydrometer sta-
tions, although in ungauged basins, geostatistical methods can 
also be used to measure mistaken data (Goodarzi and Vazirian 
2023).

The recurrent incidence of floods in Talesh catchment 
(north of Iran) and its resulting human casualties, financial 
damages, and loss of amenities such as power, water, etc., in 
this region highlights the importance of examining various 
flood forecasting and control methods that are being widely 
used in practice across the globe to save lives and prevent 
damage to properties in this region. On the other hand, mete-
orological models must be used alongside hydrological mod-
els to study floods given that meteorological factors play an 
extremely prominent role in the occurrence of floods, i.e., 
no heavy flood would occur unless heavy precipitation hap-
pens. Thus, the present study integrates a mesoscale weather 
research and forecasting (WRF) model with an HEC-HMS 
hydrological model, hence examining a hydrodynamic model 
to forecast flood in the Talesh catchment area. Moreover, this 
study examines the results of WRF and HEC-HMS models’ 
integration and analyzes the spatial distribution of rainfall 
effective in floods in Talesh catchment given the research gap 
in terms of the spatial distribution of rainfalls contributing 
to flooding, which is a significant parameter in forecasting 
flood–especially in river banks. For this purpose, WRF and 
HEC-HMS models were first calibrated with rainfall data 
from the WRF model, and the resulting output was used by 
HEC-HMS to predict floods. The output of the WRF model 
alongside HEC-HMS would eventually be assessed using 
hydrometric data (Fig. 1).
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Materials and methods

Study area

Situated between Aras and Sefidroud catchments, the basin 
area of Talesh rivers is among the sub-basins of the Cas-
pian Sea with an area of 685,378 hectares and is among the 
rainiest sub-basins in Iran. The noteworthy point regarding 
the Talesh catchment is the multitude of rivers in it, which 
complicates hydrological modeling in the area. The north-
ernmost river in the catchment that had the most position 
concerning rain gauge and hydrometer stations was thus 
selected as the studied river (Fig. 2).

Figure 3 indicates an illustration of the flood that occurred 
in the first peak of the studied period in Talesh County as 
an example,

Data

The present study used observational data obtained from 
Talesh rain gauge station and Safar Mahalleh Hydrometer 
stations as indicated in Table 1 For this purpose, six-hour 
precipitation data from Talesh stations and daily discharge 
data from Safar Mahalleh hydrometer station were obtained 
from Gilan Province's Regional Water and Meteorology 
Department for six months from September 23, 2018, until 
March 21, 2019.

Fig. 1   Research method flowchart
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Fig. 2   The studied river situated in the Talesh basin in Iran

Fig. 3   Talesh flood on 09/27/2018

Table 1   Talesh stations 
specifications

No Station Station type Established year Above sea
Level (m)

Latitude
(°E)

Longitude
(°N)

1 Talesh Rain gauge 2000 7 38.19 48.54
2 Safar mahale Hydrometry 1993 50 38.15 48.84
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Moreover, FNL input data were used at a 0.25 resolution 
to implement the un-grid section in WRF model preprocess-
ing. The FNL data are NCEP data reprocessed by the Air 
Resource Laboratory affiliated with NOAA. These data are 
available with a 1*1degree horizontal resolution for 26 pres-
sure levels (0111-011 hectopascal) and with a six-hour time 
step from July 1999. NCEP's final global-scale operational 
analyzed data (FNL for short) use the Global Data Integra-
tion System (GDAS) to acquire the initial input data for the 
system.

The GDAS system collects observational data from across 
the globe using the GTS2 global telecommunication system. 
NFL data are ultimately generated similarly to the model 
used by the National Centers for Environmental Prediction 
(NCEP) to generate Global Forecasting System (GFS) data 
(McQueen et al. 1997).

Furthermore, global geographic data were used to imple-
ment the geogrid portion of the WRF model preprocessing. 
These data contain land surface data read on a simple plane 
with a binary format.

WRF model introduction

Numerical weather prediction (NWP) models are numerical 
models developed based on basic physics and fluid equations 
and used to forecast oceanic and atmospheric conditions. A 
wide variety of numerical models have been introduced to be 
employed at regional and global scales in different countries 
of the world so far seeking to forecast atmospheric condi-
tions. The weather research and forecasting model (WRF) 
is known to be among the most efficient and best of these 
numerical models.

Developing a weather research and forecasting (WRF) 
model is a multi-organizational effort aimed at the intro-
duction of a next-generation mesoscale forecasting data 
assimilation system capable of helping both understand and 
forecast the weather at mesoscale and accelerate research 
operations. This model is a shared effort between NCAT 
and the Mesoscale and Microscale Meteorology (MMM) 
Laboratory, National Centers for Environmental Prediction 
(NCEP), National Oceanic and Atmospheric Administra-
tion (NOAA), the Forecasting System Laboratory (FSL), 
Air Force Weather Agency (AFWA), the Naval Research 
Laboratory (NRL), Center for Analysis and Prediction of 
Storms (CAPS) at the University of Oklahoma, and the 
Federal Aviation Administration (FAA) alongside several 
academic scientists (Skamarock et al. 2008).

The WRF model runs under Linux with Hdf5, Netcdf, 
Libpng, Jasper, Mpich, and Netcdf-Fortran as the most 
important packages for its implementation. The advanced 
WRF code contains several preliminary executables (ideal.
exe, real.exe), a numerical integration (wrf.exe), and a 
one-way nesting program (ndown.exe). Meteorological 

data and data on land features are prepared in the pre-
processing system (WPS) as initial forecasts. This model 
is non-hydrostatic (although featuring a hydrostatic 
option) with an Arcava C horizontal grid. The model used 
Range–Kutta time integration schemes from the second 
and third orders and schemes from the second through 
sixth orders for advection in vertical and horizontal direc-
tions (Skamarock et al. 2008).

Weather research and forecasting (WRF) is a mesoscale 
numerical weather forecasting model designed to forecast 
weather and satisfy atmospheric research needs. Appli-
cation of the WRF model is concentrated on simulators 
with a resolution ranging between one and ten kilometers, 
although it can be employed in lower resolutions as well. 
This model allows the researchers to perform simulations 
both reflecting real data and comprising ideal conditions. 
Forecasts made by this model are extremely flexible and 
the resulting calculations are efficient. As shown in Fig. 4, 
the model is made up of various components and takes 
advantage of advanced numerical and physical options 
(Skamarock et al. 2008).

HEC‑HMS model introduction

The HEC-HMS hydrologic modeling system was developed 
by American military engineers and has since replaced the 
HEC-1 software. This model is concerned with rainfall–run-
off simulation (Abbasi et al. 2010). The software is a prod-
uct of a hydrological engineering research and development 
program in the civil engineering discipline, is considered a 
significant achievement in hydrology engineering and com-
puter sciences, and has more flood trending and simulation 
features compared to the HEC-1 software. Features such as 
snow melting simulation (Goodarzi et al. 2022), dam failure, 
reservoir outlet structures, and flood return periods are cur-
rently under investigation to be included in the HEC-HMS 
software but have yet to be finalized. The analysis of the 
damage caused by floods does not fit into the scope of the 
HEC-1 model and is separately investigated in HEC-FDA. 
Moreover, this software includes several new and vital fea-
tures absent in HEC-1, including continuous flood hydro-
graph simulation over the long term and distributed flow 
calculation by mapping the simulated cellular grid in the 
catchment (Kaffas and Hrissanthou 2014).

The HEC-HMS hydrological modeling system is designed 
to simulate the rainfall–runoff process in catchment systems. 
By design, this model is applied in vast geographical areas 
to address a wide range of problems including water and 
hydrology in large catchments and floods in small urban 
or natural watersheds. The model also had a wide range of 
applications in many regions of the world given the diversity 
of its sub-models as shown in Fig. 5 (Shokri et al. 2012).
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HEC‑HMS model components

Various parameters of the catchment such as loss param-
eters, curve number, and time of concentration must first be 
entered into the HEC-HMS model to implement the model 
(Custódio and Ghisi 2023).

Loss model  Loss models generally calculate the runoff vol-
ume based on the volume of lost water and its deduction 
from the rainfall. Although HEC-HMS features various 
options to model loss, the present study employed the soil 
conservation service (SCS) curve loss because of its versa-
tility, quantitative input data, a wide range of runoff esti-
mation, and reliable results (Askar 2013), (Lal et al. 2017), 
(Soulis 2021), (Uwizeyimana et al. 2019).

Transform model  Lag time (TL) is the only input parameter 
for this model, which in turn depends on the time of con-

(1)S =
25400

CN
− 254mm

centration (TC). Lag time and time of concentration are the 
two parameters determining the speed at which a watershed 
reacts to precipitation (Sultan et al. 2022).

TL is the lag time (hour); Tc is a time of concentration 
(hour); L = main channel length (km); A = area in km2; 
Sc = main channel slope.

Curve number  To calculate the curve number, the parameters 
of land use type and soil hydrological group, and moisture 
class were first determined using the soil type and land use 
maps of the region developed in GIS, and the curve number 
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Fig. 4   The main components of the WRF model (WRF 2012)
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was eventually determined using the respective tables and the 
weighted averaging method (Lal et al. 2017).

Error indices

The error indices of root mean square error (RMSE), percent 
bias (PBIAS), mean absolute error (MAE), and R2 were used 
to validate the HEC-HMS and WRF models and estimate the 
output errors of the WRF model, rain gauge station data, HEC-
HMS model, and hydrometer station data (Niazkar et al. 2019).
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Results

The present section is concerned with how the models were 
implemented, how WRF and HEC-HMS models were inte-
grated, and the results of data statistical analysis. Therefore, 
this section first provides an account of each model's calibra-
tion and implementation and proceeds to report the results 
of each model separately.

WRF Model implementation

To implement the WRF model, three domains with verti-
cal and horizontal resolutions of 27, nine, and three kilom-
eters were defined in the first to third domains, respectively, 
and WRF domain wizard was employed to configure the 
domains (Fig. 6).
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Fig. 5   Physical processes involved in runoff generation (Tarboton 2003)
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WRF model Calibration

The WRF model is composed of various schemes and uses a 
specific combination of schemes based on the requirements 
of the task and studied region. Overall, cumulus schemes 
are more influential in WRF rainfall parameter simulation 
compared to the other schemes (Patel et al. 2019). There-
fore, given the wide range of the schemes, the long time the 
model requires to run, and the greater sensitivity of cumu-
lus schemes compared to other schemes, Purdue Lin micro-
physics schemes, MYJ boundary layer scheme, RRTM, and 
Dudhia Shortwave Scheme short and long wave radiation, 

and Eta Similarity Scheme land surface settings were used to 
estimate the precipitation parameter and even the evaluation 
of satellite-based products to estimate precipitation for the 
sustainable management of water resources, which is critical 
(Goodarzi et al. 2022). A close investigation of the outputs 
was then performed to find the best cumulus schemes among 
Kain-Fritsch, Moisture-advection-based Trigger for Kain-
Fritch Cumulus, and Grell 3D Ensemble Schemes to find the 
fittest answer possible for Talesh watershed precipitations.

Figures 7, 8 and 9 demonstrate the charts on observa-
tional data from Talesh station and Kain-Fritch Cumulus, 
Kain-Fritsch, and Grell 3D Ensemble schemes drawn using 

Fig. 6   Configuration of the 
WRF model domains

Fig. 7   Comparison of observa-
tional and model's forecasted 
precipitations from 28.09.2021 
to 30.09.2021
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the WRF model. Each scheme is examined and defined sepa-
rately in the following to reach a conclusion.

As shown in Figs. 7, 8 and 9 in all three events, the dia-
gram related to the Kain-Fritch scheme is more similar to 
the diagram of observation data than other schemes, and the 
diagram of the Grell 3D scheme is the least similar to has 
shown itself.

In Fig.  8, the overall trend and value of the actual 
observed data are most consistent with the results predicted 
by the second scenario, which is different from Figs. 7 and 
9 and needs to be explained. In general, as fine particles in 
the atmosphere cause the process of precipitation, and the 
stronger the presence of fine particles, we will see stronger 
precipitation, but due to the sensitivity to some patterns, 
sometimes the increase of fine particles gives the opposite 
result and causes remaining moisture in the upper layers of 
the atmosphere and forecasting is modeled.

Results of this experiment revealed that the Kain-Fritch 
scheme performed the best with a mean RMSE of 9.1, fol-
lowed by the Kain-Fritsch Cumulus and Grell 3D Ensemble 
schemes with RMSEs of 11 and 12.2, respectively. Figures 7, 
8 and 9 illustrate the aforementioned (Fig. 10) (Table 2).

Comparison of data from the WRF model and rain 
gauge stations

Figure 11 demonstrates WRF model forecasts versus data 
from rain gauge stations. Statistical indices of RMSE, 

PBIAS, and MAE were used to compare the data from the 
WRF model and rain gauge stations, yielding the figures of 
16.78, 0.9, and 8.68, respectively.

An overview of the results reveals that the model indi-
cated a good performance in simulating the catchment 
except for two instances of peak rainfall forecast in the first 
15 days and the peak at day 60 (the next section will elabo-
rate on the reasons behind estimation errors made in the 
case of these three peak rainfalls). Another tangible point 
was the presence of time lags between the rain gauge station 
and WRF model output data, which can be justified by other 
forecasting models such as other models and satellite tech-
niques. This also suggests the relatively better performance 
of this model in forecasting a rainfall system compared to 
predictions made for rainfall on a specific day.

Analysis of rainfall spatial distribution in Talesh 
Basin based on the WRF model

To perform a rainfall spatial distribution analysis, three rain-
fall peak samples obtained from WRF model outputs were 
examined. Figures 12 and 14 demonstrate that rainfall dis-
tribution was more focused on the upstream of the studied 
river in the first and ninth rainfall peaks, which could be due 
to the more intense precipitation in the rain gauge station 
compared to rainfall in the WRF model output. The reason 
for this is that the rainfall from the WRF model is the aver-
age of rainfall cells in the watershed, whereas observational 

Fig. 8   Comparison of observa-
tional and model's forecasted 
precipitations from 06.10.2021 
to 08.10.2021
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Fig. 9   Comparison of observa-
tional and model's forecasted 
precipitations from 10.11.2021 
to 12.11.2021
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Fig. 10   RMSE index in precipi-
tation forecasts made by various 
WRF schemes and observa-
tional data
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Table 2   Selected WRF model 
schemes to use in the Talesh 
catchment

Tier Physics Scheme Physics Scheme Symbol Type of the scheme that 
used in WRF run

1 Microphysics mp_physics Eta Similarity
2 Shortwave and longwave radiation ra_sw_physics & ra_lw_physics Dudhia & RRTM
3 Planetary Boundary layer bl_pbl_physics MYJ
4 Surface layer sf_sfclay_physics Eta Similarity Scheme
5 Cumulus parameterization cu_physics Kain – Fritsch

for Kain-Fritch Cumulus
Grell 3D Ensemble

Fig. 11   Results from the WRF 
model and the rain gauge station
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Fig. 12   Spatial distribution 
of rainfall in the first peak, 
09/26/2018

Fig. 13   Spatial distribution of 
rainfall in the Second peak, 
05/10/2018
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rain was the point precipitation in the rain gauge station 
in the proximity of the studied river. Moreover, conditions 
similar to the first rainfall peak were observed in the second 
peak as Fig. 13 demonstrates, with the exception that the 
precipitation was focused on two points over the studied 
river and the south of the watershed. One could thus suggest 
that the rainfall in the upstream area of the watershed and 
the studied river was more than the mean precipitation in the 
catchment. The reason behind the difference between data 
observed in the rain gauge station and WRF model output 
can thus be traced to the difference between mean rainfall 
in the watershed and the rainfall upstream—and specifically 
over the studied river—given the aforementioned spatial dis-
tribution analysis of the precipitation (Fig. 14).

HEC‑HMS model calibration

The calibration process reduced the CN parameter by 20% 
from 70 to 55 and increased the lag time parameter by 20% 
from 488 to 585 min.

Figure 15 indicates the observed and forecasted hydro-
graph for the six months of 09/23/2018 to 03/23/2019. Com-
parison of the HEC-HMS model output data was performed 
to observational data using the statistical indices of RMSE, 
PBIAS, MAE, and R2, which were revealed to be 3.41, 0.23, 
2.18, 70% and 3.92, 4.9, 2.95, and 87% for volumetric dis-
charge and peak discharge, respectively (Fig. 16). Results 
thus revealed the appropriate performance of the model. The 

tangible point throughout the calibration process was the 
model’s sensitivity to the parameters of CN and lag time, 
so land permeability would reduce with the increase in CN, 
resulting in the production of more runoff in the model. Fur-
thermore, the parameter of slope played a prominent part in 
flood estimation in the studied area as an increased slope 
would reduce lag time, resulting in a larger runoff volume 
estimation by the model (Fig. 17).

Validating the HEC‑HMS model

Model validation is concerned with examining the extent 
to which the model accurately represents the real system 
or its intellectual equivalent. Data from the rain gauge 
and hydrometer over 80 days between 01/01/2018 and 
03/20/2018 were used to validate the HEC-HMS model. 
Results of RMSE, PBIAS, MAE, and R2 statistical indices 
for this period were 1.1, 8.9, 0.8, 83% and 1.2, 7.29, 1.02, 
and 97% for volumetric and peak discharge, respectively, 
which revealed the precise calibration of the model (Fig. 18).

Results of the HEC‑HMS model coupled with WRF

Figure 19 demonstrates the observational and forecasted 
hydrographs of the model for the six months between 
09/23/2018 and 03/23/2019. As mentioned in Sect. 3.3, this 
figure indicates the underestimations made in the first, sec-
ond, and ninth peaks explained in Sect. 3.4. Another notable 

Fig. 14   Spatial distribution 
of rainfall in the ninth peak, 
11/23/2018
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point was the time lag in forecasting some systems –specifi-
cally flood peaks, which was expectable given the nature of 
the weather forecasting methods. This suggests that WRF 
and HEC-HMS models were considerably more capable of 
forecasting the volume of flood in a flood system accurately 
when combined compared to daily forecasts. Moreover, a 
significant portion of the time the model was implemented 
(days 30–60 and day 65 until the end of the period), which 
includes 80% of the studied period, the runoff predicted by 
the model exceeded the runoff observed in the hydrome-
ter station in peak flood points. Given the account given 
in Sect. 3.4 regarding the first, second, and ninth peaks, it 
could be suggested that the coupled model suffered a gen-
eral overestimation in peak flood points. However, charts of 
observational hydrometer station data and integrated WRF 

and HEC-HMS model output data were significantly similar 
over the entire studied time. Finally, the statistical indices of 
RMSE, PBIAS, and MAE were used to compare the model's 
output data, which were revealed to be 4.13, 3.42, 2.67 and 
6.2, 2.46, and 5.11 for volumetric discharge and peak dis-
charge, respectively.

The consistency of which with the model developed by 
integrating WRF and HEC-HMS at this date (Fig. 19) indi-
cates the models’ capability in simulating flood in Talesh 
catchment.

Overall, the results indicated that the fact that a vast area 
of the catchment is geologically made of rocks has increased 
the volume of runoff, resulting in a high flow discharge in 
the catchment outlet. On the other hand, the presence of 
agricultural lands across the catchment outlet highlighted 
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Fig. 16   Results of flood volu-
metric a flood peak b discharge 
evaluation in HEC-HMS model 
calibration
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Fig. 17   HEC-HMS model 
Validation
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Fig. 18   Results of flood volu-
metric a flood peak b discharge 
evaluation in HEC-HMS model 
validation
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the significance of runoff forecasting in this region as it left 
crucial impacts on agriculture in the region (rice farming is 
the dominant form of agriculture in the region) alongside 
its influence on residential areas. Hence, flood prediction in 
the region could help develop a disciplined plan for farmers 
in the area to achieve the best crop yield and mitigate dam-
ages in the case that a flood is predicted. The WRF model 
is thus recommended to be integrated with the hydrological 
model in predicting flood when developing and compiling 
flood warning systems in flood-prone regions of the country 
(Goudarzi et al. 2018).

Conclusion

Flood warnings are crucial in saving lives and properties 
from natural disasters. Therefore, providing evacuation 
information to flood-prone plains by giving clear warn-
ings would prove tangibly beneficial and mitigate damages 
caused by disasters significantly. Cooperation between 
governments, local communities, and regional weather and 
water departments would be essential in accomplishing 
this goal. Increased awareness and improved preparedness 
are among the essential factors in making the unstructured 
measures mentioned in the present study more efficient.

The present study employed the WRF v.4.1 weather 
research and forecasting model to forecast rainfall in a 
watershed. 48-h implementation periods were considered 
for this purpose as the first 24 h was considered to minimize 
initial model errors and the next 24 h were considered as 
the final output of the model. Results indicated the RMSE, 
PBIAS and MAE statistical indices of 16.78, 0.9, and 8.68, 
respectively, revealing the good performance of the model in 
forecasting rainfall in the studied region compared to precip-
itation data from a rain gauge station. Moreover, a compari-
son of 24-h forecasts to forecasts made over longer periods 
indicated that 24-h forecasts were more accurate in the WRF 
model. Besides, results indicated that constant implementa-
tion of the HEC-HMS model resulted in a suitable flood 
forecasting performance. To calibrate the HEC-HMS model, 
a sensitivity analysis was performed, indicating that the 
optimized components of curve number (CN) and lag time 
were the most sensitive. The statistical indices of RMSE, 
PBIAS, MAE, and R2 were then calculated to be 3.41, 0.23, 
2.18, and 70% and 3.92, 4.9, 2.95, and 87% for volumetric 
discharge and peak discharge, respectively, which indicated 
the significant similarity between observed and simulated 
hydrographs. Data from the rain gauge and hydrometer over 
80 days between 01/01/2018 and 03/20/2018 were used to 
validate the HEC-HMS model. Results of RMSE, PBIAS, 
MAE, and R2 statistical indices for this period were 1.1, 8.9, 
0.8, 83%, and 1.2, 7.29, 1.02, and 97% for volumetric and 
peak discharge, respectively. Ultimately, RMSE, PBIAS, and 

MAE were calculated to examine the flood forecasting per-
formance by the coupled model in the studied region, which 
was revealed to be 4.13, 3.42, and 2.67 for volume flow and 
6.2, 2.46, and 5.11 for peak flow, suggesting the model’s 
acceptable performance in Talesh catchment.
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