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Abstract
Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time 
series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated 
to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often 
unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid 
spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) 
springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each 
spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS 
springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct 
the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution 
and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of 
Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from 
March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and 
occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be 
considered as the firm yield of this source. However, the amount of allocated water from this source should be determined 
by considering the ecological needs of the river downstream of this spring.

Keywords Absefid Spring · Discharge estimation · Copula · Bivariate probability · Karst spring

Introduction

The use of spring water is a common solution to meet the 
drinking water needs of cities and villages globally. Since 
the water from these springs is often of good quality, it does 
not need to be treated and no energy needs to be expended to 
extract it. In order to exploit the water from the springs and 
allocate it to the different needs, information is needed about 
the quantity of water supply, the changes in discharge during 
different months of the year and during periods of drought, 
and also the quality of the water. Therefore, it is necessary 
to continuously monitor the quality and quantity of spring 
water. In Iran, measurement of spring discharge and quality 
sampling are usually carried out seasonally (once every three 
months) and in some cases monthly. Various methods are 
used to measure spring discharge, such as the weir method, 
the volumetric method, the velocity–area method, and less 
frequently the dye tracing and pressure transducer methods 
(Gil‐Márquez et al., 2017). The application of each method 
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depends on the flow rate, the morphology of the spring out-
let, the available tools, and the purpose of the measurement 
(Kresic & Stevanovic 2010).

However, because some springs are inaccessible, they 
are measured annually, or no observational data have been 
recorded. Planning the use of water from such springs is 
very difficult because there is no reliable basic information 
to estimate the amount of spring water and conduct accurate 
planning (Jeannin et al. 2021). Therefore, providing reliable 
methods for estimating (predicting) the discharge from such 
springs where long-term hydrometric data are unavailable is 
crucial. To date, researchers have developed several methods 
to estimate spring discharge.

One of the common methods for estimating the discharge 
of a spring is to develop or use existing hydrologic models 
that simulate the behavior of the spring and its watershed 
(Chen & Goldscheider 2014; Zhou et al. 2019; Meng et al. 
2021; Guo et al. 2023). These models take into account some 
effective factors such as precipitation, snowmelt, soil proper-
ties, and topography to estimate the discharge of the spring 
(Zhang et al. 1996; Hartmann et al. 2014; Peng et al. 2021). 
It is also very common to use numerical models to simulate 
groundwater flow. To build these models, much informa-
tion is needed about the hydrodynamic characteristics of 
the aquifer (such as hydraulic conductivity, transmissivity, 
and specific yield), the geology, and also long-term obser-
vational data (Luo et al. 2016a; Katsanou et al. 2022; Wang 
et al. 2022). This is because the relationships used in these 
models should be calibrated using long-term observational 
data and the model should eventually be validated (Jeannin 
et al. 2021). The method of isotopic analysis is also used in 
some cases to trace the source and movement of groundwa-
ter, which can provide insights into the discharge patterns of 
the spring. However, the application of this method requires 
a lot of time and money, and its accuracy may decrease under 
the influence of some factors (Osati et al. 2014; Gil‐Márquez 
et al., 2016; Guo et al. 2022; Wang et al. 2022). The remote 
sensing technologies such as satellite imagery or aerial pho-
tography and drones have been also used to estimate spring 
discharge (Hunn & Cherry 1970; Loheide & Steven 2009; 
Jou-Claus et al. 2021; Bandini et al. 2021). In recent years, 
using data mining and artificial intelligence to estimate the 
discharge of springs has attracted the attention of research-
ers, although these methods require long-term observational 
data (Lambrakis et al. 2000; Granata et al. 2018; Savary 
et al. 2021; Gai et al. 2023; Mukherjee et al. 2023).

Some other indirect methods have been used to estimate 
the flow of springs, which are less accurate and may have 
limitations and uncertainties. These methods mainly provide 
an estimate of the potential flow of the spring or its extreme 
values. For example, by examining vegetation density, types 
of plants grown, and wetland conditions downstream of the 
spring, an estimate of the minimum discharge of the spring 

can be made (Andreo et al. 2016; Luo et al. 2016b). Because 
certain plant species or wetland conditions may require spe-
cific levels of water flow, giving us an idea of the minimum 
discharge required to maintain them (Kokinou et al. 2023). 
One of the other methods is based on hydrologic similarity. 
In this way, first some geomorphological, hydrological, and 
environmental observations (e.g., signs of erosion, sediment 
deposition, or vegetation patterns) are collected through field 
surveys of the spring and its surroundings. The next step is 
to check the compatibility of these features with other nearby 
springs with similar conditions that have measured discharge 
data to obtain an estimate of the historical discharge of the 
unmeasured spring (Zhang et al. 2022).

It should be noted that the use of each of these methods 
depends on the resources available, the characteristics of 
the spring, and the degree of precision desired, and that it is 
sometimes possible to refine estimates by combining infor-
mation obtained from two or more methods.

This study was concerned with estimating the discharge 
of the Absefid spring. Due to the inaccessible location of 
this spring, its discharge was not measured regularly. In 
contrast, the discharge of some other springs near this area 
was measured monthly. Comparing the time series of the 
discharge of other springs in the region, it is found that the 
changes in the discharge of the springs are similar to each 
other. Considering the geological features of the region 
and the fact that most of these springs were formed around 
the same fault, there is a possibility that the similarity in 
the behavior of the springs among themselves is due to the 
geological structure of the region, in addition to the same 
climatic conditions. After comparing the measured data of 
the Absefid spring with those of the neighboring springs, 
it was found that the discharge of the Absefid spring has a 
higher correlation with the Gerdebisheh spring. Considering 
the short distance between the two springs, the almost equal 
elevation, and the fact that both springs are located near the 
same fault, we came up with the idea of creating a bivari-
ate probability model between the discharge of the Absefid 
spring and the discharge of the Gerdebisheh spring. Using 
this bivariate model, it is possible to estimate the Absefid 
spring discharge by taking the Gerdebisheh spring discharge 
and assuming a certain probability level (e.g., 0.9). Copulas 
can be applied to construct a bivariate distribution between 
the discharge of two springs. Copula functions is a flexible 
statistical tool that has been used in recent years to create 
multivariate distribution in various hydro-climatology stud-
ies (Poonia et al. 2021; Birjandi et al. 2023; Amini et al. 
2023; Sadeghfam et al., 2022; Vahidi et al. 2023). To our 
best knowledge, this is the first study that uses probabilistic 
multivariate analysis to estimate spring discharge. The main 
objective of this research is to use the simulation approach 
based on the bivariate copula in the estimation of spring 
discharge.
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Materials and methods

Description of the studied area

Borujen County includes the cities of Borujen, Fara-
donbeh, Boldaji, Gandoman, Naqneh and Sefiddasht, a 
large part of which has a cold and dry climate. Currently, 
the population of this county is about 125,000 people, 
whose drinking water is often supplied from groundwa-
ter resources by digging wells. In recent years, with the 
development of agriculture in this region and the overex-
ploitation of groundwater, the aquifer level in the plains of 
Borujen, Faradonbeh and Sefiddasht has declined drasti-
cally. This has caused the supply of drinking water in these 
cities to be accompanied by problems, and in addition to 
the decline in water quality, most days the drinking water 
of homes is cut off for several hours. So far, measures have 
been taken to solve this problem, such as digging deep 
wells and planning to transfer water from the Zayandeh 
Rud River (Ben-Borujen Water Transmission Project), 
but it has not been done yet (Sharifi et al. 2021). One of 

the solutions for sustainable supply of drinking water for 
Borujen is to transfer water from the Absefid spring.

The Absefid spring is located in the Borujen county, Iran, 
and 8 km west of the village of Sarpir. Access to this spring 
is possible via the 54 km paved road from Borujen to Dora-
han and the 10 km dirt road from Dorahan to Sarpir, and 
then passing through an impassable path of about 8 km.

The outlet of the spring is located on the slope of Hezar 
Dareh Mountain, at an altitude of 1720 m above sea level 
and in the geographical position of 51° 5′ 14" east longitude 
and 31° 38′ 22" north latitude (Fig. 1). According to the 
latest report of Chaharmahal and Bakhtiari Regional Water 
Authority, the average discharge of this spring is about 750 L 
per second. The water of this spring has very good quality 
and can be used as drinking water without any treatment.

The water from this spring flows into the Karebas River 
after traveling a distance of about 500 m on a steep slope. 
Due to the steep and rocky path from the outlet of the spring 
to the place where it flows into the Karebas River, the water 
of the spring is seen in white color, which is why it is called 
White Water Spring (Absefid in Persian). The Karebas River 
flows in a deep, impassable valley and then joins the Sabz-
koh River and finally the Great Karun. The two sides of the 

Fig. 1  Location of Absefid and Gerdebisheh springs in Borujen County and Iran
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Karebas River are relatively high in elevation and have a 
relative slope of more than 30 degrees. The northern slope of 
the Karebas River, which forms the heights of Hezar Dareh, 
is mostly rocky due to its predominant lithology, which is 
mainly carbonate, and the valleys are mostly U-shaped, the 
slopes are irregular and rough, and the vegetation cover is 
very sparse. The southern elevations of the river, Mount 
Pazan Pir and Mount Kalamooyi, consist of ancient sedi-
ments and part of the Paleozoic sediments.

According to the geological classification of Iran (Stock-
lin 1968), the feeding area of Absefid are located on the 
crushed zone of the main Zagros thrust (crushed Zagros) 
between the two structural zones of Sanandaj–Sirjan and 
Zagros fold and thrust belt. One of the most important fea-
tures of the Zagros fold and thrust belt is folds parallel to the 
northwest-southeast axial direction and numerous thrusts in 
the same direction, which were formed during a bending and 
shortening mechanism (Ghorbani 2013).

Outlet of Absefid spring is located in the contact of the 
Surmeh Carbonate Formation with the Shale and Neiriz 
Marl units. In the distance between downstream of Abse-
fid Spring and the Karebas River, tectonic mixed units are 
seen that include a mixture of the Khaneh-Kat, Mila, Zagon, 
and Lalon formations, and many parts of the complex are 
composed of shale and thin sandstone units of the Mila 
Formation.

The slope of the layering in this area ranges from 25 to 
38 degrees in the northeast direction and opposite to the 
topographic direction. Structurally, this area is located near 
the southeast plunge of the Sabzehkouh syncline. This Syn-
cline is formed as a popup structure between the end part of 
the Dena fault (Sabzekouh fault) and the thrust faults Hezar 
Dareh and Dopolan. In addition to the mentioned faults, due 
to the high tectonic pressure and the location of the region 
in the collision zone of the Dena fault and the Zagros main 
thrust, many faults and fractures have formed in the brit-
tle carbonate units as transverse and systemic faults, which 
play a special role in creating secondary permeability and 
karst development in the area. In the incised ridges of the 
Sabzekouh alluvium, there are carbonate formations of the 
second era. At their core is the impermeable Gurpi For-
mation, which acts as a hydraulic boundary separating the 
karstic aquifers of the northwest ridge from the southwest 
ridge. Around this syncline and at the fault intersections, the 
karst aquifers were drained and numerous karstic springs 
were formed such as Tang Siah, Bagh Khan, Haft Cheshme 
Boldaji, Hossein Abad, Nasir Abad, Bidak, Tang Westgan, 
Chehel Gazi in Bijgerd on the northeast side and Chehraz-
gun, Tang Zendan, Absharan, Gerdebisheh and Absefid 
springs on the southeast side (Fig. 2).

Absefid spring originates from limestone and gray dolo-
mitic limestone of Surmeh formation. In this area, under the 
Surmeh Formation, there are red to gray shale and sandstone 

units of the Neiriz Formation, which, as an impermeable 
bedrock, played a special role in storing the sinking water 
in the karst formations located on this formation and in the 
formation of the springs. The presence of a large thickness 
of carbonate formations, faults, fractures and useful joint 
porosity, as well as the development of karst and the high 
precipitation in the region, especially the high and snowy 
peak, have enhanced the formation of the karst aquifer in 
this deposit, resulting in the faults and fractures to drain a 
part of this aquifer as fault—karst springs such as Absefid.

Field investigations of the Absefid spring outlet show that 
this spring has many outlets originating in the area of the 
heights of the Hezar Dareh Mountains in the direction of the 
small fault valley. The higher elevation outlets become less 
watery and dry with the decline of snowmelt in the dry sea-
son and drought years, but the lower elevation outlets have 
permanent water. Therefore, the spring has a static reserve 
and a dynamic reserve, and the volume of dynamic discharge 
is relatively high due to the high gradient and adequate pre-
cipitation, which has resulted in large fluctuations in the total 
water supply to the spring during the wet and dry months of 
the year and also during the wet and drought periods.

Used data

Assuming the same hydrogeological regime (intra-annual 
flow fluctuation) of Gerdebisheh spring and Absefid spring, 
this study aimed to create a bivariate distribution between 
the monthly discharges of these two springs. To this end, 
based on the monthly discharge of Gerdebisheh spring and 
assuming a certain probability level, the discharge in Absefid 
spring can be estimated. The flow measurement of Absefid 
spring is not done continuously due to the impassability of 
the area and the only observational data from this spring 
is the monthly flow measured in the water year September 
2006–August 2007. In 2022, the spring’s flow was measured 
in June, July and August. The measured discharge values of 
the Absefid spring are given in Table 1.

The monthly discharge values measured at Gerdebisheh 
spring from March 1993 to August 2022 are presented in 
Appendix. The discharge values of Gerdebisheh spring were 
considered as the input of the copula-based model to esti-
mate the discharge of Absefid spring.

Copula function

In multivariate analysis, a copula function is a mathematical 
tool to describe the dependence structure between multiple 
random variables and their marginal distributions. Copulas 
are particularly useful when dealing with complex relation-
ships between variables that may not be adequately captured 
by linear correlation measures. The concept of a copula orig-
inates from probability theory and is often used in the field 
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of finance, risk assessment, and various other disciplines 
where understanding the joint behavior of multiple variables 
is important. The key idea behind copulas is to separate the 
joint distribution of variables into two components: the mar-
ginal distributions of each variable and the copula function 
that captures their dependence structure (Nelsen 2006).

Using copula functions is more flexible than using com-
mon multivariate distributions. Because the marginal distri-
butions can be of different types in creating a multivariate 
equation with copula functions. Copulas have the property 
that they are uniform distributions on the unit hypercube, 

which allows them to capture different types of dependence 
structures while preserving the marginal distributions. Some 
common copula families include the Gaussian (normal) cop-
ula, the Clayton copula, the student’s t copula, the extreme 
value copula, and many others. Each copula family has its 
own characteristics and is suitable for modeling different 
types of dependencies, such as positive dependence, nega-
tive dependence, and tail dependencies (Nazeri Tahroudi 
et al. 2021).

The introduction and presentation of the copula are cred-
ited to Sklar (1959), who elucidated a theory explaining how 

Fig. 2  Location of springs around Sabzehkouh and Hezar Dareh faults

Table 1  Measured monthly discharge of Absefid spring in 2006, 2007, and 2022

Year 2006 2006 2006 2006 2007 2007 2007 2007 2007 2007 2007 2007

Month Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Agu
Discharge  (m3  s-1) 1.0 0.8 1.2 1.5 2.1 2.7 3.8 3.5 3.1 2.6 2.1 1.5

Year 2021 2021 2021 2021 2022 2022 2022 2022 2022 2022 2022 2022
Month Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Agu

Discharge  (m3  s-1) – – – – – -– – – – 1.8 2.0 1.73
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various univariate distribution functions can be linked to 
form a multivariate distribution.

For N-dimensional continuous random variables 
X1,X2, ...,XN with corresponding marginal CDFs denoted 
as F

(
xi
)
= Pxi

(
Xi ≤ xi

)
 , the joint CDF of variable Xi can be 

defined as follows:

Copula is a function that combines univariate marginal 
CDFs to construct a multivariate distribution function. 
Therefore, Sklar (1959) demonstrated that the multivari-
ate probability distribution H can be expressed by the cop-
ula function (C) incorporating marginal distributions and 
dependence structure:

where FXi

(
xi
)
 denotes the ith marginal distribution and 

HX1,...,XN
 represents the CDF of joint distribution of 

X1,X2, ...,XN.
Considering that for continuous random variables (RV), 

the cumulative distribution function (CDF) of the margins 
is non-decreasing from zero to one, we can consider the C 
copula as a transformation of HX1,...,XN

 from [−∞,+∞]N to 
[0, 1]N . This transformation separates the marginal distribu-
tions from each other and as a result, the copula function C 
is only related to the relationship between the variables and 
gives a comprehensive description of the dependence struc-
ture. For two-dimensional case (variables X1 and X2 with 
CDFs u1 = FX1

(
x1
)
 and u2 = FX1

(
x1
)
 ), Eq. 2 is as follows 

(Nelsen 2006):

In practice, when using copulas, one typically follows 
these steps:

1. Determine the marginal distributions of the individual 
variables.

2. Choose a suitable copula family that fits the observed 
dependence structure

3. Estimate the dependency parameter (θ) of the copula 
based on the observed data

4. Simulate joint samples from the copula and combine 
them with the marginal distributions to obtain joint sam-
ples of the multivariate data

There are several methods to estimate copula dependence 
parameters, including method of moments, Maximum Like-
lihood Estimation (MLE), Inverse of Kendall’s tau, Canoni-
cal Maximum Likelihood Estimation, Pseudo Maximum 
Likelihood Estimation, Optimization-based techniques, and 

(1)
HX1,...,XN

(
x1, x2, ..., xN

)
= P

[
X1 ≤ x1,X2 ≤ x2, ...,XN ≤ xN

]

(2)
C
(
FX1

(
x1
)
,FX2

(
x2
)
, ...,FXN

(
xN

))
= HX1,...,XN

(
x1, x2, ..., xN

)

(3)H
(
x1, x2

)
= C

(
u1, u2

)
= C

(
FX1

(
x1
)
,FX2

(
x2
))

Inference Function for Margins (IFM) method. Among these 
methods, MLE and IFM have been used more in studies. In the 
present study, we used the IFM method to estimate the depend-
ency parameter of copula (θ). The IFM stands as the most 
prevalent approach for estimating the copula parameter, which 
was suggested by Joe (1997) and includes two steps: (a) maxi-
mizing the loglikelihood functions of each of the univariate 
marginal distributions and (b) maximizing the log-likelihood 
function of Copula to estimate the dependency parameter of 
Copula. For more details on this method, see Joe (1997) and 
Mirabbasi et al. (2012).

To select the appropriate copula from several candidate 
copulas, the cumulative distribution function (CDF) values 
for each theoretical copula are compared to the corresponding 
empirical copula values. In fact, the concept of empirical cop-
ula functions is quite akin to the concept of plotting position 
formulas that are used in univariate analyzes. The empirical 
copulas are the cumulative distribution of the rank transformed 
variables (Nelsen 2006). For a sample with size n, the empiri-
cal two-dimensional copula can be calculated as follows:

In the above relationship, n denotes the sample size and 
I(�) denotes the indicator variable. When the logical expres-
sion of � is true, it takes a value of one, and if it is not true, 
it takes a value of zero. Ri1 and Ri2 are the ranks of the ith 
observation data (i.e., u1andu2 ), respectively, and uk is the CDF 
value of the kth variable.

Dependency structure analysis

Normally, Pearson's linear correlation coefficient (r) is used 
to measure the relationship between two variables. However, 
this method has some flaws, including that the r coefficient is 
strongly affected by outlier data. Also, if X or Y or both of them 
uniformly power other than one, then the value of the correla-
tion coefficient will change, but there will be no change in their 
rank correlation. Pearson's correlation coefficient is suitable 
for data that follows an elliptical distribution (Nelsen 2006).

Nonparametric statistics, including Kendall's τ statistic, can 
be used to solve Pearson's correlation coefficient drawbacks. 
Nonparametric correlation coefficients can model different 
types of correlation, because data distribution and outliers do 
not have much effect on them. Kendall's τ is a rank correlation 
coefficient that is used in problems related to copula functions 
which is defined as follows.

The term P
[(
X1 − X2

)(
Y1 − Y2

)
> 0

]
 is the probabil-

ity of concordance and P
[(
X1 − X2

)(
Y1 − Y2

)
< 0

]
 is the 

(4)Cn

(
u1, u2

)
=

1

n

n∑
i=1

I

(
Ri1

n + 1
≤ ui1,

Ri2

n + 1
≤ ui2

)

(5)
𝜏 = P

[(
X1 − X2

)(
Y1 − Y2

)
> 0

]
− P

[(
X1 − X2

)(
Y1 − Y2

)
< 0

]
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probability of discordance. If 
(
xi − xj

)(
yi − yj

)
> 0 two 

pairs are considered concordance, if 
(
xi − xj

)(
yi − yj

)
= 0 

two pairs are neither concordance nor discordance, and if (
xi − xj

)(
yi − yj

)
< 0 two pairs are considered discordance. 

Kendall's coefficient is within the range [−1, 1] . In this case, 
the number 1 indicates complete concordance, zero indicates 
zero concordance, and the number − 1 indicates complete 
discordance.

For a random sample including n paired observations, (
x1, y1

)
,
(
x2, y2

)
,… ,

(
xn, yn

)
 , sample estimator of Kendall's 

tau can be calculated by following relationship:

where i, j = 1, 2,… , n and sgn[�] is the sign function:

In this study, in order to construct a bivariate distribution 
of the discharge of Gerdebisheh spring and Absefid spring, 
the fitness of 8 different copulas was evaluated. The CDF 
formula and the range of dependency parameter (θ) of the 
studied copula functions are given in Table 2.

Conditional state of the copula function

One of the important issues in using conditional joint distribu-
tions is the uncertainty of the results (Tahroudi et al. 2020). 

(6)𝜏 =

(
n

2

)−1 ∑
1≤i<j≤n

sgn
[(
xi − xj

)(
yi − yj

)]

(7)sgn(𝜓) =

⎧
⎪⎨⎪⎩

1 if 𝜓 > 0

0 if 𝜓 = 0

−1 if 𝜓 < 0

To overcome this shortcoming, this study used an alternative 
method based on conditional density relations of copulas. In 
this method, the following algorithm is implemented in each 
step:

1. The conditional density diagram c(u, v) is drawn in two-
dimensional mode for the investigated variables. This 
graph is drawn for one of the CDF values (u or v). As an 
illustration, if the goal is to estimate the discharge of the 
Absefid spring (given the Gerdebisheh spring discharge 
values), v values are considered equal to the CDF of the 
Gerdebisheh spring discharge. Because the discharge of 
Absefid spring is dependent on the discharge of Gerdebi-
sheh spring.

2. For each value of Gerdebisheh spring discharge, a graph 
is drawn based on u.

3. In each curve, the maximum value of c(u, v) is chosen 
and its corresponding value is determined on the x axis.

4. These maximum values are actually Absefid spring dis-
charge corresponding to Gerdebisheh spring discharge.

The conditional density parameter of the copula is also esti-
mated from the following equation:

where c and C are the PDF and CDF of the copula function, 
respectively. u and v are the CDFs of the marginal distribu-
tions of variables X1 and X2 , respectively.

(8)c(u, v) =
�2C(u, v)

�u�v

Table 2  CDF formula and dependence parameter range of copula functions used in this study (Nelsen 2006)

† θ is the copula dependency parameter

Copula name CDF formula Range of θ†

Ali–Mikhail–Haq (AMH) C(u, v) =
uv

1−�(1−u)(1−v)
−1 ≤ � ≤ 1

Clayton
C(u, v) = max

[(
u
−� + v

−� − 1
) −1

� , 0
]

� ≥ 0

Frank
C(u, v) = −

1

�
ln
[
1 +

(e−�u−1)(e−�v−1)
e−�−1

]
� ≠ 0

Galambos
C(u, v) = uv exp

{[
(− ln u)−� + (− ln v)−�

]− 1

�

}
� ≥ 0

Gumbel–Hougaard (GH)
C(u, v) = exp

{
−
[
(− ln u)� + (− ln v)�

] 1

�

}
� ≥ 1

Farlie–Gumbel–Morgenstern (FGM) C(u, v) = uv[1 + �(1 − u)(1 − v)] −1 ≤ � ≤ 1

Plackett
C(u, v) =

1

2

1

�−1

{
1 + (� − 1)(u + v)−

[
(1 + (� − 1)(u + v))

2 − 4�(� − 1)uv
] 1

2

}
� ≥ 0

Joe
C(u, v) = 1 −

[
(1 − u)� + (1 − v)� − ((1 − u)(1 − v))�

] 1

�
� ≥ 1
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Choosing the best copula function

To choose the most suitable copula function, first, suitable 
marginal distribution was identified for each studied vari-
ables (monthly discharge of Gerdebisheh spring and monthly 
discharge of Absefid spring) and the parameters of the mar-
ginal distributions were estimated by the MLE method, 
then several types of copula functions was considered for 
the connection of these two marginal distributions and the 
parameter of the copula functions were estimated using the 
IFM method (Joe 1997). In the next step, the appropriate 
copula function was selected through a comparison of the 
joint probability values for each of the copulas with their 
corresponding empirical copula values, based on Nash–Sut-
cliffe Efficiency coefficient (NSE), root mean square error 
(RMSE), mean absolute error (MAE) and Akaike informa-
tion criterion (AIC):

In the above relations, n is the sample size, Cp is the joint 
probability values calculated from the theoretical copula, 
Ce is the observed values of the empirical copula, Ce is the 
mean value of the empirical copula, m denotes the number 
of parameters, and L is the maximum value of the likeli-
hood function. The copula function is more suitable in which 
RMSE, and MAE values are closer to zero, AIC is less than 
the other, and NSE value is closer to one. The value of the 
NSE index changes from −∞ to 1. The NSE value falling 
within the range of 0.75–1.0 denotes very good model per-
formance; while, a range of 0.36–0.75 indicates satisfactory 
performance, and a value less than 0.36 signifies poor model 
performance (Nash and Sutcliffe 1970).

Copula‑based model for estimating the discharge 
of Absefid Spring

In this study, the Kendall’s tau coefficient was calculated 
between the monthly discharge data of Gerdebisheh spring 
(GS) and the monthly discharge of Absefid spring (AS), 
and considering that the value of this coefficient was high; 
therefore, it can be concluded that the discharge of Absefid 

(9)NSE = 1 −

∑n

i=1
(Cpi − Cei)

2

∑n

i=1
(Cei − Ce)

2

(10)RMSE =

√√√√1

n

n∑
i=1

(Cpi − Cei)
2

(11)MAE =
1

n

n∑
i=1

|||Cpi − Cei
|||

(12)AIC = 2m − 2 ln (L)

spring and the discharge of Gerdebisheh spring have similar 
behavior and fluctuations. In the next step, the best marginal 
distribution was determined for each of the variables of the 
monthly discharge of Gerdebisheh spring and the monthly 
discharge of the Absefid spring. For this purpose, the fit of 
11 different distributions was examined and finally, by com-
paring the probability values obtained from each distribution 
with the respective empirical probability values, the distri-
bution with the best fitness for each variable was specified.

Then, the fitness of 8 different copulas listed in Table 2 
was tested on the pair of GS discharge and AS discharge 
data, and the appropriate copula function was determined 
and its dependence parameter was estimated. After deter-
mining the appropriate copula, bivariate distribution of GS 
and AS monthly discharge was created. In the next step, 
taking into account the probability of 90% and having the 
monthly flow rate in Gerdebisheh spring from March 1993 
to August 2022, the corresponding monthly discharge of 
Absefid spring was estimated.

Results and discussion

The results of the fitting of 11 different univariate distribu-
tions on the monthly discharge data of Gerdebisheh spring 
and Absefid spring are given in Table 3. As depicted in this 
table, based on the NSE and RMSE statistics, the GEV and 
Log-Normal distributions have the best fit on the discharge 
data of Gerdebisheh and Absefid springs, respectively.

Correlation analysis of springs discharge

In order to measure the correlation between the pairs of 
discharge variables of Gerdebisheh and Absefid springs, 
the Kendall's tau statistic and Pearson correlation 

Table 3  Results of examining the fit of marginal distributions on the 
discharge of Gerdebisheh and Absefid springs

Distribution RMSE NSE

Gerdebisheh Absefid Gerdebisheh Absefid

Normal 12.46 5.97 0.82 0.96
Log-normal 7.60 4.24 0.93 0.98
Exp 17.91 18.39 0.63 0.61
Gamma 9.44 4.63 0.90 0.98
GEV 4.75 4.93 0.97 0.97
Logistic 9.12 5.62 0.90 0.96
Log-logistic 6.32 4.55 0.95 0.98
Rayleigh 10.01 5.56 0.88 0.96
Nakagami 11.37 5.16 0.85 0.97
Generalized Pareto 12.99 8.62 0.80 0.91
Weibull 10.20 5.25 0.88 0.97
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coefficient were calculated and the results are presented 
in Figs. 3 and 4, respectively. The presence of high cor-
relation between the pair of investigated variables is a pre-
requisite for the implementation of copula-based simula-
tion. The results of correlation analysis between pairs of 
monthly discharge of Gerdebisheh and Absefid springs 
show that based on two statistics, Kendall's Tau and 

Pearson correlation coefficient, and there is an acceptable 
correlation between the data of these two springs (Nelsen 
2006; Salvadori et al. 2007). In various studies, such as 
Wiboonpongse et al. (2015) and Nazeri Tahroudi et al. 
(2022), a Kendall's tau of more than 0.3 was considered an 
acceptable correlation. Therefore, it is possible to perform 
copula-based simulations using the conditional density of 
copulas.

Fig. 3  Results of correlation 
analysis of pairs of GS–AS 
values based on Kendall's Tau 
statistic

Fig. 4  Results of correlation 
analysis of pairs of GS–AS 
values based on Pearson cor-
relation coefficient
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Choosing the best copula

The results of fitting eight different copula functions on pairs 
of GS–AS pair discharges are given in Table 4. The Joe cop-
ula with AIC, RMSE, NSE, and MAE values equal to − 4.51, 
0.059, 0.97, and 0.046, respectively, have the best fit on the 
GS–AS pair. However, Galambos and Gumbel–Hougaard 
(GH) copulas also have a good fit for studied variables. There-
fore, the bivariate distribution of discharge of Gerdebisheh and 
Absefid springs was created using Joe copula. The value of the 
dependency parameter of the Joe copula was estimated 3.97 
using the IFM method.

Copula‑based simulation using conditional density

Using Joe copula as the superior copula and its conditional 
density, a copula-based simulation was performed to analyze 
the frequency of pairs of GS–AS values. The values of Kend-
all's tau statistic in the bivariate simulation of GS–AS values 
are presented in Fig. 5. Black numbers and circles represent 
simulated values, and red numbers and circles represent the 
observed values. The results show that the simulated values 
have a higher correlation.

The simulated values of AS under the condition of occur-
rence of GS values are presented in Fig. 6. A little overesti-
mation and underestimation can be seen in the estimation of 
Absefid spring discharge (AS) values, but according to the 
RMSE and R statistics as well as the efficiency of 66% of the 
copula-based model, despite the short length of the input data, 
the obtained results are satisfactory.

Presenting a relationship to predict the monthly 
discharge Absefid spring

After creating a bivariate model of the AS and GS pair and 
simulating the AS values, a regression relationship was cre-
ated between the simulated and observed values based on the 
copula. This relation can be used to estimate the monthly dis-
charge values of the Absefid spring (AS) given the monthly 
discharge of the Gerdebisheh spring (GS):

(13)ASi = 1.2904 × GSi + 0.5822

It should be noted that relationship 13 is estimated with 
the assumption of 90% joint probability. In order to simulate 
a joint probability of more than 90%, the frequency analysis 
is first conducted to estimate the probability of joint occur-
rence of more than 90% and then the simulation is performed 
based on the conditional density of the copula functions for 
the probability of occurrence of more than 90%. Since the 
Eq. 13 is actually a regression equation fitted on the simu-
lated discharge values of the Absefid spring, it is certainly 
less accurate than the direct use of the copula-based model, 
but using the Eq. 13 is much easier. In different possibili-
ties, the simulation of the discharge values in Absefid spring 
(AS) under the condition of the discharge in Gerdebisheh 
spring (GS) is shown in Fig. 7. By using Fig. 7, the values 
of AS can be estimated according to the values GS in differ-
ent probability levels. For example, if the discharge of Ger-
debisheh spring is 2.5 cubic meters per second, according 
to Fig. 7, with a 90% probability, the discharge of Absefid 
spring will be 3.8 cubic meters per second.

Using Eq. 13, the discharge of Absefid Spring in the 
period from March 1993 to August 2022 was estimated 
with a 90% probability of occurrence and presented in 
Fig. 8 along with the time series of the discharge recorded 
in Gerdebisheh spring. Also, the estimated discharge val-
ues of Absefid spring during March 1993 to August 2022 

Table 4  Results of the goodness 
of fit test of different copula 
functions on the discharge data 
of Gerdebisheh and Absefid 
springs

The bold numbers show the best result for each evaluation criteria

Model evalua-
tion criteria

Clayton AMH FGM Frank Galambos GH Plackett Joe

AIC − 3.821 − 3.141 1.356 − 3.910 − 4.230 − 4.220 − 3.602 − 4.510
NSE 0.939 0.704 0.250 0.935 0.957 0.956 0.857 0.970
MAE 0.064 0.143 0.224 0.066 0.049 0.051 0.100 0.046
RMSE 0.071 0.157 0.249 0.074 0.060 0.062 0.109 0.059

Fig. 5  Simulation results of GS–AS values obtained from the copula-
based model
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using bivariate copula model with 90% probability of 
occurrence are presented in Table 5.

To determine the reliable drinking water for city of 
Borujen from Absefid spring, the average values of its 
minimum monthly discharge can be recommended 
(Fig. 9). As seen in Table 5 and Fig. 9, the lowest esti-
mated discharge for the Absefid spring is 600 L per second 
in June 2001. Although the average of minimum discharge 
of this spring is about 920 L per second and the maximum 
average flow is 3240 L per second (Figs. 9, 10). Also, the 

average flow during the simulated period is about 1830 L 
per second. (Fig. 11).

Conclusion

Geological investigations show that the origin of Gerdebi-
sheh and Absefid springs is probably the same. Evaluating 
the correlation between the discharge of these two springs 
in the period when both springs had observation data also 

Fig. 6  Results of simulation of AS values under the condition of occurrence of GB values using the copula-based model

Fig. 7  Joint probability of 
occurrence of AS values under 
the condition of occurrence of 
GS values
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indicated the same behavior and fluctuations of the discharge 
of the two springs. Therefore, in this study, using a copula-
based model, a bivariate distribution between the discharge 
of Gerdebisheh and Absefid springs was created, and using 
the conditional probability, the Absefid spring discharge 
value was estimated with a probability of 90% for the period 
of March 1993–August 2022. Based on the results obtained, 
the lowest discharge estimated for Absefid spring is 600 L 
per second. Although the minimum average discharge of this 
spring is about 920 L per second. Therefore, for water allo-
cation planning of this spring to drinking needs, the safe and 
reliable water (firm yield) of this spring can be considered 
equal to 600 L per second or 18.92 MCM/year.

It should be noted that the environmental needs of the 
Karebas river must be evaluated to accurately determine 
the allocation water, because the water of the Absefid 
spring flows into this river, and if the spring water is allo-
cated for drinking purposes, there may be adverse effects 
on the environment of the Karebas river basin. Also, due to 

the karst nature of this spring, the water catchment area of 
the spring is beyond the surface basin, and determining the 
effective factors on the water supply of this spring requires 
conducting karst hydrogeological studies in the area. In 
this study, the water quality of Absefid spring has not been 
studied, so it is suggested to continuously measure water 
quality of this spring. Especially when it rains, according 
to the local residents, the turbidity of the spring water 
sometimes increases at the entrance to the river, which 
needs more investigations. In order to apply the proposed 
method to estimate the flow rate of the spring, the geologi-
cal characteristics of the study area must be investigated 
and a spring with the same hydrogeological regime whose 
flow has an acceptable dependence with the studied spring 
should be selected for modeling. In addition, the accuracy 
of the method used is strongly dependent on the length of 
the observed data.
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Fig. 8  Monthly time series of measured discharge in Gerdebisheh spring and estimated discharge in Absefid spring using copula-based model
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Table 5  Estimated discharge 
values of Absefid spring using 
copula-based model at 90% 
probability level

Year/month Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Agu

1992–1993 4.72 4.85 3.14 2.49 2.42 2.09
1993–1994 2.08 2.12 1.96 1.90 1.89 2.07 2.50 2.13 1.74 1.56 1.52 1.44
1994–1995 1.48 1.60 2.26 2.30 3.11 3.26 3.52 2.90 2.12 1.75 1.78 1.54
1995–1996 1.48 1.64 1.57 1.71 2.01 3.11 3.91 4.07 2.97 2.03 1.80 1.59
1996–1997 1.53 1.66 1.64 1.71 1.56 1.48 2.34 2.47 1.69 1.51 1.33 1.23
1997–1998 1.30 1.38 1.60 1.74 2.16 3.38 4.21 2.94 1.88 1.65 1.59 1.55
1998–1999 1.45 1.45 1.46 1.34 1.44 3.11 3.80 1.74 1.59 1.22 1.19 1.15
1999–2000 1.05 1.17 1.22 1.43 1.65 2.28 2.86 2.54 1.50 1.33 1.31 1.34
2000–2001 0.65 0.67 1.05 1.20 1.12 1.17 1.71 1.13 0.71 0.60 0.85 0.69
2001–2002 1.71 1.77 2.74 4.33 3.07 2.97 3.70 3.34 2.07 1.83 1.69 1.62
2002–2003 1.76 1.81 1.87 1.94 2.12 2.86 3.60 3.26 2.47 1.91 1.50 1.63
2003–2004 1.76 2.28 1.77 2.61 1.92 2.06 2.29 2.22 1.83 1.78 1.48 1.45
2004–2005 1.35 1.46 1.57 1.66 1.75 3.20 2.86 2.60 1.87 1.56 1.32 1.39
2005–2006 1.58 1.30 1.24 1.33 2.12 3.47 3.86 3.10 1.61 1.91 1.85 1.65
2006–2007 1.20 1.28 1.46 1.52 1.89 2.79 3.95 3.75 2.24 1.89 1.50 1.32
2007–2008 1.39 1.52 1.59 1.51 1.60 1.38 1.50 1.34 1.20 1.16 1.04 1.27
2008–2009 1.34 1.41 1.50 1.48 1.53 1.45 1.80 2.33 1.18 1.06 1.02 1.00
2009–2010 1.19 1.38 1.51 1.70 1.80 1.81 2.40 2.42 1.54 1.36 1.10 1.04
2010–2011 1.21 1.27 1.31 1.31 1.34 1.69 2.49 1.85 1.78 1.43 1.17 1.06
2011–2012 1.10 0.98 1.19 1.48 1.76 2.07 2.10 1.88 1.38 1.24 1.15 1.18
2012–2013 1.46 1.25 1.18 1.29 1.95 2.94 3.51 2.88 1.78 1.43 1.44 1.26
2013–2014 1.42 1.30 1.54 1.62 1.62 2.03 2.31 1.85 1.40 1.32 1.24 1.31
2014–2015 1.47 1.05 1.32 1.64 1.56 1.67 1.92 1.86 1.73 1.08 0.99 1.05
2015–2016 1.36 1.32 1.49 1.36 1.58 2.32 3.24 3.19 1.70 1.43 1.12 1.04
2016–2017 1.46 1.59 1.68 1.23 1.80 3.87 3.68 3.01 2.43 1.99 1.17 1.06
2017–2018 1.12 1.47 1.41 1.35 1.21 1.14 1.30 1.31 1.25 1.04 1.07 1.05
2018–2019 1.12 0.92 1.27 1.57 2.29 1.92 5.42 4.18 2.11 1.63 1.42 1.32
2019–2020 1.50 1.51 1.56 1.32 1.24 1.93 3.36 3.63 2.92 1.82 1.59 1.35
2020–2021 1.22 1.33 1.38 1.44 1.43 1.87 2.01 1.49 1.36 1.25 1.15 1.01
2021–2022 1.16 1.07 1.20 1.39 2.03 3.60 4.61 3.21 2.38 1.91 1.77 1.69
Min discharge (m3/s) 0.65 0.67 1.05 1.20 1.12 1.14 1.30 1.13 0.71 0.60 0.85 0.69
Max discharge (m3/s) 2.08 2.28 2.74 4.33 3.11 3.87 5.42 4.85 3.14 2.49 2.42 2.09
Ave. discharge (m3/s) 1.38 1.41 1.54 1.67 1.81 2.38 3.05 2.65 1.85 1.54 1.38 1.31
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Fig. 9  Minimum discharge values of Absefid Spring in different 
months of the year (1993–2022)
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Appendix

The observed monthly discharge values of Gerdebisheh spring.

Year/month Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Agu

1992–1993 3.21 3.31 2.00 1.48 1.43 1.17
1993–1994 1.16 1.19 1.07 1.02 1.02 1.15 1.49 1.20 0.90 0.76 0.72 0.66
1994–1995 0.70 0.79 1.30 1.33 1.96 2.08 2.28 1.80 1.20 0.91 0.93 0.75
1995–1996 0.69 0.82 0.77 0.88 1.11 1.96 2.58 2.70 1.80 1.12 0.94 0.78
1996–1997 0.73 0.83 0.82 0.87 0.76 0.70 1.36 1.47 0.90 0.72 0.58 0.50
1997–1998 0.56 0.62 0.79 0.90 1.22 2.17 2.81 1.83 1.00 0.83 0.78 0.75
1998–1999 0.67 0.67 0.68 0.58 0.67 1.96 2.50 0.90 0.80 0.49 0.47 0.44
1999–2000 0.37 0.45 0.49 0.66 0.83 1.32 1.76 1.52 0.70 0.58 0.57 0.59
2000–2001 0.25 0.26 0.61 0.75 0.68 0.72 1.22 0.69 0.30 0.20 0.43 0.28
2001–2002 0.87 0.92 1.67 2.90 1.93 1.85 2.42 2.14 1.20 0.97 0.86 0.80
2002–2003 0.91 0.95 1.00 1.06 1.19 1.77 2.34 2.07 1.50 1.03 0.71 0.81
2003–2004 0.91 1.31 0.92 1.57 1.04 1.14 1.32 1.27 1.00 0.93 0.69 0.67
2004–2005 0.59 0.68 0.76 0.84 0.91 2.03 1.76 1.56 1.00 0.76 0.58 0.63
2005–2006 0.78 0.56 0.51 0.58 1.20 2.24 2.54 1.95 0.80 1.03 0.98 0.83
2006–2007 0.48 0.54 0.68 0.73 1.01 1.71 2.61 2.46 1.30 1.01 0.71 0.57
2007–2008 0.62 0.73 0.78 0.72 0.79 0.62 0.71 0.59 0.50 0.45 0.35 0.54
2008–2009 0.59 0.64 0.71 0.69 0.74 0.68 0.94 1.36 0.50 0.37 0.34 0.32
2009–2010 0.47 0.62 0.72 0.86 0.95 0.96 1.41 1.42 0.70 0.60 0.41 0.36
2010–2011 0.49 0.53 0.57 0.57 0.59 0.86 1.48 0.98 0.90 0.65 0.46 0.37
2011–2012 0.40 0.31 0.47 0.7 0.91 1.15 1.18 1.00 0.60 0.51 0.44 0.46
2012–2013 0.68 0.52 0.46 0.55 1.06 1.83 2.27 1.78 0.90 0.66 0.66 0.53
2013–2014 0.65 0.56 0.74 0.81 0.80 1.12 1.34 0.98 0.60 0.57 0.51 0.56
2014–2015 0.69 0.36 0.58 0.82 0.76 0.84 1.04 0.99 0.90 0.38 0.32 0.36
2015–2016 0.60 0.57 0.70 0.61 0.77 1.35 2.06 2.02 0.90 0.66 0.41 0.36
2016–2017 0.68 0.78 0.85 0.50 0.95 2.55 2.40 1.88 1.40 1.09 0.46 0.37
2017–2018 0.42 0.69 0.64 0.6 0.49 0.43 0.55 0.57 0.50 0.35 0.38 0.36
2018–2019 0.41 0.26 0.53 0.77 1.32 1.04 3.75 2.79 1.20 0.81 0.65 0.57
2019–2020 0.71 0.72 0.76 0.57 0.51 1.05 2.15 2.36 1.80 0.96 0.78 0.59
2020–2021 0.49 0.58 0.62 0.67 0.65 1.00 1.11 0.70 0.60 0.52 0.44 0.33
2021–2022 0.45 0.38 0.48 0.63 1.12 2.34 3.12 2.04 1.40 1.03 0.92 0.86
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Fig. 11  Long-term average of monthly discharge Absefid Spring 
(1993–2022)
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