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Abstract
The time series analysis and prediction techniques are highly valued in many application fields, such as economy, medicine 
and biology, environmental sciences or meteorology, among others. In the last years, there is a growing interest in the sus-
tainable and optimal management of a resource as scarce as essential: the water. Forecasting techniques for water manage-
ment can be used for different time horizons from the planning of constructions that can respond to long-term needs, to the 
detection of anomalies in the operation of facilities or the optimization of the operation in the short and medium term. In this 
paper, a deep neural network is specifically designed to predict water consumption in the short-term. Results are reported 
using the time series of water consumption for a year and a half measured with 10-min frequency in the city of Murcia, the 
seventh largest city in Spain by number of inhabitants. The results are compared with K Nearest Neighbors, Random For-
est, Extreme Gradient Boosting, Seasonal Autoregressive Integrated Moving Average and two persistence models as naive 
methods, showing the proposed deep learning model the most accurate results.

Keywords  Time series forecasting · Deep neural networks · Water demand

Introduction

It is well known that water is an essential resource for eco-
nomic development, for obtaining food, for the availabil-
ity of healthy ecosystems and, in short, for the survival of 
living beings. However, the water availability is becoming 

increasingly limited due to the rapid growth of the world 
population. An adequate management, understood as 
the activity of planning, developing and distributing of 
resources, is essential to optimize the use of water.

The companies and entities managing the supply of drink-
ing water have the objective of supplying the demand of the 
consumers every day with the greatest possible efficiency. 
However, in many cases the operation is only managed to 
cover the instantaneous water demand without using any 
advanced technique for predicting consumption. Under 
these conditions, being able to predict in advance the pat-
tern of demand in the short term (1-48 h) is a valuable tool 
for optimizing the management of water reserves and the 
use of associated equipment. Thus, for example, it could 
allow planning the schedules of the supply pumps to take 
advantage of the periods with more economic tariffs. Several 
authors have quantified how operation planning based on 
demand prediction can lead to energy cost savings, in many 
cases in excess of 18% (Cembrano et al. 2000; Salomons 
et al. 2017; Kang et al. 2014).

In this environment, the analysis of water-related time 
series and, in particular, their prediction, is a tool that can 
help improve the management of the integral water cycle 
for drinking water supply or crops irrigation, waste water 
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generation, natural sources, etc. Within this field, this work 
focuses on the analysis and prediction of drinking water con-
sumption in Murcia, which is a city located in southeastern 
Spain.

In general, the analysis of time series has two main objec-
tives: to identify the nature of the phenomena represented 
by this time series and its prediction. The forecasting tech-
niques based on time series models (Trull et al. 2019, 2020) 
have been widely developed and applied in very diverse 
disciplines, such as economics, meteorology, medicine or 
resource management.

In the last decades, machine learning techniques (Tala-
vera-Llames et al. 2016, 2019) from the Artificial Intelli-
gence field have been successfully applied to forecasting 
problems, in particular artificial neural networks (ANN) 
(Rana et al. 2014; Lin et al. 2019). In recent years the enor-
mous amount of time series measurements collected from 
smart devices has made deep learning necessary, thus giving 
birth to deep neural networks (DNN) (Torres et al. 2018, 
2019).

In this work, we propose a DNN for the purpose of pre-
diction of the water demand. First, an analysis of the dataset 
composed of the water consumption measurements collected 
every 10 min is carried out. Then, the methodology based 
on a deep feed forward network is presented, providing an 
improved and robust way to evaluate the learning of a time 
series model preserving its temporal order. An exhaustive 
experimentation using real-world water consumption data is 
provided, obtaining an error of 3% approximately. Finally, a 
comparison is also performed, making use of the k nearest 
neighbors, random forest, extreme gradient boosting, a clas-
sical time series model and two persistence models based on 
the real values of the previous day or week.

In summary, the main contributions of this work can be 
summarized as follows: 

1.	 A deep learning model specifically designed for water 
consumption forecasting.

2.	 A robust way to evaluate the learning of a time series 
model preserving its temporal order.

3.	 Analysis of the behaviour of the water consumption in a 
city of Spain.

4.	 Reported error results of 3% for the real-world water 
consumption.

5.	 Comparison of prediction accuracy with other state-of-
the-art forecasting methods and statistical test in order 
to validate the results.

The rest of the paper is structured as follows: the previ-
ous researches related to the paper’s topics are presented 
in Sect. 2. Section 3 defines the forecasting problem to be 
solved. Section 4 summarizes the main characteristics of 
the water consumption of Murcia and describes how the 

proposed algorithm works and the methodology carried out 
in order to evaluate a time series model. The experimental 
setting and the results obtained are shown in Sect. 5. Finally, 
the conclusions and future works are provided in Sect. 6.

State of the art

This section reviews all recently published works related to 
water demand forecasting.

Classical time series models have shown to be com-
petitive for water consumption forecasting problems. The 
authors in Anele et al. (2017) obtained predictions of water 
consumption in southwest Spain by means of AR, MA, 
ARMA and ARMAX models using water consumption data 
combined with meteorological information. In Lee and Der-
rible (2020), Lee et al. applied regression techniques, namely 
linear, Lasso and Bayesian, to predict daily water consump-
tion using demographic data and housing information. The 
regression models were compared with other widely used 
machine learning techniques such as gradient boosting (GB).

The prediction of water demand using machine learning 
techniques has been intensively studied in recent years due 
to the increasing availability of easy access to large amounts 
of data. One of the most widely used approaches has been 
the tree-based techniques. Nunes-Carvalho et al. trained a 
random forest (RF) model, among others, using socio-demo-
graphic information and historical water consumption data, 
to predict water demand patterns in the city of Fortaleza, 
Brazil (Nunes-Carvalho et al. 2021). Bolorinos et al. trained 
a RF method for detecting changes in consumption (Bol-
orinos et al. 2020). A RF was also used to forecast daily 
consumption in southwest China in Chen et al. (2017). A 
tree-based model, namely a GB, was proposed by Xeno-
christou et al. in Xenochristou et al. (2020) to predict water 
demand at different scales and to establish a comparison 
between the results obtained for each one of them. In Villa-
rin and Rodriguez-Galiano (2019), the authors compared the 
performance of classification and regression trees (CART) 
and RF to forecast time series of water demand in the city 
of Seville in Spain.

Several works published in the last years proposed the 
support vector regression (SVR) method to obtain accurate 
predictions of water consumption. Chen et al. designed a 
model based on SVR to predict hourly water demand using 
two different data sources in order to optimize pumping 
operations and to detect anomalies (Candelieri 2017). A 
least squares SVR was also applied to predict residential, 
industrial and commercial water demand in the city of 
Bogotá, Colombia in Peña-Guzmán et al. (2016). Different 
machine learning models for forecasting water demand were 
compared in Herrera et al. (2010) using data from an urban 
area in a city in southeastern Spain. In particular, artificial 
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neural networks, projection pursuit regression, multivariate 
adaptive regression splines, random forests and SVR were 
tested, obtaining the SVR method the best results.

Recently, many architectures of neural networks have 
been also proposed for water consumption forecasting. 
Ghiassi et al. (2017) used two neural networks and a model 
based on nearest neighbors for daily, weekly and monthly 
forecasting of water demand in the city of Tehran, obtain-
ing highly competitive results. A deep belief network was 
performed by the authors in Xu et al. (2019) for the predic-
tion of hourly water demand. In Mouatadid and Adamowski 
(2017) the performance of various machine learning meth-
ods was evaluated to forecast urban water demand for one 
day and three days ahead, with the extreme learning machine 
(ELM) model having the lowest prediction error.

Finally, ensemble models are booming because they tend 
to achieve better results than a stand-alone method. A tech-
nique based on stacking models, including artificial neural 
networks and deep learning architectures, to predict daily 
water demand using real data from United Kingdom was 
proposed in Xenochristou and Kapelan (2020). Ambrosio 
et al. combined different models, including the multilayer 
perceptron, for water demand prediction in Ambrosio et al. 
(2019). A weighted strategy that gathers the advantages 
of the different machine learning techniques such as neu-
ral networks, random forests, support vector machines and 
k-nearest neighbors was suggested in Antunes et al. (2018) 
and compared with an autoregressive integrated moving 
average (ARIMA).

In addition to forecasting tasks, other studies have also 
been carried out to analyze the water consumption. For 
instance, the authors in Coelho et al. (2017) proposed a 
metaheuristic based on deep learning and graphic process-
ing units (GPU) to analyze time series of water consumption 
in big data environments. Clustering techniques have been 
also applied to water consumption data. The application of 
a mixture of non-homogeneous hidden Markov models to 
cluster time series that share the same transition dynamics 
was proposed in Leyli-Abadi et al. (2018). A similar study 
was carried out in Padulano and Giudice (2018), where first 
clustering and then classification techniques were applied to 
data from consumption meters in a household in Soccavo, in 
the city of Naples (Italy).

A correct selection of the predictive variables is impor-
tant since a large number of features does not always leads to 
a significant improvement in the results. Some authors have 
used climatological, population or even urban mobility data 
as predictive variables, in addition to the previous values of 
water consumption (Smolak et al. 2020).

In summary, it can be concluded that water forecasts have 
been made in many different geographic areas and popula-
tion centers. Antunes et al. (2018) obtained forecasts of the 
water demand for two cities in Portugal. Tiwari et al. (2016), 

as well as Bougadis et al. (2005); Bata et al. (2020), used 
several population centers in Canada. Smolak et al. (2020) 
provided predictions of water consumption for several towns 
in Poland and (Duerr et al. 2018) for several towns in Flor-
ida (USA). Pacchin et al. (2019) and Gagliardi et al. (2017) 
carried out a comparison of different prediction techniques 
applied to some places in Italy. Ren and Li (2016) obtained 
consumption predictions for the city of Shanghai in China. 
And other works developed the water prediction at the level 
of individual users, such as households or certain businesses 
and industries (Rahim et al. 2019; Farah et al. 2019).

With respect to prediction horizons, although most of the 
predictions are made for short-term, the most common pre-
diction horizon being 24 h, several authors made forecasts 
for longer periods, such as weeks, months, or even years 
(Bata et al. 2020; Tian and Xue 2017).

Although all previously cited works present significant 
differences regarding the models or even the scope in some 
cases, a summary of results is provided in order to offer 
a general overview about the performance. Antunes et al. 
(2018) obtained a mean absolute percentage error (MAPE) 
between 8.3% and 17.6% for the next 24 h using an ensemble 
of models. Recently, Bata et al. in Bata et al. (2020) obtained 
a MAPE of 12.3% for the day-ahead water forecasting and 
Smolak et al. of 9.6% in Smolak et al. (2020).

After a thorough review of the previously published 
works, it can be concluded that machine learning techniques 
have generally provided better results than classical tech-
niques, but also that there is no optimal model of machine 
learning that is the most appropriate for all cases. On the 
contrary, several works (Makridakis et al. 2018) concluded 
that classical prediction methods may have better perfor-
mance than those based on machine learning in the pre-
diction of certain time series. These two points reinforce 
the idea that it is necessary to analyze each case with its 
particularities.

Problem description

In this paper we will analyze and predict the demand of 
drinking water in the short term in the city of Murcia, 
located in southeastern Spain, one of the areas of Europe 
suffering greater water stress. These predictions could be 
used later for two purposes: the optimization of its manage-
ment and the detection of anomalies.

The goal of the time series analysis is to obtain math-
ematical models that allow to explain the behavior observed 
in a time series and that can be applied to the prediction of 
future values. To do this, we propose to develop a model of 
machine learning, based on deep neural networks, as accu-
rately as possible, for the drinking water demand forecasting 
in the city of Murcia in the short-term, namely, four hours. 
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As a time horizon of prediction we have considered a value 
of four hours, since it is a sufficient time to plan some of the 
main tasks carried out every day in the management systems 
of a city of these characteristics. To obtain a prediction of 
the water consumption for the next 4 h, we will need to make 
a multi-step prediction as the samples are acquired every 
10 min. Therefore, the model will provide 24 values in each 
run. In addition, the required computations to obtain the 
prediction must be performed every 10 min.

Finally, these predictions would then be used to optimize 
the operation and to detect anomalous consumption patterns 
due to breakdowns in the distribution network.

Proposed methodology

Data

The city of Murcia is located in the region of Murcia in 
southeast Spain and has a population of 453258 inhabitants, 
with an average annual growth of 0.8% in the last five years. 
It is the seventh largest city in Spain in terms of population 
and geographically includes 52 districts covering an area 
of 882 km2 as shown in Fig. 1. The network of distribution 
pipes managed by the municipal water company of Murcia 
reaches 2203 km, and the consumption of drinking water 
per inhabitant is approximately 185 ls per day. The use of 
the water includes mainly domestic, industrial, service and 
garden irrigation.

The drinking water consumption data consists of meas-
urements in cubic meters per hour ( m3∕h ) collected by the 
supervisory, control and data acquisition system of the com-
pany that manages water in Murcia. The data are recorded 
with a frequency of 10 min from January 1, 2019 to June 
30, 2020. In short, the starting dataset is composed of 78773 
samples and a summary of the main statistical values is 
shown in Table 1.

Figure 2 shows the water consumption in Murcia from 
January 2019 to December 2019 divided into quarters. It can 
be observed high seasonality, as well as that the consump-
tion remains at stable values for most of the year, although 
it was significantly reduced during the summer period of 
2019. This is possibly caused by the decline in the city’s 
population during the holiday period.

Figure 3 presents the values of water consumption for the 
week comprising the days from Monday 21 to Sunday 27 
January 2019. It can be noted that working days from Mon-
day to Friday show a similar pattern. However, weekends 
and holidays have a different consumption pattern related to 
the change in activity and schedules.

Figure 4 depicts the water demand for one working day. 
It follows a pattern according to the activity and habits of 
the day, that is, consumption is very low in the early morn-
ing, with a peak in the early afternoon that decreases, and 
increases again in the early evening.

Figure 5 shows the water consumption for several weeks. 
It is not always known in detail what causes the variations 
that are observed, for example, between working days. They 
are sure to be very varied from the appearance of break-
downs to specific demands from large consumers or the 
presence of large events in the city. It should be noted that 
similar patterns occur in other utilities required by our soci-
ety such as electricity demand (Galicia et al. 2018; Troncoso 
et al. 2004) or transportation (Yasdi 1999).

Deep neural networks

There are currently a large number of DNN architectures 
such as feed forward, convolutional or recurrent networks, 
each specially designed for a particular type of application 

Fig. 1   Location of the city of Murcia in the region of Murcia

Table 1   Descriptive statistics of the water consumption time series

Measures Value ( m3∕h)

Mean 1487
Median 1621
Standard deviation 599
Maximum 2871
Minimum 301
Percentile 25% 934
Percentile 75% 1957
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Fig. 2   Water consumption from January 2019 to December 2019 divided into quarters

Fig. 3   Water consumption for a particular week

Fig. 4   Water consumption for a particular working day
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or data. A full survey of the deep learning for time series 
forecasting can be found in Torres et al. (2021).

In this work, a Deep Feed Forward Neural Network 
(DFFNN) has been designed for the water consumption fore-
casting. Its main advantages are to be able to learn both lin-
ear and nonlinear relationships present in the time series, the 
possibility of making multi-step and multivariate predictions 
and it needs fewer assumptions in its modeling compared 
with other techniques. On the other hand, deep learning tech-
niques also have a number of drawbacks such as very poorly 
interpretable models or a high number of hyper-parameters. 
Although the explainability or interpretability of the models 
may be very relevant in other types of applications such as 
medicine or finance, among others, it is not for the water 
consumption forecasting.

DFFNN, also called multi-layer perceptron, arose due to 
the inability of single-layer neural networks to learn certain 
functions. The architecture of a DFFNN is composed of an 
input layer, an output layer and different hidden layers as 
shown in Fig. 6. In addition, each hidden layer has a certain 
number of neurons to be determined.

The relationships between the neurons of two consecutive 
layers are modelled by weights, which are calculated during 
the training phase of the network. In particular, the weights 

are computed by minimizing a cost function by means of 
gradient descent optimization methods. Then, the back-prop-
agation algorithm is used to calculate the gradient of the 
cost function. Once the weights are computed, the values of 
the output neurons of the network are obtained using a feed 
forward process defined by the following equation:

where al are the activation values in the l-th layer, that is, 
a vector composed of the values of the neurons of the l-th 
layer, Wl

a
 and bl

a
 are the weights and bias corresponding to 

the l-th layer, and g is the activation function. Therefore, 
the al values are computed using the activation values of 
the l − 1 layer, al−1 , as input. In time series forecasting, the 
rectified linear unit function (ReLU) is commonly used as 
activation function for all layers, except for the output layer 
to obtain the predicted values which generally uses the 
hyperbolic tangent function (tanh).

For all network architectures, the values of some hyper-
parameters have to be chosen in advance. These hyper-
parameters, such as the number of layers and the number of 
neurons, define the network architecture, and other hyper-
parameters, such as the learning rate, the momentum, num-
ber of iterations or minibatch size, among others, have a 
great influence on the convergence of the gradient descent 
methods. The optimal choice of these hyper-parameters is 
important as these values greatly influence the prediction 
results obtained by the network. The hyper-parameters will 
be discussed in more detail in Sect. 5.3.

Model evaluation

Classical techniques for the selection and evaluation of 
machine learning models have limitations when applied to 
time series forecasting. Thus, the hold-out technique with 
a single training and test set involves arbitrarily selecting a 
set of test. This set of test will correspond only to the final 
temporal range of the available values of the time series. 
Thus, an error measure that is not very representative of 
the model’s predictive performance can be obtained when 
applied at any other timestamp of the time series. However, 
the classical k-fold cross-validation implies not respecting 
the temporal order of the samples, an essential feature in 
time series (Bergmeir and Benítez 2012).

In this work, a nested cross-validation technique is used 
(Varma and Simon 2006). With this evaluation technique, 
the water consumption time series is studied in different time 
ranges, repeating the training and testing process for each 
of these ranges. Finally, a more robust and representative 
final error is obtained. This error is the average of the errors 
obtained for each aforementioned time range, as is depicted 
in Fig. 7. For the proposed DFFNN model, the re-training 

(1)al = g(Wl
a
al−1 + bl

a
)

Fig. 5   Water consumption for several weeks

Fig. 6   Basic architecture of a DFFNN for time series forecasting
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process is repeated for 10 different periods, using the data-
sets composed of the first 6, 10, 11, 12, 13, 14, 15, 16, 17 
and 18 months, respectively.

The proposed model was periodically re-trained with 
all available data as the DFFNN model can obtain better 
results using a larger amount of data. Thus, a growing win-
dow strategy is applied instead of the typical sliding window, 
as shown in Fig. 8. The historical window of values used for 
each forecast is the number of neurons for the input layer 
of the DFFNN model and it is one of the parameters to be 
optimized. In this work, the percentage distribution of the 
data for the training, validation and test sets are 60%, 15% 
and 25%, respectively.

Results

Quality measures

Four well-established metrics in the context of time series 
have been chosen in order to evaluate the performance of the 
DFFNN model proposed in this work.

The mean absolute percentage error (MAPE) is a relative 
error expressed as a percentage. It is used as a guideline to 
measure the goodness of the prediction method when com-
paring to other models:

The mean absolute error (MAE), expressed in m3∕h , indi-
cates the average deviation between actual and predicted 
values:

The root mean squared error (RMSE), expressed in m3∕h , is 
the square root of the average of squared differences between 
predicted and actual values. By using the squared values, all 
of them are forced to have a positive value and the errors of 
greater magnitude have, proportionally, a higher weight in 
the result.

Finally, the coefficient of determination R2 provides a meas-
ure of the accuracy with which predictions match actual 
values. Its value is between 0 and 1, indicating poor fit or 
perfect fit, respectively.

(2)MAPE(%) =
100

n

n∑

t=1

|yt − ŷt|
yt

(3)MAE =
1

n

n∑

t=1

|yt − ŷt|

(4)RMSE =

√√√√1

n

n∑

t=1

|yt − ŷt|2

(5)R2 = 1 −

∑n

t=1
(yt −�yt)

2

∑n

t=1
(yt − ȳ)2

Fig. 7   Nested cross-validation procedure for model evaluation (adaptation of Cochrane et al. 2021)

Fig. 8   Growing window versus sliding window
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For all the equations above, yt represents the actual value of 
the time series, ŷt represents the forecasted value, n repre-
sents the number of points included in the prediction and ȳ 
denotes the mean of the time series values.

Preprocessing

The quality of the input data is essential for any deep learn-
ing model to obtain accurate predictions. Therefore, an 
analysis of the performance of the DFFNN when applying 
different preprocessing techniques has been carried out.

The time series has a total of 33 missing values and no 
values equal to 0, null, or negative. In order to determine 
which technique is the most appropriate for the imputation of 
missing values, some values from the time series have been 
randomly removed. The assignation of these missing values 
has been performed using different methods such as forward 
fill, backward fill, linear interpolation, linear fill, cubic fill, 
mean of k nearest neighbors and seasonal mean. Then, the 
mean square error (MSE) is computed for a training set and 
the method providing the lowest MSE is selected. The best 
results have been obtained using linear interpolation.

In a time series the presence of statistically anomalous 
values or outliers is common. Some outliers can be simply 
due to the presence of errors in the system for measuring 
and recording the water consumption data. However, other 
outliers may be caused by real variations in consumption 
as undesired punctual situations (breakdowns in the trans-
port and distribution networks), or occasional demands 
from large consumers (municipal swimming pools, indus-
tries, large events, etc.), which cannot always be known in 
advance. It is recommended to keep the outliers correspond-
ing to high consumption that may occur periodically and that 
are not caused by failures for model learning. However, both 
types of outliers are indistinguishable and considering that 
our DFFNN model has a significant tolerance to the presence 
of these anomalous values, no special treatment for outliers 
has been considered.

The time series includes consumption values ranging 
from 301 to 2871 m3∕h . It is known that the gradient descent 
technique used by the DFFNN model in the training phase 
works better if the variables are in a smaller range, being 
able to converge more quickly to its solution. The effect of 
standardization and scaling transformations to the ranges 
[0, 1] and [−1, 1] has been tested. It was observed the range 
[−1, 1] provided the best results.

Finally, transformations have been performed to make the 
time series of water consumption stationary, without obtain-
ing any improvement in the accuracy of the predictions.

Table 2 shows a summary of the different techniques 
applied to preprocess the water consumption data regard-
ing missing values, feature scaling and transformation to 

stationary time series and the technique selected according 
to the lowest mean square error.

Hyper‑parameters

Most machine learning algorithms require the selection 
of several parameters, which are not directly learned by 
the model. These are called hyper-parameters. The hyper-
parameters to be optimized for the DFFNN model are shown 
in Table 3. With the objective of minimizing the MSE, a 
grid search strategy was used to find the best values for 
the hyper-parameters. Thus, once the best parameters have 
been obtained from different possible combinations, the final 
model is trained. For the rest of the methods used in the 
comparison, all hyperparameters were optimized following 
the same grid search strategy. The most widespread search 
thresholds in the literature were established.

Analysis of results

Figure 9 illustrates a comparison between the original and 
predicted values by the DFFNN. It can be seen how the 
actual and predicted values are quite similar and how the 
forecast has been able to capture the seasonal component 
of the original series and differentiate the behavior between 
weekdays and weekends.

Furthermore, the evolution of the MSE loss function in 
the training and validation phases indicates that the model 
obtained does not have significant overfitting or underfitting, 
as illustrated in Fig. 10.

Figure 11 shows the correlation between the actual values 
and forecasted values obtained by the DFFNN model for the 
test set. A R2 value of 0.987 is displayed, showing how good 
the predictions are.

Table  4 presents the largest errors obtained by the 
DFFNN model for the test set, ordered from largest to small-
est. It can be observed that three errors correspond to the 

Table 2   Summary of preprocessing techniques

Preprocessing Optimal

Missing values Forward fill Linear interpolation
Backward fill
Linear interpolation
Linear fill
Cubic fill
Mean of k nearest neighbors
Seasonal mean

Feature scaling Normalization [-1,1] Normalization [-1, 1]
Normalization [0, 1]
Standardization

Stationary Yes, No No
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early morning of 24 March 2020. However, water consump-
tion was higher than usual for those hours, possibly due to 
a breakdown or some other incident, as shown in Fig. 12.

The residuals are the difference between the time series 
and the predictions obtained by the forecasting model for 
the training set. An uncorrelated residual with a mean 
of zero indicates that the forecasting method is able to 

Table 3   Hyper-parameter 
search for DFFNN model

Hyper-parameter Values Optimal

Number of layers 2, 3, 4, 5 4
Number of neurons for input layer (historical 

window)
72 (12 h) 24 h
144 (24 h)
216 (36 h)

Number of neurons for hidden layers 50, 100, 150, 200, 250, 300 250
Activation function for hidden layers ReLU, Leaky ReLU tanh

tanh, sigmoid, linear
Activation function for output layer ReLU, tanh, linear linear
Number of epochs 400, 800, 1600 800
Mini-batch size 256 256
Learning rate 0.001, 0.01, 0.1, 0.5, 1 0.5

(fixed/dynamic reduction) (dynamic reduction)
Optimization algorithm SGD, RMSprop SGD

Adam, Adagrad
Loss function MSE, MAE MSE
Weights initialization Glorot uniform Glorot uniform

Glorot normal
uniform, normal

Regularization With/Without dropout Without dropout
Batch normalization Yes/No No

Fig. 9   Actual vs predicted values

Fig. 10   Evolution of the loss function versus the number of epochs 
for the training and validation sets

Fig. 11   Correlation between actual and predicted values for the test 
set
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model most of the information available in the original 
data. This does not ensure that the model has a good per-
formance when predicting the test set, but it suggests that 
there is little room for improvement with the available 
information. On the other hand, if these conditions are 
not met, it is important to clarify that the model can still 
provide predictions that satisfy the expectations according 
to the errors metrics depending on the application under 
study. Figure 13 shows the residual errors obtained by the 
DFFNN model. From the autocorrelation function, it can 
be observed that the residuals of the predictions model a 

white noise. Most of the values have a low value, below 
the 95% (solid line) and 99% (dotted line) confidence band.

Comparison with benchmarking methods

In order to compare the performance of the proposed 
DFFNN model to other possible forecasting techniques, 
six methods are considered such as K Nearest Neigbors 
(KNN), Random Forest (RF), Extreme Gradient Boosting 
(XGBoost), a Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model and two baseline models.

The KNN has been successfully applied to obtain pre-
dictions of energy consumption in recent years and the 
prediction is based on the weighted linear combination of 
the time series values following in time order to the nearest 
neighbors, where the weights are determined depending on 
the distance of the neighbors to the past values (Talavera-
Llames et al. 2019). In this work, the distance for the calcu-
lation of the neighbors has been the Manhattan distance and 
a single close neighbor has been considered.

RF and XGBoost are two methods based on ensembles of 
trees, but the training processes are very different. XGBoost 
train one tree at a time, while RF can train multiple trees in 
parallel. After extensive experimentation, 18 and 200 trees 
of maximum depth 14 and 2 have been used for RF and 
XGBoost, respectively.

The baseline models are based on a persistence algorithm, 
i.e., the prediction for a future time instant has the same 
value as in previous instants, so it represents a high cor-
relation. In some works, this approximation is also known 
as seasonal naive (Livera et al. 2011). From the consump-
tion patterns and correlation plots, a similarity between the 
measurement at instant t and the same instant of the previous 
day or week can be seen. Mathematically, the prediction is 
computed as follows:

where ŷt denotes the predicted value at instant t and yt−144 
and yt−1008 the actual values of the time series at same time 
instant of the previous day or week, respectively.

On the other hand, the performance of the DFFNN model 
has been compared with a classical time series model, in 
particular, the SARIMA model. This model has been suc-
cessfully used in a large number of practical problems and 
offers a high interpretability of the results, being also able to 
obtain well-defined confidence intervals in the predictions 
(Arunraj et al. 2016). As for the disadvantages, it can only 
extract the linear relationships present in the time series. 
SARIMA is an extension of the ARIMA model for univari-
ate time series, which also includes a seasonal component. 

(6)ŷt =yt−144

(7)ŷt =yt−1008

Table 4   Maximum absolute errors for the DFFNN model

Timestamp Real Predicted Absolute
value value error

2020-03-24 02:50 944.24 535.95 408.30
2020-06-05 10:50 2488.82 2095.90 392.92
2020-03-24 02:40 946.46 557.96 388.50
2020-03-24 02:30 948.62 567.02 381.60
2020-03-28 10:50 2433.17 2054.26 378.90

Fig. 12   Actual vs predictions for the days from March 22 to March 
25, 2020

Fig. 13   Autocorrelation function of the residuals for the DFFNN 
model
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For this reason, SARIMA is of special interest in time series 
that exhibit periodic characteristics such as the time series 
of water consumption. The SARIMA model has 7 hyperpa-
rameters: p, d and q for the autoregressive, differential and 
moving average components, respectively, and P, D and Q 
for these same components of the seasonal part, and finally, 
a value m including the number of samples for a single sea-
sonal period. As in the case of the DFFNN model, a grid 
search has been used to find the best SARIMA model con-
figuration. The metric used has been the Akaike information 
criterion (AIC), which allows to compare the performance 
of different statistical models. The AIC value is lower as 
the model output has a higher similarity to the data, but it 
also adds a penalty term depending on the number of hyper-
parameters in the model in order to avoid overfitting. There-
fore, a lower value of the AIC indicates a better model fit.

Table 5 shows the optimal values for the hyperparameters 
of the SARIMA model.

Figure 14 shows the prediction made by the SARIMA 
model for the week of October 8–13, 2019, including the 
95% confidence interval (shaded in grey colour). A certain 
similarity with the real series can be observed, but the error 
is significant at some time points. Even so, the model has 
been able to capture a good part of the seasonality of the 
water consumption.

For the SARIMA model, the mean of the residuals is 
practically zero, but the residuals of the predictions show 
significant correlations, as shown in the correlogram and 
histogram in Fig. 15. Therefore, very accurate predictions 
are not expected by the SARIMA model.

Table 6 shows the average of the MAPE, MAE, RSME 
and R2 errors when predicting the test set for a total of 10 
runs. The DFFNN model provides the best performance. 
The second best method is the RF, although it is 0.7% 
above the DFFNN. The persistence model has the advan-
tage of its great simplicity, although it obtains greater errors 
than the DFFNN model and all other methods, except the 
SARIMA model. The SARIMA model does not improve 
the performance of the persistence models, which confirms, 
once again, that a more complex model does not necessar-
ily always give better results. In addition, the predictions 

obtained by the DFFNN model range within a small interval 
as the standard deviation is low for the water consumption.

In order to increase the confidence in the results, a statis-
tical significance test has been used, in particular, the Wil-
coxon test (García et al. 2010). The Wilcoxon test is non-
parametric, i.e. it does not assume a specific distribution of 
the data and is suitable for use with paired results. The null 
hypothesis in the Wilcoxon test consists of assuming that the 
results being compared come from the same population, and 
that, therefore, they have the same statistical parameters. In 
this study, a value of 0.05 has been considered as the level 
of significance � . If the p-value obtained from the test set 
is less than � , it can be concluded that the distributions of 
the results are different, and therefore, the observed differ-
ences are not random, i. e. the differences between fore-
casting methods are statistically significant. Table 7 shows 

Table 5   Hyperparameter search 
for SARIMA model

Hyperpa-
rameter

Values Optimal

p 0, 1, 2, 3 3
d 0, 1, 2, 3 0
q 0, 1, 2, 3 1
P 0, 1, 2, 3 3
D 0, 1, 2, 3 1
Q 0, 1, 2, 3 1
m 24, 1268 24

Fig. 14   Actual versus predicted values by the SARIMA for the week 
from October 8 to October 13, 2019

Fig. 15   Diagnosis of the residuals for the SARIMA model
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the p-values obtained for the MAPE in the Wilcoxon test. 
The p-values have been adjusted using the Holm procedure. 
Similar results were obtained regarding the MAE, RSME 
and R2 . Note that since a multiple testing has been applied, 
the Bonferroni correction is necessary, being a statistically 
significant difference if � is less than 0.0024 as 21 compari-
sons of paired samples is made. It can be observed that the 
DFFNN presents significant differences with all forecasting 
methods according to the p-values. KNN does not present 
significant differences with XGBoost and the 1-week based 
baseline, and SARIMA with the 1-day based baseline either.

Application: Anomaly detection

The predictions obtained with DFFNN can be used for water 
consumption anomalies detection. The methodology consists 
of analyzing which values of the time series differ signifi-
cantly from the prediction made by DFFNN. For this pur-
pose a band is defined through a lower and upper margin of 
the prediction obtained by the DFFNN. In particular, when 
the values of the original series fall outside this band, the 
possible presence of anomalous values or outliers can be 
predicted.

Figure 16 shows the prediction of the DFFNN model 
along with a certain upper and lower margin of 15%. It can 
be seen how this methodology points to the water consump-
tion values occurring in the early morning of March 24, 
2020 as possible outliers as shown also in Fig. 12.

Conclusions

In this paper the DFFNN deep learning approach based on 
feed-forward neural networks has been proposed to fore-
cast water consumption in the short-term. A grid search 
has been carried out in order to tune the multiple hyper-
parameters involved in the performance of the DFFNN and 
an evaluation methodology based on growing windows is 
introduced in order to preserve the temporal order of the 
time series. Prediction results have been reported using 
a dataset of water consumption in the city of Murcia in 
Spain. The proposed DFFNN method has been evaluated 
according to the MAE, MAPE, RMSE and R2 , yielding 
an average error close to 3%. The comparison results 
show that the DFFNN model improves significantly the 

Table 6   Errors for DFFNN, 
KNN, RF, XGBoost, SARIMA 
and persistence models for the 
test set

DFFNN KNN RF XGBoost SARIMA Baseline
1 day

Baseline
1 week

MAPE Mean 2.99 5.20 3.69 4.85 7.94 7.79 5.62
St. dev 0.21 0.79 0.29 0.25 0.76 0.81 0.42

MAE Mean 45.15 78.36 56.22 73.96 119.60 118.70 86.75
St. dev 2.32 10.39 4.38 4.36 12.05 13.14 5.92

RMSE Mean 66.75 111.55 85.85 107.21 174.50 172.14 127.80
St. dev 2.95 16.29 6.01 5.60 16.45 17.57 11.10

R
2 Mean 0.987 0.961 0.979 0.966 0.905 0.911 0.952

St. dev 0.002 0.015 0.002 0.005 0.024 0.024 0.010

Table 7   Statistical tests for the 
MAPE for all algorithms

DFFNN KNN RF XGBoost SARIMA Baseline
1 day

Baseline
1 week

DFFNN 0.002 0.492 0.002 0.002 0.375
RF 0.002 0.002 0.002 0.002
XGBoost 0.002 0.002 0.002
SARIMA 1.000 0.002
Baseline
1 day

0.002

Fig. 16   Detection of anomalous water consumption
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forecasting performance compared with the KNN, RF, 
XGBoost, SARIMA seasonal method and two persistence 
models. The statistical significance of the DFFNN model 
developed has been assessed through the Wilcoxon signed-
rank test, showing p-values smaller than 0.05 for all the 
paired combinations.

Future work will be directed towards developing other 
types of deep neural networks, applying learning transfer 
from other fields such as electricity consumption as well 
as making predictions for medium or long-term horizons.
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