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Abstract
A calibration procedure is essential step to achieve a realistic model simulation particularly in hydrological model which 
simulates water cycle in the basin. This process is always faced with challenges due to selection of objective function and 
highly time-consuming. This study aimed to take advantage of parallel processing to accelerate the computations involved 
with simulation process of hydrologic model linked with the multi-objective optimization algorithm of AMALGAM for 
multi-site calibration of SWAT hydrologic model parameters. In order to illustrate how meaningful SWAT model calibra-
tion trade-off between the four objective functions involved in AMALGAM optimization program, the Pareto solution sets 
were provided. Furthermore, it is implemented a group of model runs with a number of cores involved (from one to eight) 
to demonstrate and evaluate the running of parallelized AMALGAM with taking advantages of “spmd” method to decrease 
the running time of the SWAT model. The results revealed the robustness of the method in reducing computational time of 
the parameter calibration significantly. This strategy with 4-objective functions focuses on high streamflow (Nash–Sutcliffe 
coefficient), low streamflow (Box–Cox transformed root–mean–square error), water balance (runoff coefficient error), and 
flashiness (slope of the flow duration curve error) provided an efficient tool to decide about the best simulation based on the 
investigated objective functions. This study also provides a strong basis for multi-objective optimization of hydrological and 
water quality models and its general analytical framework could be applied to other parts of the world.
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Introduction

Hydrological and water quality models are used frequently 
by hydrologists and water resources managers to assess the 
hydrological variables and understand and manage natural 
and anthropogenic systems (Zhang et al., 2008; Wu et al. 
2013; Afshar and Hassanzadeh 2017; Hemmat Jou et al. 
2019) are not only the viable alternatives to field monitor-
ing of watershed scale processes but are critical to aid in 

evaluating various scenarios of climate, land use, and best 
management practices. These numerical models are becom-
ing sophisticated and more complex with increasing input 
data and parameter requirements to represent the field condi-
tions over large areas and thus requiring increasing the com-
putational demand (Sharma et al. 2006; Vaze et al., 2011). 
As the spatial and temporal precise of a model prediction is 
enhanced, it essentially needs more computational power 
which may be due to high-dimensional parameters or model 
complexity (Beck 1999; Brun et al. 2001; Newman et al. 
2017). On the other hand, model calibration and validation 
procedures need so many of model simulations which lead to 
more executing time and therefore, reduces speed of model 
running.

Many studies have attempted to find optimal solutions 
to overcome the above-mentioned issues, and various con-
cepts and techniques have been introduced (Yapo et al. 1998; 
Zhang et al., 2008; Wu et al. 2013; Li et al. 2015; Her et al., 
2015; Newman et al. 2017, Hemmat Jou et al. 2019). Most 
of the existing solutions have focused mainly on the use 
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of different single-objective optimization methods. How-
ever, practical experiences revealed that majority of single 
goal functions is not able to take into account all aspects 
of observed data properly (Yapo et al. 1998; Vrugt et al., 
2003; Kollat et al., 2012; Liu et al., 2016). Thus, there is an 
essential need to take advantage of multi-objective optimiza-
tion as an efficient calibration procedure to be able extract-
ing the effective information contained in the observed data 
time series. The advantages of multiple-objective calibration 
are discussed by Gupta et al. (1998) for the first time, and 
they proved that such schemes are applicable and desirable 
for calibrating most of hydrological and water quality mod-
els. Subsequently, numerous studies have concentrated on 
multi-objective frameworks to calibrate rainfall-runoff mod-
els (Seibert 2000; Cheng et al. 2002; Madsen et al. 2002; 
Vrugt et al., 2003; Shafii and Smedt 2009; Zhang et al. 2010; 
Rajib et al. 2016; Werstuck and Coulibaly 2017; Zhang et al. 
2017).

Over past recent years, various algorithms have been 
developed and evaluated the multi-objective optimization 
issues in hydrological modeling researches (Vrugt et al., 
2003; Zhang et al. 2010; Kollat et al., 2012; Pfannerstill 
et al. 2017; Kan et al. 2017; Mousavi et al. 2017). Adapt-
ability and flexibility of the evolutionary algorithms (EAs) in 
locating the global optimum make them to be more popular 
in different optimization problems (Thyer et al. 1999; Mad-
sen et al. 2002; Her et al., 2015; Hosseini-Moghari et al., 
2017; Qu et al. 2018). These algorithms are useful in finding 
the best solutions near the optimal solutions especially in a 
high-dimensional parameter space and complicated system, 
although they usually involved with many trials as an impor-
tant issue and more time-consuming and computational cost 
than the deterministic methods (Her et al., 2015). Thus, the 
improvement in finding the optimal solutions usually is leads 
to increase the computational time. Since EAs work with 
huge starting population size, then, the optimization pro-
cesses face with a major challenging problem especially in 
distributed or semi-distributed rainfall-runoff models like 
SWAT with large number of parameters (Rong et al. 2023; 
Wu et al., 2023; Eckhardt and Arnold 2001; Lin and Rad-
cliffe 2006; Her et al., 2015; Piotrowski 2017). Therefore, 
the choosing an efficient and effective optimization frame-
work in a complex model (e.g., SWAT) is becoming a criti-
cal issue to decrease the running model time. For instance, 
Hashemi Aslani et  al. (2023) established a connection 
between the SWAT model and MOPSO as a multi-objective 
optimization algorithm. Their study aimed to minimize vari-
ous objective functions, such as the number of best manage-
ment practices and nitrate concentration, while considering 
different scenarios.

Several researchers have tried to improve the compu-
tational efficiency of optimization algorithms by utilizing 
parallel computing strategies (Waintraub et al. 2009; Tu 

and Liang 2011; Her et al., 2015; Peng et al. 2017; Kan 
et al. 2017). Parallel computing as a technique take advan-
tage of simultaneous running of multiple calculations with 
multi-core processor to run program faster (Li et al. 2011; 
Wu et al. 2013; Kan et al. 2017). Since the parallelizing 
the model structure is related to programming, then, it is 
involved with much knowledge of/familiarity with some 
modification in model coding. In such a way, separate 
CPU cores are be able to run each individual simulation. 
Therefore, as the complexity of hydrologic models, par-
ticularly in the context of calibrating distributed watershed 
hydrologic models, continues to grow, parallel computing 
emerges as a promising approach to address this challenge 
(Asghari et al., 2023).

This paper aims to present an application of A Multi-
Algorithm, Genetically Adaptive Multi-objective knows 
as AMALGAM (Vrugt and Robinson 2007) for multi-
objective calibration of SWAT (soil and water assessment 
tool) model, a widely applied hydrological model (Arnold 
et al. 1998). In most studies, calibration of SWAT model is 
performed using single-objective optimization algorithms 
(i.e., SUFI-2, genetic algorithm, particle swarm optimiza-
tion algorithm) with the parameter estimator software like 
SWAT-CUP (Abbaspour 2011). The sum of squared (SS) 
differences between the measured and predicted river dis-
charges is the famous single-objective function to be mini-
mized in most of the optimization algorithms. However, 
this criterion is used mostly to be biased for high river 
flows (Shafii and Smedt 2009). A proper alternative could 
be the use of log-transformed flow values to emphasize 
low flows; however, this may also result to various optimal 
parameter sets as well as a dilemma creation for selecting 
the best parameter set for the user. Multi-objective formu-
lation (here AMALGAM) builds on Van Werkhoven et al. 
(2009) can consider all aspects of a hydrograph containing 
of flashiness, water balance, low flows, and peak flows. 
Adding water balance and flashiness to the objectives pro-
vides further useful information about catchments behave 
and how accurately the model adjusts this behavior. This 
highly efficient algorithm has found versatile applications 
within the hydrological community. Notably, Shin et al. 
(2023) employed it to enhance ensemble prediction accu-
racy, while Pourreza-Bilondi et al. (2022) and Vargas et al. 
(2023) achieved success in employing AMALGAM for 
improving the prediction of destructive floods and enhanc-
ing streamflow routing characteristics, respectively.

Then, this study aimed to demonstrate how to parallel-
ize multi-algorithm AMALGAM to make running of SWAT 
hydrological model faster on a windows platform with mul-
tiple CPU cores. The results of this study are expected to 
provide valuable information for hydrological model practi-
tioner, experts and especially the decision makers for better 
insights of watershed behavior.
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Method

Hydrological model

The hydrological SWAT model, developed by Arnold 
et al. (1998), is a catchment scale tool for estimating long-
term effects of land management on water resources, and 
agricultural chemical yields in large complex un-gauged 
basins with different management conditions and vary-
ing land uses and soils (Arnold et al. 1998; Onusluel Gul 
and Rosbjerg, 2010; Khoi and Suetsugi 2012; Leta et al. 
2017; Molina-Navarro et  al. 2017; Hassanzadeh et  al. 
2019). It is a conceptual, semi-distributed, continuous-
time, and physical-based model which operates on yearly, 
monthly, and daily time steps (Neitsch et al., 2011) and is 
used widely for water resources management and hydro-
logical modeling. The water balance formulation in soil 
profile is the main equation of this hydrology model where 
all important processes including surface runoff, infiltra-
tion, lateral flow, precipitation, evapotranspiration, and 
percolation are simulated (Bouraoui et al. 2005; Neitsch 
et al., 2011). All other related eco-hydrological processes 
(such as vegetation growth, water flow, and land use and 
water management) are also integrated at sub-basin spatial 
scale by SWAT. The study area is divided into a multiple 
sub-basins which are characterized by one or more HRUs 
(hydrologic response units) where each consists of homo-
geneous soil characteristics, slope, and land use. During 
the simulation processes, the vertical flows of water and 
nutrients are first calculated in HRUs (as the smallest spa-
tial units), and then, it is aggregated and summed for each 
sub-catchment. Also predicted surface flows, sediments, 
pesticides, and chemicals for each HRU aggregated and 
routed to the watershed outlet. Furthermore, two variable 
storage and Muskingum routing methods can be performed 
for water flow to be routed through the channel network 
(Arnold et al. 1998; Neitsch et al., 2011; Khoi and Suet-
sugi 2012; Kalogeropoulos and Chalkias 2013; Leta et al. 
2017; Marhaento et al. 2017).

The main components of water balance equation for 
each HRU are storage volumes of snow, soil profile (0–2 
m), shallow aquifer (typically 2–20 m), and deep aquifer 
(> 20 m) (Arnold et al. 1998). The peak discharge values 
are determined with a modified rational method (Chow 
et al. 1988). Several processes including surface plant 
uptake, lateral flow, surface runoff, infiltration, percola-
tion, and evaporation involved with to lower layers (Nei-
tsch et al., 2011). Lateral flow which is predicted with 
kinematics storage routing depends on the several factors, 
including slope length, degree of slope, and saturated 
hydraulic conductivity in each soil layer (Arnold et al. 
1998). By creating shallow aquifer storage, the proportion 

of ground water flow to total river flow is accounted 
(Arnold and Allen 1996). Also, the shallow aquifer 
recharge is supposed to be equaled with the percolation 
from the bottom of the root zone. To estimate potential 
evapotranspiration, three different methods including Har-
greaves, Priestley-Taylor, and Penman–Monteith methods 
can be used (Arnold et al. 1998).

Optimization algorithms

AMALGAM

AMALGAM (Vrugt and Robinson 2007) takes advantage 
of the attributes of four different evolutionary optimiza-
tion algorithms including Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), Adaptive Metropolis 
Search (AMS), and Differential Evolution (DE) (Storn and 
Price 1997; Haario et al. 2001; Deb et al. 2002). First step 
in AMALGAM is to create a random initial parameter 
set (initial population) Pi of size of N which is created by 
Latin Hypercube Sampling (LHS) method. For each sam-
ple Pi, fast non-domination sorting operator is applied to 
assign a rank. A proposal population Pi of size N is then 
generated by carrying each possible algorithm out within 
AMALGAM to create a pre-speciuding Genetic Algorithm 
(GA), N =

{
N1

i
,N2

i
,…Nk

i

}
 , from  Pi. By using the fast non-

domination sorting operator, the best N solutions within 
Ri = Pi ∪ Pi are selected into  Pi+1, which is produced by the 
multi-method search and adaptive offspring creation method 
repeatedly until stopping criteria is satisfied (i.e., reach to 
maximum number of iteration). The AMALGAM key pro-
cedures are the self-adaptive offspring creation and simul-
taneous multi-method search. In the current study, NSGA-
II, PSO, DE, and AMS algorithms were integrated into the 
AMALGAM following the study of Vrugt and Robinson 
(2007). The number of offspring points generated by each 
algorithm ( 

{
N1

i
,N2

i
,…Nk

i

}
 ) is updating based in Eq. (1) as 

follows:

where Ok
i
 is the corresponding number in the previous gen-

eration, and O
k
i

/
Nk
i−1

 shows the proportion of new population 
(Vrugt and Robinson 2007). The minimum value for Nk

i
 is 5 

and N1

0
= N2

0
= … = Nk

0
= N∕K.

Multi‑objective calibration functions

To provide additional hydrological information about 
watershed behavior and to investigate how carefully the 
model simulate this behavior, like Kollat et  al. (2012), 

(1)Nn
i
= N ×

(
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i

/
Nk
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)
∕

(
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n=1

On
i

/
Nn
i−1
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four different objective functions emphasizing on different 
aspect of streamflow values were employed to be optimized 
simultaneously:

Nash–Sutcliffe coefficient (NSC)

The NSC coefficient (Nash and Sutcliffe 1970) (Eq. 2) is 
widely used as a most common calibration objective to 
emphasize on the peak flow errors and indicates how well 
the plots of the observed versus the estimated flow values 
fits 1:1 line.

where Qot is the measured discharge at time t, Qst shows the 
predicted discharge at time t, and Qo is the mean observed 
flow value during the calibration processes. NSC ranges 
from −∞ to 1 (optimal), where the closer the NSC to 1, the 
more accurate the model is.

Runoff coefficient percent error (ROCE)

The ROCE objective function is calculated using the fol-
lowing equation:

where Qs is the annual mean simulated river discharge, and 
Qo is the annual mean observed river discharge. The mean 
annual is calculated using Y years of calibration period data.

Transformed root–mean–square error (TRMSE)

Our third calibration objective function involved the 
Box–Cox transformation of low discharge errors (Box and 
Cox 1964), abbreviated as TRMSE (Eq. 4):

where Q̂ot is the measured discharge transformed by 
Box–Cox at time step t where λ = 0.3, and Q̂st is the predicted 
discharge transformed by Box–Cox at time t, and N shows 
the number of calibration time steps. The summation is done 
over time from 1 to N. The Box–Cox transformation also 
causes to reduce the effects of heteroscedasticity in addition 
to the emphasizing low-flow periods.

(2)NSC = 1 −

�∑n

t=1
Qst − Qot

∑n

t=1
Qot − Qo

�

(3)ROCE =
1

Y

Y∑

y=1

||||
|

Qs

Qo

− 1

||||
|
× 100

(4)TRMSE =

√√√
√ 1

N

N∑

t=1

(
Q̂st − Q̂ot

)2

(5)Q̂ =
(1 + Q)𝜆 − 1

𝜆

Slope of the flow duration curve (SFDCE)

The SFDCE shows the flashiness of a basin which consid-
ers minimizing the slope of flow duration curve (Eq. 6):

where Qs,67% and Qs,33% are the 67th and 33rd percentile of 
the simulated flows, respectively. Likewise, Qo,67% and Qo,33% 
are the 67th and 33rd percentiles of the observed flows, 
respectively.

Parallel computing

The parallel computing has been used in parameter cali-
bration process of SWAT model (SWAT 2012 as a pub-
lic domain model) in order to test its effectiveness and 
efficiency. The primary difference between parallelized 
and non-parallelized AMALGAM algorithms is how 
they utilize processing resources. Parallelized versions 
take advantage of multiple cores or threads to speed up 
optimization tasks, while non-parallelized versions per-
form these tasks sequentially with a single processing 
core. The choice between the two depends on the specific 
optimization problem, available hardware resources, and 
the need for computational efficiency. For our study area 
(the Kashafrood River watershed), 20 hydrologic SWAT 
parameters (Table 1) were calibrated to monthly stream-
flow measurements made using the proposed parallel com-
puting method. These parameters were finalized based on 
sensitivity and uncertainty analysis (Afshar et al., 2018); 
hence, best model performance and acceptable uncertainty 
in the SWAT modeling may be provided through obtained 
parameter combination (Her et al., 2015; Abbaspour et al., 
2017; Molina-Navarro et al. 2017).

The four objective functions described earlier were 
used as the objective functions to quantify the agreement 
between the monthly simulated and observed streamflow. 
Then, the high-dimensional parameter feasible space was 
explored by AMALGAM to locate the global optimum 
parameter value set that maximized and/or minimized the 
objective functions. Then, the SWAT model is linked with 
the AMALGAM multi-objective optimization algorithm. 
The optimization process was continued until the prede-
fined termination criteria were satisfied. In this study, the 
maximum number of function evaluations generated by 
AMALGAM (equaled by 6000) was defined as the stop-
ping criteria. Initial population consists of 64 individu-
als sampled through Latin Hypercube Sampling (LHS) 
method, and hence, it needs to be generated 100 times.

(6)SFDCE =
|
|
|
|
|

Qs,67% − Qs,33%

Qo,67% − Qo,33%

− 1

|
|
|
|
|
× 100
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Case study

Study area and model setup

The Kashafrood River is a main branch of the Kashafrood 
watershed in the northeastern of Iran. The watershed area 
is about 16,870  km2. The Kashafrood River catchment, the 
topography, the location of gauging and meteorological sta-
tions, and stream network are showed in Fig. 1. This basin is 
highly mountainous with elevations ranging from about 391 
to 3234 m. The mean annual precipitation and temperature 
of the catchment are about 340 mm and 13.85 °C, respec-
tively (Afshar et al., 2017). Predominant land use of the 
basin is being pasture (50.9%), while the other half consists 
mainly of agricultural land-generic (28.6%), winter wheat 
(15.6%), forest, urban and water body (4.9%) areas.

Digital elevation model (DEM), with a grid size of 30 m, 
stream network coverage, land use, soil map, and climate 
data is enclosed as the basic input data to SWAT. Stream 
network creation was carried out in the environment of Arc-
GIS as a DEM map product. Soil data including sand, silt 
and clay contents, rock fragment content, organic carbon 
content, soil electrical conductivity  (ECe), water content, 
porosity, bulk density, saturated hydraulic conductivity (Ks), 
and soil hydrologic groups were obtained from the soil map 
prepared by the State Soil Geographic (STATSGO) (USDA, 
1994) at a scale of 1:250,000. Climate data, including daily 

precipitation and temperature values, were obtained from the 
precipitation and air temperature stations in the study for a 
period of 20 years (1992–2011). Figure 2 shows the input 
maps (soil and land use) to SWAT.

After inputting the soil, slope, and land use maps into 
the model, each sub-basin is divided into a series of homog-
enous hydrological response units (HRU). In this study, 
the basin was subdivided into 217 sub-basins and 635 
HRUs. In this study, the watershed was studied for a period 
1998–2011, where the first 3 years were considered as a 
warm-up. The calibration periods was also consisted of 11 
years (2001–2011) for runoff data in four hydrometric sta-
tions which is shown in Fig. 1.

Computer configuration

When implementing this calibration algorithm, the simula-
tion speed depends mainly on the computer configuration. 
In this study, an ordinary PC (personal computer) was used 
to evaluate the running time of the parallelized and non-
parallelized AMALGAM algorithms for the calibration of 
SWAT model. This computer type is widely used in various 
regions globally, with the following configuration details: It 
features an Intel (R) Core i7 duo-2.2 GHz CPU, comprising 
7 physical cores and 8 logical cores. It is equipped with 8GB 
of RAM and operates on a 64-bit Windows 10 operating 
system. The total time needed for completing computational 

Table 1  Description of the 
SWAT input parameters 
selected for the discharge 
calibration

* r _: means the existing parameter value is multiplied by (1 + a given value), and v_: denotes the default 
parameter is replaced by a given value

Parameter Description Min Max

*r_CN2.mgt Curve number for moisture condition II 0.197 0.281
*v_GW_DELAY.gw Ground water delay time 132.7 159
v_ALPHA_BF.gw Base flow alpha factor 0 0.08
r__SOL_AWC.sol Available water capacity of the soil layer 0.21 0.28
r__SOL_K.sol Saturated hydraulic conductivity − 0.32 − 0.15
r__SOL_BD.sol Moist bulk density − 0.167 − 0.095
v_GW_REVAP.gw Groundwater “revap” coefficient 0.085 0.115
v_SHALLST.gw Initial depth of water in the shallow aquifer 460.8 510.5
v__RCHRG_DP.gw Deep aquifer percolation fraction 0.229 0.32
v_EPCO.hru Plant uptake compensation factor 0.29 0.41
v_ESCO.hru Soil evaporation compensation factor 0.41 0.501
r_SLSUBBSN.hru Average slop length 96.5 109.5
v_CH_N2.rte Manning’s “n” value for the main channel 0.102 0.13
v_CH_K2.rte Main channel conductivity 101.5 114
v__SFTMP.bsn Snowfall temperature − 1.81 − 1
v__SMTMP.bsn Snow melt base temperature − 1.92 − 0.95
v__SMFMN.bsn Melt factor for snow on December 21 7.5 8.95
v__TIMP.bsn Snowpack temperature lag factor 0.5 0.7
v__SURLAG.bsn Surface runoff lag coefficient 9.6 12.2
r__PCPMM.wgn Average or mean total monthly precipitation − 0.325 − 0.177
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tasks of solving the optimization problems using each par-
allelized and non-parallelized AMALGAM algorithm was 
recorded. The calculated speedup ratio was incorporated as 
a surrogate measurement of the parallelization efficiency.

The entire process, which involves setting up a hydrologi-
cal SWAT model and integrating it with parallel computing 

through AMALGAM algorithm, is represented as a sche-
matic map in Fig. 3.

It is important to highlight that the coupling of SWAT 
and AMALGAM, as depicted in Fig. 3, is accomplished 
through a batch file. This file simultaneously edits model 
parameter values for all Hydrologic Response Units (HRUs) 

Fig. 1  Hydrologic network in the Kashafrood River catchment in northeastern Iran, including topography, the location of gauging and meteoro-
logical stations, and stream networks

Fig. 2  Input maps to the SWAT models (land use, and soil maps)
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through SWAT, runs the model, and subsequently extracts 
the required output for objective function calculations. The 
entire process is coded in MATLAB and can be made avail-
able to interested readers upon request.

Results

AMALGAM Parallelization

To demonstrate and evaluate the running of the parallelized 
AMALGAM, we equipped several model that runs with a 
number of cores (worker) involved (from one to eight). The 
developed parallelized AMALGAM algorithm for the cali-
bration of SWAT model illustrated that less time is needed 
for a model calibration in comparison with non-parallelized 
AMALGAM algorithm due to more CPU cores involvement 
in the calibration processes. In addition, the reaching to a 
less time for model calibration, more CPU cores should be 

involved with meaning the degree of speed up diminishes 
for every increased core. It is observed that an eight-pro-
cessor run can reduce time by about 6% compared to a six-
processor run. Nevertheless, parallelization of AMALGAM 
algorithm can reduce the time required for both manual and 
automatic calibrations substantially. In a similar study, Wu 
et al. (2013) reported that in the parallelization of SWAT 
model by using the message passing interface method, the 
execution time can be reduced by 42–70% while using mul-
tiple processes (two to five) with a proper task-distribution 
scheme (between the master and slave processes). Her et al. 
(2015) assessed the performance of two parallel computing 
methods, ‘spmd’ and ‘parfor,’ for improving consuming time 
efficiency in solving optimization problems in hydrologic 
modeling applications. They clearly demonstrate effective-
ness of the mentioned methods in reducing computational 
time of the parameter calibration. In this study, we utilized 
the benefits of the ‘spmd’ method to significantly reduce the 
runtime of the SWAT model by up to 45% when compared 

Fig. 3  Schematic map representing parallel computing of the SWAT model linked with AMALGAM optimization algorithm
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to standard execution, which does not involve parallel 
processing.

AMALGAM pareto front

In order to illustrate how meaningful SWAT model calibra-
tion trade-off among the four objective functions involved in 
our AMALGAM optimization program, the Pareto solution 
set is provided (Figs. 4, 5, 6 and 7). In this figures, the hori-
zontal and vertical axes are the TRMSE and ROCE objec-
tive functions, respectively. The size and color of the circles 
specified in these graphs contain the values of the NSE and 
SFDCE functions, respectively. The size and color of the 

circles specified in the graphs also contain the NSE and 
SFDCE function values, respectively. In addition, the two 
horizontal and vertical axes at all stations were considered 
similarly for a better comparison. The R programming envi-
ronment was used to draw these figures to simultaneously 
visualize the values of the four investigated objective func-
tions, and thus, the presentation of 2-D and 3-D (containing 
of two or three objectives) plots was discarded.

In results, almost in all station, the two objective func-
tions of NSC and TRMSE will never reach to their opti-
mum values (i.e., NSC = 1.00 and TRMSE = 0.00) while 
other two investigated objective functions (i.e., ROCE and 
SFDCE) may achieve their optimal values of zero. The best 

Fig. 4  Pareto front of four objectives for KARTIAN station

Fig. 5  Pareto front of four objectives for SARASSHA station
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simulation based on the TRMSE objective function is related 
to the HESDEHB hydrometric station. Furthermore, the best 
hydrologic model response based on the ROCE function 
is assigned to the SARASSHA and ZIRBAGOL stations; 
however, ZIRBAGOL has the lowest (best) values of the 
SFDCE function depicting the least error in simulating the 
flow duration curve. This outcome could be originated from 
greater water discharge values of this station comparing to 
the other. If NSE function was considered as goal function 
separately, it may be concluded that the simulated discharge 
values in SARASSHA and ZIRBAGOL are ranked, respec-
tively. Since ROCE and SFDCE functions focus on water 
balance and do not take into consideration the high- and 

low-flow rates, these two objective functions values can 
inherently compensate the observed error values in over-
estimated discharge values by lower estimating the other 
predicted discharge values.

The high density of the Pareto front points in SARAS-
SHA and ZIRBAGOL stations is seen clearly so that all 
points are within a certain and close range. In the other 
two stations, however, the Pareto front occupies a wide 
range of ROCE values. The high conformity of the ROCE 
values with the NSE objective function values is also note-
worthy. The NSE and SFDCE objective functions were in 
contradiction, and their variations were not in a direction. 
As it is seen, the increase in NSE (the improvement of this 

Fig. 6  Pareto front of four objectives for HESDEHB station

Fig. 7  Pareto front of four objectives for ZIRBAGOL station
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function) is accompanied by an increase in the SFDCE 
(the deterioration of this function).

Multi‑objective simulation

Since a multi-objective calibration has been performed 
in several stations in this research, an efficient tool is 
available to decide about the best simulation based on the 
investigated objective functions. The obtained results from 
the Pareto fronts are summarized in Table 2.

In this table, the average of non-dominated Pareto front 
values for all four objective functions is shown where the 
best values of each function also are highlighted. Gener-
ally, this table depicts that the model had the best simula-
tion performance slightly at the SARASSHA station where 
the two objective functions of NSC and ROCE have a sig-
nificant difference compared to the rest. In addition, the 
values of other two objective functions, which are assigned 
to the HESDEHB and ZIRBAGOL stations, have a neg-
ligible difference with the SARASSHA station. Since the 
SARASSHA station is located in upstream of the basin, 
the river regime is more natural with slightest handicap 
by humans as well as other factors. For this reason, only 
this station could be considered in connection with social 
hydrology, which has recently been taken into account in 
hydrology community.

Figure 8 compares the simulated and observed dis-
charge values relative to the best values for each target 
function in all hydrometric stations. The SARASSHA sta-
tion with the highest NSC value has the best simulations 
for the relatively high discharge to peak values, which is 
expected due to the behavioral nature of the NSC func-
tion. In fact, this function attempts to eliminate the error 
by minimizing the differences between the simulated and 
observed high discharge values.

Conclusions

This paper aimed to take advantage of parallel process-
ing to accelerate the computations involved with simu-
lation process of a semi-distributed hydrologic model, 
(i.e., SWAT) linked with a multi-objective optimization 
algorithm (AMALGAM) for multi-site calibration of a 
mountainous watershed. All parallel processing materials 
(SPMD method) and linkage between SWAT and AMAL-
GAM were coded in MATLAB, and running process was 
carried out to obtain the results. Also, presentation of 4-D 
plot containing of four objective functions was achieved 
through coding in R environment.

Finally, the main finding of this paper can be summa-
rized as follows:

1 Because the parallelized AMALGAM with SWAT 
model may reduce the execution time of a non-paral-
lelized model run, it can substantially reduce the time 
required for automatic parameter calibrations. In addi-
tion, the parallelized AMALGAM algorithm presented 
herein for calibration of SWAT model as an example can 
be useful and simply carried out for calibration of other 
hydrological and water quality models.

2 A four objective optimization strategy focusing on high 
flows (NS coefficient), water balance measure (involved 
with runoff coefficient error), low flows (Box–Cox trans-
formed root–mean–square error), and flashiness (slope 
of the flow duration curve error) was applied to cali-
brate SWAT model using multi-algorithm optimization 
AMALGAM. The high conformity of the ROCE val-
ues with the NSE objective function values is seen in 
4-D pareto front plots. On the other hand, the NSE and 
SFDCE objective functions were in contradiction and 
their variations were not in a same direction.

3 As a main finding of this research, it could be concluded 
that best simulation with considering of all four objec-
tives is belonged to SARASSHA station which is located 
in upstream which the river regime is more natural with 
slightest handicap by humans as well as other factors. 
For this reason, only this station could be considered in 
connection with social hydrology, which has recently 
been taken into account in hydrology community.

4 It can be deduced that when the optimal values for 
all four objective functions converge within a specific 
region, as observed, for instance, at the SARASSHA 
station, and when the Pareto fronts closely overlap, the 
outcomes generated by the multi-objective algorithm 
do not significantly deviate from those produced by the 
single-objective algorithm.

Table 2  Average of non-dominated Pareto fronts values for the four 
objective functions in all stations

NSC Nash–Sutcliffe coefficient, TRMSE transformed root–mean–
square error, ROCE runoff coefficient percent error, and SFDCE 
slope of the flow duration curve

Station name Target function

NSC TRMSE ROCE SFDCE

HESDEHB 0.671 0.152 0.044 8.646
KARTIAN 0.609 0.193 0.046 12.217
SARASSHA 0.730 0.221 0.004 7.447
ZIRBAGOL 0.682 0.282 0.010 3.135
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