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Abstract
Water resource management and crop growth control require the calculation of reference evapotranspiration (ET0), but 
meteorological data can often be incomplete, necessitating models with minimal inputs. This study was conducted in Iran’s 
arid synoptic stations of Sirjan and Kerman, where data scarcity is severe. Penman–Monteith FAO-56 was selected as the 
target data for modeling artificial neural network (ANN), fuzzy neural adaptive inference system (ANFIS), and ANN-gray 
wolf optimization (ANN-GWO). The performance of these models was evaluated using an input dataset consisting of the 
current station’s minimum and maximum temperatures, ET0, and the wind speed of the nearby station (external data) in 
three different combinations. The models’ accuracy was assessed using two widely used criteria: root mean square error 
(RMSE) and coefficient of determination (R2), as well as the empirical Hargreaves equation. In the absence of climatic data, 
the ANFIS, ANN, and ANN-GWO methods using minimum and maximum temperatures, which are relatively easier to 
estimate, outperformed the empirical Hargreaves equation method in both stations. The results demonstrate that the ANFIS 
method performed better than ANN and ANN-GWO in all three input combinations. All three methods showed improvement 
when external data (wind speed and ET0 of the adjacent station) were used. Ultimately, the ANFIS method using minimum 
and maximum temperatures and the adjacent station’s ET0 in Kerman and Sirjan yielded the best results, with an RMSE of 
0.33 and 0.36, respectively.
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Introduction

The water crisis in many countries is one of the main con-
cerns for future communities. Iran is located in an arid desert 
belt (Zamani et al. 2019), and water resources are wasted due 
to the lack of use of advanced technologies. Many experts 
believe that water management in Iran is not good enough 
and causes a severe reduction in water and some areas under 
agricultural cultivation.

Estimating reference crop evapotranspiration (ET0) is 
one of the most critical issues in irrigation planning, water 
budgeting, crop planning, and integrated management of 
agricultural systems (Pooralibaba and Shiri 2012). The water 

requirement of plants is determined in two ways: directly 
and indirectly. In the direct method, the crop is planted in 
a box or lysimeter, and its water requirement is measured 
by weight or water balance method. Due to the difficulty 
and cost of direct measurement, the indirect method is usu-
ally used. In this method, presented by the World Food and 
Agriculture Organization (FAO), the water requirement or 
evapotranspiration of the plant is determined in two stages.

The FAO standard defines reference crop evapotranspi-
ration as the amount of water required by the surface area 
covered by the reference crop over a specific time period. A 
hypothetical grass with an assumed height of 0.12 m, a set 
surface resistance of 70 s/m, and an albedo of 0.23 serves 
as the reference surface. The plants will be protected from 
water stress during the growing season if the amount of ET0 
is known and this amount of water is provided. Evapotran-
spiration is affected by various variables, including air tem-
perature, wind speed, and solar radiation. In other words, 
transpiration from a wide surface was covered with green 
grass or alfalfa with a uniform height of about 12 cm and 
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active growth, with full shading on the ground, without fac-
ing water shortage (Faqih 2015).

The quantity of meteorological parameters needed is 
the fundamental distinction between the many models that 
have been suggested to predict evapotranspiration. These 
models range from equations requiring only the air tempera-
ture component, such as Torrit White and Blaney–Criddle, 
to more intricate equations, like FAO Penman–Monteith, 
which also need relative humidity, wind speed, and solar 
radiation. These equations need to be calibrated and evalu-
ated for use in different climatic conditions. According to 
research using the FAO Penman–Monteith, two elements—
temperature and solar radiation—play a significant impact 
on evapotranspiration in dry areas, whereas other aspects are 
of secondary significance (Gorji and Raeini-Sarjaz 2016). 
Almorox et al. (2018) conducted work that demonstrates 
that a Penman–Monteith temperature formula may be used 
when only recorded maximum and minimum air temperature 
data exist, which is useful when all the meteorological data 
required for calculating the ET0 are not accessible.

Kovoor and Nandagiri (2018) used Monte Carlo (MC) 
simulations to assess the sensitivity of the FAO-56 Pen-
man–Monteith reference evapotranspiration (ET0) model to 
the climatic variables used in its application. The analysis 
resulted in the sensitivity of the ET0 values to the various 
input parameters. Except for the humid station, where net 
radiation (Rn) was shown to be critical, wind speed was 
found to be the essential input variable at all other stations. 
This study’s findings provide information for estimating the 
consequences of forthcoming climate changes.

In recent years, an adaptive neural-fuzzy inference system 
model has been created to handle several difficulties con-
nected to the mathematical modeling of phenomena such 
as water and soil. Artificial intelligence systems have found 
many applications in various water engineering issues where 
there is no clear relationship and pattern between the fac-
tors affecting the occurrence of a phenomenon. Artificial 
neural networks (ANN) and adaptive neuro-fuzzy infer-
ence systems (ANFIS) were used to calculate reference 
crop evapotranspiration. Also, hybrid models are designed 
to combine the strengths of different models and improve 
their overall performance. Elbeltagi et al. (2022) conducted 
research comparing the performance of five AI-based mod-
els for estimating reference evapotranspiration (ET0) and 
evaluated the best-yielding algorithms at three different sta-
tions in India. Based on the study’s results, AI-based hybrid 
meta-heuristics algorithms are promising approaches for 
estimating ET0.

Artificial intelligence (ANN) and (ANFIS) systems, 
along with experimental equations, were used by Karimi 
et al. (2013) to examine daily reference crop evapotran-
spiration estimates. The findings show that neural-fuzzy 

models are highly accurate at predicting the reference 
crop’s daily evapotranspiration (water need), with RMSE 
values ranging from 0.276 to 0.437 mm. Additionally, 
compared to experimental equations, artificial neural 
network models with RMSE values between 0.298 and 
12.5 mm performed better. Feng et al. (2017) presented 
two models in their study for daily ET0 calculation: gen-
eralized regression neural networks (GRNN) and random 
forests (RF). Meteorological data between 2009 and 2014 
from two sites in southwest China were used to train and 
test RF and GRNN models. This included minimum and 
maximum temperature, relative humidity, wind speed, 
and solar radiation data. Two input combinations were 
used: entire data and just temperature and extraterrestrial 
radiation (Ra) data. The findings suggest that temperature-
based RF and GRNN models can accurately estimate daily 
ET0 in southwest China. Ghorbani et al. (2016) evaluated 
the performance of three models (multilayer perceptron, 
feedforward neural network, and minimum error neural 
network) to estimate the evapotranspiration of a reference 
crop at the Ahvaz station. Data that had not been utilized 
in the network’s testing and training were used to assess 
the models’ capacity to predict the reference crop’s evapo-
transpiration. It was discovered during the investigations 
that using the average daily temperature parameter as an 
input made it merely possible to predict the reference crop 
evapotranspiration using three different types of models 
with a respectable level of accuracy.

Additionally, it was discovered that FF and MLP models 
with higher  R2 are more accurate than MNN in determin-
ing the reference crop evapotranspiration by comparing the 
outcomes of the three models with statistical testing. The 
effectiveness of hybrid wavelet-ANN and wavelet-ANFIS 
models for approximating daily ET0 was examined by 
Patil and Deka (2017). The study was conducted in an 
arid region. Based on R = 0.96 and RMSE = 0.632 mm/day, 
the W-ANN2 model was shown to be the most accurate 
for estimating daily ET0. The second-level db3 wavelet-
decomposed subseries of temperature and the values of the 
previous day’s evapotranspiration were the inputs used in 
the suggested W-ANN2 model.

Given the importance of estimating the ET0 and the 
limited data, this paper investigates the ET0 using an 
artificial intelligence model in arid climates such as Iran 
with the help of an adjacent station. This study aims to 
compare three machine learning models, ANN, ANFIS, 
and the novel hybrid model of ANN-GWO, for estimat-
ing ET0 in an arid region while incorporating extrinsic 
data to improve the accuracy of the models. Also, specific 
combinations and data sources have been chosen to study 
the aspect of the limited dataset.
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Materials and methods

The study area

Monthly data on climatic conditions were gathered from two 
locations in Iran: Kerman, with a latitude of 30°15′N and a 
longitude of 56°58′E, and Sirjan, with a latitude of 29°28′N 
and a longitude of 55°41′E. The approximate location of the 
study site is shown on the map of Iran (Fig. 1). The dataset 
included geographic information such as latitude, longitude, 
and altitude for each station, as well as meteorological data 
including minimum and maximum temperature (Tmin and 
Tmax), dew point or relative humidity temperature, wind speed 
(U2), and radiation hours (Rs). The dataset covered the period 
from 1987 to 2017.

According to the UNEP index (1), both Kerman and Sirjan 
synoptic stations are in an arid climate.

(1)R =
P

ETP

Arid and semiarid regions’ general characteristics are 
low rainfall, high temperatures, and hence high evapora-
tion (Buol 1977). Sirjan and Kerman stations, as shown in 
Table 1, have a maximum of 39 °C and 38 °C, respectively, 
and  ET0 of 9 mm/day. The statistical properties were cal-
culated for each climatic parameter (Tmin, Tmax, U2, Rs, and 
 ET0), and the results are shown in Table 1.

Max, Min, Mean, Cv, and Csx in Table 1 represent each 
parameter’s maximum, minimum, mean, variation coeffi-
cient, and skewness. The results show that Sirjan and Ker-
man have similar statistical properties, so it is proper to use 
these two stations. This may be due to the weather stations’ 
proximity (about 65 km apart). Also,  ET0 is most correlated 
with minimum temperature for both stations, followed by 
maximum temperature and solar radiation.

The FAO Penman–Monteith method

A procedure prescribed in FAO-56 chapter 3 was followed 
to calculate all data needed to calculate weekly  ET0 (Allen 
et al. 1998). The FAO Penman–Monteith equation has been 

Fig. 1  a Shows the location of Iran in the Middle East. Iran is located between latitude 25.05°N and 39.78°N and longitude 44.03°E and 
63.34°E. b Shows the location of the studied stations in the Kerman province
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proposed as the only standard method for calculating refer-
ence crop evapotranspiration as well as for evaluating other 
methods. This equation is as follows.

These results are placed as training goals for modeling 
using artificial neural network (ANN) and fuzzy neural 
adaptive inference system (ANFIS) and comparing with the 
classic Hargreaves–Samani method.

Hargreaves–Samani method

The  ET0 was computed by the HS equation (Hargreaves and 
Samani 1985) (3). The method is frequently applied for com-
puting  ET0 (mm/unit time) and requires only temperature 
(minimum and maximum) and extraterrestrial radiations 
that might be found in very metrological stations (Ali Shah 
2022).

In this relation, m, a, and c are coefficients with the 
amount of 0.0023, 17.8, and 0.5, respectively. Ra is extra-
terrestrial radiation (mm/day). Tmean is the average air tem-
perature (degrees Celsius). Tmin and Tmax are, respectively, 
maximum and minimum air temperature (°C), and  ET0 is 
the evaporation and transpiration potential of the reference 
plant (mm/d).

Artificial neural network (ANN)

A neural network is an adaptable system that consists of 
multiple basic processing units modeled after the neural 
network of the brain. The processing components, or neu-
rons, work together to form a processing pathway. These 
processing elements are usually arranged in layers with 
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regular patterns so that there are complete or random con-
nections between the layers. The input layer functions as a 
processor, delivering processed input data to the network. 
The input layer is not a computational neural layer because 
its nodes have neither an input weight nor an activation 
function. The last layer is the output layer, which shows 
the network’s output in response to a specific input. The 
other layer is called the hidden layer or the middle layer. 
This layer is called hidden because there is no connection 
between it and the output layer (Karbasi 2016).

The majority of artificial neural network models (which 
are computational methods) employ a mathematical model 
of a nerve cell known as a neuron or perception, and the 
neuron is the neural network’s smallest building unit. Sev-
eral neurons are coupled via weighted connections inside 
each of the layers. In this definition, layers stand for three 
layers that every network is made up of. These three layers 
are input layer, output layer, and one or more interme-
diate (hidden) layers. When the training of the network 
begins, recognizing the intrinsic relationships between 
data tries to provide a mapping between the input space 
(input layer) and the desired space (output layer), and 
the weights sequentially change in order to find the low-
est error (Faghih 2015; Sabzi Parvar and Bayat Varkashi 
2011).

Artificial nerves or neurons are the main components of 
a neural network (4). The input pattern to a node is similar 
to a biological cell, which can be represented by vectoriza-
tion of the M component as X = (x1, x2, …, xm). The scalar 
variable S represents the total of the inputs multiplied by 
their weights.

In the above equation, W = (w1, w2,…, wm) is the weight 
vector of neurons. The quantity s is then fed into a nonlinear 
function f to produce the output.

(4)S =

M
∑

m=1

wmxm = WTX

Table 1  An overview of the 
statistical characteristics

Station Parameter Max Min Mean Cv Csx Correlation 
with ETo

Sirjan Tmax 38.60 8.72 25.24 0.34 − 0.09 0.94
Tmin 22.99 − 5.80 9.31 0.83 0.05 0.95
U2 4.51 0.69 2.53 0.32 0.00 0.48
Rs 371.20 22.20 281.60 0.20 − 0.66 0.80
ET0 9.24 1.33 4.72 0.46 0.21 1.00

Kerman Tmax 38.15 7.86 25.28 0.33 − 0.12 0.94
Tmin 20.46 − 7.30 7.40 0.99 − 0.01 0.96
U2 5.29 0.44 2.83 0.30 − 0.16 0.55
Rs 386.70 11.10 275.39 0.22 − 0.51 0.81
ET0 9.38 1.24 4.93 0.46 0.10 1.00
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In this study, the dataset is divided into 90% for train-
ing, 5% for testing, and 5% for validation. The training of 
the artificial neural network is to change the weights in 
such a way that the error is minimized and the difference 
between the target value and the output is reduced.

Fuzzy neural adaptive inference system (ANFIS)

Fuzzy neural models were developed by Jang in 1993, 
combining fuzzy logic with artificial neural networks to 
aid in learning and adaptability. In reality, an adaptive net-
work is employed in fuzzy-neural models to handle the 
challenge of identifying the parameters of the fuzzy infer-
ence system, which is the general state of the multilayer 
leading neural network.

The model can build a decent link between input and 
output variables due to the training capabilities of arti-
ficial neural networks. As a consequence, the adaptive 
neural-fuzzy inference system is introduced as a strong 
tool for forecasting results using current numerical data by 
combining the usage of a fuzzy inference system with the 
artificial neural network. ANFIS creates a nonlinear map-
ping between input space and output space using neural 
network methods and fuzzy logic.

Hybrid ANN‑gray wolf optimizer algorithm 
(ANN‑GWO)

Optimizing the weights and biases is crucial in training an 
artificial neural network (ANN). The weights and biases 
are typically randomly adjusted within the range of [− 1, 
1]. After applying activation functions in the hidden and 
output layers, the weight of each neuron is computed for 
the next iteration. The output is then calculated using the 
following formula (Tikhamarine et al. 2019):

Here,  ET0 signifies the reference evapotranspiration 
estimation. Fo and Fh stand for the activation functions of 
the output and hidden layers, respectively. i, j, and k are 
representative of the input, hidden, and output layers, in 
that order. Wkj and Wji, respectively, symbolize the weights 
in the output and hidden layer connections.  Xi denotes the 
input variables, while bjo and bko indicate the biases for the 
hidden and output layers, respectively. Additionally, the 
number of inputs and hidden neurons is represented by n 
and m, respectively. Figure 2 illustrates the flow architec-
ture of the ANN-GWO model.

(5)ET
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n
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)

+ bko

]

Preparation of dataset

The input data comprise meteorological data from the mete-
orological station, and the output data include data from the 
Penman–Monteith technique. Eighty percent of each sta-
tion’s total data is utilized for network training (1987–2011), 
while the remaining data (2011–2017) are also used for 
network testing. Using these data, reference crop evapo-
transpiration is estimated using the FAO’s standard Pen-
man–Monteith technique. These control variables will be 
used to validate other models’ correctness (Feng et al. 2017).

Because acquiring all of the meteorological data required 
to compute FAO-PM can be costly, it is common practice 
to operate with restricted datasets (Althoff and Rodrigues 
2022). For testing the models in the optimal conditions, the 
dataset that is most common in different stations and also 
more accessible has been chosen.

To model the methods based on artificial intelligence, 
using MATLAB software, different input combinations that 
are shown in Table 2 are performed for each station by arti-
ficial neural network (ANN), fuzzy neural adaptive inference 
system (ANFIS), and ANN-gray wolf optimization (ANN-
GWO) methods, to identify the best models in the condition 
of limited data.

In the combination shown in Table 2 Tmin and Tmax are 
assumed to be the most common and accessible climatic 
data, and in the condition of limited data in one station, 

Fig. 2  Social hierarchy of wolves in GWO

Table 2  Model inputs were classified into three combinations

Model input configurations Inputs

Combination 1 Tmin, Tmax of the current station
Combination 2 Tmin, Tmax of the current sta-

tion, and  ET0 of the adjacent 
station

Combination 3 Tmin, Tmax of the current sta-
tion, and wind speed of the 
adjacent station
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getting help from an adjacent station is chosen to be tested in 
this study (although as shown in Table 1, Sirjan and Kerman 
have similar statistical properties).

Criteria for evaluating the accuracy of artificial 
intelligence models

Indicators that evaluate the performance of each network and 
its ability to accurately predict include roots mean square 
error (RMSE), mean absolute error (MAE), and coefficient 
of determination (R2). The more (RMSE) and (MAE) to zero 
and (R2) to one desire, the better answer will be created for 
the model (Gharekhani et al. 2017).

Results and discussion

The present study evaluated the ability of ANN, ANFIS, 
and the performance of novel hybrid models of ANN-GWO 
to estimate the reference crop evapotranspiration rate for 
Kerman Station as the current station with a limited dataset, 
and Sirjan was the adjacent station. In the end, although all 
three methods have acceptable results, as shown in Table 3, 
the ANFIS method can estimate the evapotranspiration rate 
better than the other two.

Between combinations, by using the external data, mod-
els have better results (Table 3). It will have better results 
when the minimum temperature and maximum temperature 
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of the current station are used together with the  ET0 of the 
adjacent station. Then in the second, the use of wind speed 
data of the current station with the  ET0 of the adjacent sta-
tion has the better result. In the last, the use of the air tem-
perature station is suggested.

The process repeated for Sirjan station as a current station 
with a limited dataset (Table 4).

Sirjan station has the same result as the Kerman station. 
ANFIS method showed better performance, and combina-
tion 2 was the suggested dataset (Table 3).

The findings presented in Tables 3 and 4 emphasize 
that the incorporation of external data has the capacity to 
enhance the outcomes across all test cases.

RMSE of combination 1 (without external data) in ANN, 
ANFIS, and ANN-GWO in both stations is approximately 
near 0.5, which is high in comparison with the other two 
combinations. The lower the RMSE, the better a given 
model is able to fit a dataset, and in contrast, when the 
RMSE is high, it shows that the data are overfitted and so 
have little predictive value when tested out of the sample. 
However, it is imperative to note that all three models yield 
outcomes that are deemed acceptable.

Also, as shown in Tables 3 and 4, the ANFIS method has 
higher accuracy than the ANN method in estimates in case 
of limited climatic data in all three cases of input data. The 
ANFIS method with combination 2 (Tmin, Tmax of the current 
station and  ET0 of the adjacent station) in both stations of 
Kerman and Sirjan, respectively, with errors of 0.112 and 
0.127 has the best results (Figs. 3 and 4).

As shown in Figs. 3 and 4, models have a good result in 
the chart of test data in both Kerman and Sirjan stations with 
the R of 0.97 and 0.96, respectively.

Lastly, the findings were compared to the standard Har-
greaves–Samani technique, as shown in Figs. 5 and 6

Since Hargreaves–Samani is frequently used when there 
is only a need for temperature (minimum and maximum), 
and extraterrestrial radiation, its results also get compared 

Table 3  The performance of the models in the presence of insuffi-
cient data for the Kerman station

Kerman station

MSE RMSE R2

ANN Combination 1 0.252 0.502 0.950
Combination 2 0.131 0.362 0.963
Combination 3 0.182 0.426 0.960

ANFIS Combination 1 0.188 0.434 0.956
Combination 2 0.112 0.335 0.970
Combination 3 0.153 0.392 0.964

ANN-GWO Combination 1 0.290 0.539 0.835
Combination 2 0.228 0.477 0.838
Combination 3 0.257 0.507 0.839

Table 4  The performance of the models in the presence of insuffi-
cient data for the Sirjan station

Sirjan station

MSE RMSE R2

ANN Combination 1 0.282 0.531 0.926
Combination 2 0.188 0.433 0.945
Combination 3 0.194 0.441 0.944

ANFIS Combination 1 0.212 0.460 0.947
Combination 2 0.127 0.356 0.959
Combination 3 0.138 0.372 0.957

ANN-GWO Combination 1 0.295 0.543 0.825
Combination 2 0.235 0.485 0.840
Combination 3 0.282 0.531 0.830



Applied Water Science (2024) 14:3 

1 3

Page 7 of 10 3

in the end. With R of 0.88 for Kerman (Fig. 5) and R of 0.81 
for Sirjan (Fig. 6), the results have been acceptable.

In comparison with three combinations, combination 2 
(Tmin, Tmax of the current station and  ET0 of the adjacent sta-
tion) had the best results, which is why it is only discussed 
in Table 5.

According to Table 5, under limited data conditions, the 
ANFIS method provides more accurate results for estimating 
ET0 compared to ANN. Regarding the ANN-GWO hybrid 
model, although it aims to combine the strengths of different 
models and enhance their overall performance, the success 
of a hybrid model depends on the specific problem being 
addressed and the compatibility of the combined models. 

In this case, the ANN and ANFIS models already exhib-
ited close-to-optimal performance, and the addition of the 
GWO optimization algorithm did not significantly improve 
their performance. Additionally, a study conducted by Seifi 
and Soroush (2020) in different climates of Iran, specifically 
Isfahan, an arid region similar to Kerman, demonstrated that 
in the comparative evaluation of ANN and ANN-GWO, 
ANN exhibited superior performance. Therefore, it can be 
inferred that in arid regions, although the ANN-GWO model 
produces acceptable results (as shown in Table 5), its per-
formance is weaker compared to that of ANN and ANFIS.

It is important to emphasize that the novel hybrid model, 
the ANN-GWO method, may not be applicable in all 

Fig. 3  Regression of the ANFIS method with combination 2 in Kerman station
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scenarios. The findings of this study suggest that the ANN-
GWO method may not consistently outperform other mod-
eling approaches, emphasizing the necessity for ongoing 
evaluation and optimization.

Conclusion

In this study, an attempt was made to assess the effec-
tiveness of modeling the process of estimating refer-
ence evapotranspiration (ET0) using an extreme learning 
machine. The viability of incorporating ET0 data from an 
external synoptic station as additional inputs to enhance 

the accuracy of evapotranspiration modeling was explored. 
Emphasis was placed on evaluating the statistical compa-
rability between stations to ensure the reliability of the 
findings. The investigation revealed insights, particularly 
regarding input parameter selection. Among the various 
permutations evaluated, it became evident that the most 
accurate results were obtained when the ANFIS model 
utilized both the minimum and maximum temperature 
parameters from the present station, in combination with 
the ET0 data from a nearby station (combination 2). This 
finding underscores the value of merging intrinsic and 
extrinsic data sources to enhance the precision of mod-
eling endeavors.

Fig. 4  Regression of the ANFIS method with combination 2 in Sirjan station
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The study found that using the minimum and maximum 
temperatures, which are relatively easier to measure, in both 
ANFIS and ANN methods in both stations responded bet-
ter to the empirical Hargreaves equation method. Addition-
ally, the use of external data such as wind speed and ET0 of 
the adjacent station improved the accuracy of the models. 
The ANFIS method was found to have higher accuracy than 
ANN in all three cases of input data. The ANFIS method 
with the minimum and maximum temperatures and ET0 of 
the adjacent station in both stations of Kerman and Sirjan, 
respectively, with RMSE of 0.33 and 0.36, had the best 
results.

Fig. 5  Experimental Har-
greaves–Samani method with 
Kerman’s climatic data

Fig. 6  Experimental Har-
greaves–Samani method with 
Sirjan’s climatic data

Table 5  Final results of the three methods for each station for the 
combination 2

Model R2

Kerman ANN 0.963
ANFIS 0.970
ANN-GWO 0.838
Hargreaves–Samani 0.766

Sirjan ANN 0.945
ANFIS 0.959
ANN-GWO 0.840
Hargreaves–Samani 0.649
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The integration of external data into the models not only 
demonstrates its viability but also emphasizes its potential 
utility, particularly in regions where limited weather sta-
tion coverage is a challenge. Developing nations, often fac-
ing issues with sparse weather station networks capable of 
directly measuring ET0, can potentially derive significant 
benefits from these enhanced models, offering an alterna-
tive means of estimating this crucial parameter. However, 
it is imperative to acknowledge the ongoing evolution of 
scientific inquiry. While the findings present a promising 
avenue, the journey toward refining and fully harnessing the 
potential of these hybrid models is only in its nascent stages. 
Further investigations could delve more deeply into the 
intricacies of data fusion, model calibration, and validation 
techniques. Additionally, careful consideration is warranted 
regarding the models’ sensitivity to variations in geographic 
and climatic conditions to ensure robust applicability.

Overall, the passage highlights the importance of estimat-
ing ET0 for water resources management and crop growth 
control, especially in areas with limited climatic data. The 
study demonstrates the effectiveness of using minimal input 
data and ANFIS and ANN models to estimate ET0, with the 
ANFIS method being more accurate. The findings of the 
study have implications for improving water management 
and crop production in arid regions.
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