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Abstract
The impacts of climate change-induced warming on our ecosystems can no longer be neglected, but our understanding of 
consequences for groundwater ecosystems in general and groundwater quality in particular is alarmingly incomplete. In this 
review, we therefore provide an overview of the current state of knowledge related to the impact of global warming on our 
precious groundwater resources. Groundwater warming in shallow aquifers is closely associated with increasing average land 
surface temperatures and has already reached + 1 K compared to pe-industrial times. Until the end of the twenty-first century, 
temperature increases in local groundwater of up to + 10 K are possible. Monitoring data, laboratory and field experiments all 
provide evidence that such temperature increases are sufficient to substantially modify groundwater quality through numer-
ous and interlinked biogeochemical processes, which we have summarized in a conceptual overview. Warming impacts on 
groundwater are highly site-specific and spatially heterogeneous, which complicates their assessment and prediction. Locally, 
shallow unconfined and nutrient-rich floodplain aquifers are most susceptible to warming-induced changes. Importantly, 
processes affecting water quality are not only modified by a long-term rise in groundwater temperatures, but also in the 
short-term during weather extremes, which is of great relevance for riverbank filtration. At the regional scale, aquifers in 
cold regions impacted by permafrost thawing are especially vulnerable to warming. As the majority of temperature-sensitive 
processes affecting groundwater quality are not or only very slowly reversable, we pressingly require comprehensive mecha-
nistic understanding before it is too late to develop suitable countermeasures and management strategies.
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Abbreviations
a−1  Per year
ATES  Aquifer thermal energy storage
°C  Degree celsius
CMIP6  Coupled Model Intercomparison Project Phase 

6
DO  Dissolved oxygen
DOC  Dissolved organic carbon
DON  Dissolved organic nitrogen
Eh  Redox potential
GCM  General Circulation Models
GSHP  Ground source heat pump
GWHP  Groundwater heat pump

IPCC  Intergovernmental Panel on Climate Change
LNAPL  Light non-aqueous phase liquids
LST  Land surface temperature
MAR  Managed artificial recharge
MAT  Mean annual air temperature
OM  Organic matter
pCO2  CO2 partial pressure
RBF  Riverbank filtration
RCP  Representative Concentration Pathway
SSP  Shared Socioeconomic Pathways Scenario
TCE  Trichloroethene

Introduction: the impact of temperature 
on groundwater quality

Evidence for the consequences of climate change-induced 
warming on our environment is growing by the day (Ripple 
et al. 2022), but the resulting impacts on groundwater are 
still largely unknown (Riedel 2019). The majority of studies 
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and review papers published until now focused on the quan-
titative impact of climate change on this natural georesource 
(i.e. changes in groundwater recharge and its implications 
for management practices) (Costa et al. 2021; Green et al. 
2011; Johnson et al. 2022; Kløve et al. 2014; Taylor et al. 
2013). On the other hand, climate change-induced influences 
on physico-chemical and biochemical properties and under-
lying processes in aquifers have received little attention so 
far (Bloomfield and Jackson 2013; Green et al. 2011; Hem-
merle and Bayer 2020). Without going into details, the sixth 
assessment report (AR6) of the Intergovernmental Panel on 
Climate Change (IPCC) states medium confidence that cli-
mate change is impacting groundwater quality negatively 
(Pörtner et al. 2022). As groundwater is the most important 
source of raw drinking water and for irrigation (Margat and 
Van der Gun 2013; UN 2022), potential negative impacts of 
global warming on its quality cannot be ignored.

By groundwater, all forms of subsurface water is 
included in the following, reaching from the saturated 
zone near the soil surface down to depths of hundreds of 
m in thick alluvial or karstic aquifer systems. Defining the 
term groundwater quality is more challenging, as two only 
partially overlapping points of views shall be considered 
here. From the anthropogenic perspective, using ground-
water as drinking water and for irrigation, it is primarily a 
question of the absence of substances hazardous to health 
(such as heavy metals, organic pollutants or pathogenic 
germs). Considering drinking water production, other 
physico-chemical properties are also important, such as 
pH, salinity and the concentration of dissolved organic 
carbon (DOC), reduced  Fe2+ and  Mn2+ that can interfere 
with raw water treatment and therefore impact on pro-
duction costs. From an ecological point of view, aquifer 
systems represent complex ecosystems and habitats for 
diverse communities of organisms, which are vulnerable 
to hazardous compounds as well. Moreover, most inhabit-
ants of aquifer ecosystems (i.e. stygobionta) react highly 
sensitive to changes in physico-chemical parameters such 
as temperature, dissolved oxygen (DO) concentration or 
redox conditions (Goldscheider et al. 2006; Hahn 2006; 
Humphreys 2009).

While the demands of human use on groundwater quality 
are very clear and legally regulated, the ecological perspec-
tive of groundwater systems is often neglected (Griebler 
et al. 2014). This is even more concerning in regard to the 
upcoming effects of climate change on groundwater systems, 
which is likely to affect a number of essential ecosystem 
services, comprising provision and production of safe drink-
ing water, degradation of pollutants, retention of nutrients 
or elimination of pathogenic microorganisms (Goldscheider 
et al. 2006; Griebler et al. 2019).

Impacts of climate change on groundwater quality are 
already observable in aquifers. The impact of tempera-
ture change on abiotic reactions (i.e. individual mineral 
solubilities, sorption equilibria, reaction kinetics) was 
largely assessed through laboratory experiments (Jesu-
ßek et al. 2013; Partey et al. 2008; Welch and Ullman 
2000). However, our understanding of how biogeochemi-
cal cycles and processes in aquifers are altered by warm-
ing is incomplete (Green et al. 2011). Studies investigat-
ing climate change-induced feedbacks on groundwater 
quality can be generally categorized based on the impact 
pathway: (1) increasing water temperatures, (2) changing 
groundwater tables (increases and decreases) and (3) sea 
water intrusion in the case of coastal aquifers. Whereas 
(2) and (3) are rather locally constrained, warming of 
groundwater (1) represents a global phenomenon.

To discuss how warming may affect groundwater qual-
ity, it is first important to know how much groundwater 
temperatures have risen so far and could continue to rise. 
Published groundwater temperature data from long-term 
monitoring programs is yet scarce, but several studies 
consistently described increases in groundwater tem-
peratures along with increasing mean air and land sur-
face temperatures (Kurylyk et al. 2013; Menberg et al. 
2014). Groundwater temperatures are being modified by 
climate change either due to an increase in the tempera-
ture of recharge water (Burns et al. 2017) and/or from 
thermodynamic coupling between the atmosphere and the 
ground (Hemmerle and Bayer 2020). A detailed overview 
of documented increases in groundwater temperatures is 
provided in the following section.

The overarching aim of this review is to summarize the 
present knowledge on climate change-induced warming on 
groundwater temperatures and quality. We have therefore 
applied a systematic literature review by conducting a rigor-
ous literature research based on Clarivate’s™ Web of Science 
core collection. We used case studies to synthesize the current 
state of knowledge, which we complement by own reflections 
wherever appropriate. This work distinguishes itself from pre-
vious reviews, which generelly focused on the entire impact of 
climate change on groundwater systems and considered quality 
related impacts only briefly, if at all (Amanambu et al. 2020; 
Earman and Dettinger 2011; Green et al. 2011; Kløve et al. 
2014).

The following three main sections are each attributed to a 
specific research question: How much have groundwater tem-
peratures increased so far and what can we expect for the near 
future (Sect. 2)? How does climate change-induced warming 
modify groundwater quality, and which biogeochemical pro-
cesses are responsible (Sect. 3)? Which aquifers are most vul-
nerable to groundwater warming and resulting consequences 
for water quality (Sect. 4)?
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Impact of climate change on groundwater 
temperatures

Current state of groundwater warming

In general, groundwater temperatures are closely linked 
to land surface temperatures (Menberg et al. 2014; Tay-
lor and Stefan 2009). For shallow groundwater down to a 
depth of 60 m below ground level, a near-linear relation-
ship between both has been reported for a global data set 
with groundwater temperatures ranging from 1 to 31 °C 
(Benz et  al. 2017). Considering the close relationship 
between land surface and groundwater temperatures, it is 
not surprising that the impact of global warming is already 
visible in groundwater temperatures. For example, the 
regional mean annual air temperature in Bavaria (south-
ern Germany) has increased by + 0.035 K  a−1 between 
the early 1990s to 2015, which was closely followed by 
temperatures in shallow groundwater with an increase of 
+ 0.028 K  a−1 at 20 m and + 0.009 K  a−1 at 60 m depth, 
respectively (Hemmerle and Bayer 2020). Similarly, sur-
face air temperatures in Austria have increased on average 
by + 0.025 K  a−1 from 1994 to 2013, while groundwater 
temperatures rose by + 0.035 K  a−1 (Benz et al. 2018b). 
Annual warming of groundwater and aquifers in range 
of + 0.01 to + 0.04 K  a−1 since the late 1970s has further 
been described for the UK (Bloomfield and Jackson 2013; 
Stuart et al. 2010), the Netherlands (Bense and Kurylyk 
2017), Switzerland (Figura et  al. 2011) and Germany 
(Menberg et al. 2014; Riedel 2019). Note that several stud-
ies reported accelerating groundwater warming rates since 
the 1990s (Figura et al. 2011; Menberg et al. 2014), which 
was especially pronounced in shallow groundwater bodies. 
Looking at the last three decades, the warming for shallow 
groundwater totals almost + 1 K, which corresponds to the 
general regional warming effects.

Thermal signals from changing regional air tempera-
tures arrive damped and delayed in the subsurface (Hem-
merle and Bayer 2020; Menberg et  al. 2014), which 
emphasizes vertical aspects of groundwater warming. 
The faster the groundwater recharge, the faster warming 
progresses into the subsurface, which is especially pro-
nounced for small, shallow unconfined aquifers as com-
pared to usually larger, deep confined aquifers (Kløve et al. 
2014).

It should not go unmentioned that anthropogenic activi-
ties may cause additional groundwater warming. In densely 
populated areas, subsurface energy fluxes are modified 
through buildings and infrastructure, which amounts to 
the so-called urban heat island effect (Benz et al. 2018a; 
Perrier et al. 2005; Taniguchi et al. 2007). Groundwater 
temperatures can be also affected by managed aquifer 

recharge (MAR), in which treated waste water or excess 
water is introduced into receiving aquifers (Dillon et al. 
2019). Through aquifer thermal energy storage (ATES), 
thermal energy is seasonally stored and recovered from 
aquifers for heating purposes (Dillon et al. 2019; Doughty 
et al. 1982). More recently, open- or closed-loop ground 
source heat pump (GSHP) systems (including groundwa-
ter heat pump systems, GWHP) are installed for heating 
and/or cooling purposes, which have lasting effects on 
shallow groundwater temperatures (Lee and Hahn 2006; 
Russo et al. 2012). Another important anthropogenic activ-
ity affecting groundwater temperatures is riverbank filtra-
tion (RBF), which is commonly used in drinking water 
production. Here, the recharge of near-surface and uncon-
fined floodplain aquifers from river water is forced through 
targeted pumping in extraction wells (Eckert et al. 2008; 
Ray et al. 2002; Schubert 2002). While all anthropogenic 
effects causing groundwater heating overlap with indi-
rect warming through climate change, comparisons with 
groundwater temperatures in rural and less anthropogeni-
cally disturbed areas allow to distinguish between the dif-
ferent warming effects (Taniguchi et al. 2007; Taylor and 
Stefan 2009).

In summary, global warming is increasing groundwater 
temperatures, which is already detectable in monitoring 
data (for an overview of literature documenting ground-
water warming, refer to Table 1). Note that the presented 
studies have a strong spatial focus on regions in Europe, 
whereas other regions remain largely understudied. How-
ever, considering the global increases in surface and air 
temperatures, it is safe to assume that many shallow porous 
and fast-recharging fissure aquifers have already suffered 
increases in groundwater temperatures of + 1 K as com-
pared to pe-industrial times. Larger temperature increases 
at a local to regional scale are further likely considering the 
spatially uneven distribution of global warming (Hansen and 
Sato 2016; Pörtner et al. 2022).

Future trends and regional differences

To tackle the potential impact of warming on groundwa-
ter for the near future, it is of great importance to provide 
robust estimates of water temperature increases at a regional 
to local scale. Unfortunately, only few modeling-based pre-
dictions for groundwater temperatures are currently avail-
able. For a shallow aquifer in Minnesota (US), outcomes of 
a heat transport model suggested an increase in groundwater 
temperature of + 3 to + 4 K within the next decades (Tay-
lor and Stefan 2009). This estimated range of groundwater 
warming agrees well with other local and regional modeling 
studies. For example, based on General Circulation Models 
(GCM) and different greenhouse gas emission scenarios 
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(Representative Concentration Pathway, RCP), Gunaward-
hana and Kazama (2012) estimated that aquifer temperatures 
at 8 m depth in the humid subtropical climate of the Sendai 
Plain (Japan) will increase by + 1.00 to + 4.28 K until 2080 
as compared to 2007 observations. For northern European 
cold-water springs in Finland and Sweden, a mean water 
temperature increase of + 0.7 (RCP2.6 scenario) to + 5.9 K 
(RCP8.5 scenario) was predicted by 2086 (Jyväsjärvi et al. 
2015). This is in line with modeling-based estimate of a + 3 
K increase for temperature of discharged shallow ground-
water in temperate forests of Canada (Kurylyk et al. 2014).

Considering regional model predictions for surface tem-
peratures (see IPCC Interactive Atlas; Masson-Delmotte 
et al. 2021), greatest warming is expected for the Arctic 
and midlatitudes in the northern hemisphere (Cogswell and 
Heiss 2021). Here, the predicted median of mean tempera-
ture change in the Russian Arctic Region for the 2081–2100 
period (relative to 1850–1900, based on CMIP6 and a pes-
simistic global warming level of 4°C under SSP5-8.5) is 
an impressive + 9.6 K. Based on previous observations that 
show a tight correlation between land surface and ground-
water temperatures (Benz et al. 2017), it is reasonable to 
assume that warming of shallow groundwater in northern 
regions may reach values close to + 10 K.

Consequences of warming for groundwater 
quality

Microbial activity, community structure 
and metabolic pathways

The intensification of microbial metabolic rates represents 
one of the most important consequences of rising tem-
peratures in groundwater for most aquifers (Brielmann 
et al. 2011). For example, a higher microbiological activ-
ity as indicated by increasing microbial colony counts was 
reported from an ATES field site at the Netherlands, where 
16 °C warm water was seasonally introduced into the aquifer 
(Bonte et al. 2011). However, linking increasing microbial 
activities to warming in aquifer systems is extremely difficult 
because of analytical limitations. Therefore, indirect proxies 
for microbial activities in groundwater are commonly moni-
tored, such as DOC and  NH4

+ that are released as by-prod-
ucts during the microbial mineralization of organic matter 
(OM) (Brons et al. 1991; Du et al. 2020; Rivett et al. 2008).

In order to alter groundwater properties in the long-term 
under rising temperatures, microbial activities require suffi-
cient supplies with key nutrients, terminal electron acceptors 
(TEA) and degradable OM (Brielmann et al. 2011; Grie-
bler 2015; Griebler et al. 2016). Degradable OM comprises 
DOC (e.g. from sewage contamination) or sedimentary 
OM that is contained within the aquifer matrix. However, 

the response of microbial activities to warming is complex 
and non-linear, especially due to the involvement of a vast 
variety of microorganisms and aquifer properties that may 
considerably vary at a small scale (Griebler 2015). Gener-
ally, eutrophic aquifers are especially vulnerable to warm-
ing-induced changes through an intensification of microbial 
activities as high amounts of degradable OM and nutrients 
are available (Griebler et al. 2016).

The intensification of microbial activities may also result 
in the consumption and depletion of DO, causing a shift 
from oxic to anoxic conditions. A shift to anoxic conditions 
has several further important consequences for groundwater 
ecosystems. A gradual or temporary depletion in DO leads to 
a decline in the local redox potential, a change in the micro-
bial community structure and also shifts in the dominant 
metabolic pathways as described in the following. Generally, 
the consumption of DO succeeds with the reduction of dis-
solved  NO3

− (Borch et al. 2010). For example, a depletion in 
DO during summer at a RBF site in Germany (Flehe Water-
works at the River Rhine, Düsseldorf) showed that microbial 
communities shifted from aerobic respiration toward anoxic 
denitrification (Sharma et al. 2012). Increasing groundwa-
ter temperatures further enhance microbial  NO3

− reduction 
rates if conditions are already anoxic (Cogswell and Heiss 
2021). At the same time,  NH4

+ is released as by-product, 
which accumulates in groundwater near-proportionally to 
the decline in  NO3

− (Cogswell and Heiss 2021). Predominat-
ing redox processes may also shift due to different tempera-
ture optima of the microbial redox processes involved (Bonte 
et al. 2013a). For example, microcosm incubations of origi-
nal groundwater and aquifer material from two ATES sites 
in the Netherlands showed that an increase in water tempera-
ture from 11 °C (natural background) to 25 °C caused a shift 
from Fe(III)- to  SO4-reduction and methanogenesis (Bonte 
et al. 2013a). Similar observations were made by Jesußek 
et al. (2013), who incubated Tertiary lignite sand from an 
aquifer in northern Germany. As a response to warming, 
redox conditions shifted from  NO3

−- (10 °C) to  NO3
−- and 

Fe(III)-reduction (at 25 and 40 °C).
Increasing groundwater temperatures also cause shifts 

within the microbial community structure. This was shown 
for example for an aquifer impacted by a closed-loop GSHP 
system in New Jersey (USA) (Sowers et al. 2006). Although 
limited to culturable bacteria, the outcomes from two sam-
pling campaigns (1997 and 2005) suggested pronounced 
changes in the microbial community structure. Warming-
induced shifts in microbial communities and dominant 
metabolic pathways were further observed for two Quater-
nary alluvial aquifers in southern Germany (Munich and 
Freising), representing eutrophic and oligotrophic aquifer 
systems, respectively (Brielmann et al. 2009, 2011; Griebler 
et al. 2016). Here, warming resulted in complex changes 
within the aquifers, comprising the chemical composition 
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(e.g., depletion in DO), the microbial biodiversity and com-
munity composition as well as metabolic processes and 
finally ecosystem functions. Specifically, the diversity of 
aquifer microbial communities increased with warmer tem-
peratures and the microbial community structure changed. 
Whereas natural ground water temperatures of 10–12 °C 
provided ideal living conditions for psychrophile und psy-
chrotolerant microorganisms, warming to 15—20 °C fos-
tered the prevalence of mesophile species. Importantly, 
microbial biomass and activities were found to additionally 
depend on the availability of nutrients and substrates (e.g., 
OM, P). When groundwater temperatures exceeded 20 °C, P 
limitation occurred due to an increase in metabolic activities 
and an associated demand in essential nutrients. Thus, not 
only the relative changes in groundwater temperatures are 
important in regard to the water quality, but also absolute 
temperatures that are reached.

Impact on water quality

One major change in groundwater properties arising from an 
increase in microbial metabolic activity is the shift from oxic 
to anoxic conditions (Stumm and Sulzberger 1992). In addi-
tion to the consumption of DO by microorganisms, warming 
of groundwater also reduces the solubility of oxygen in infil-
trating water. A gradually decreasing  O2 saturation (on aver-
age − 0.24%  a−1) parallel to rising groundwater temperatures 
(+ 0.012 K  a−1) was observed by Riedel (2019) for ground-
water in southern Germany. Furthermore, a temporary DO 
depletion in groundwater was reported for shallow flood-
plain aquifers used for RBF. For example, an exceptionally 
hot and dry summer in 2003 caused a temporary temperature 
increase close to 20 °C in groundwater of the Lower Rhine 
Valley (Germany), which was accompanied by an approxi-
mately four months long decline in DO concentrations to 
below 1 mg  L−1 (Eckert et al. 2008). Similar observations 
were made in 2003 for the River Thur (Switzerland), where 
an increase in microbial activity resulted in DO depletion in 
groundwater near the river (Hoehn and Scholtis 2011). The 
impact of rising groundwater temperatures on DO during 
summer months was further observed in shallow groundwa-
ter below stormwater infiltration basins (Datry et al. 2004; 
Foulquier et al. 2009). Thus, temperature-induced changes in 
surface waters that precede groundwater recharge can further 
enhance DO depletion in shallow unconfined aquifers, which 
is particularly important during the summer months.

Note that groundwater warming and an associated shift 
from oxic to anoxic conditions is highly problematic for 
groundwater invertebrates. Field observations and controlled 
experiments showed that species-dependent threshold val-
ues exist regarding groundwater temperatures and DO con-
centrations (Brielmann et al. 2011; Foulquier et al. 2011; 

Griebler 2015). For example, no invertebrates were found in 
shallow groundwater of a stormwater infiltration site when 
the DO declined to below 0.5 mg  L−1 (Foulquier et al. 2011).

The enhanced microbial mineralization of OM is accom-
panied by the release of  CO2 as a byproduct, which raises 
in turn the  CO2 partial pressure  (pCO2) and causes a sub-
sequent decline in pH (Hoehn and Scholtis 2011). This was 
observable in southern Germany, where rising groundwater 
temperatures (on average, + 0.012 K  a−1) were found to be 
negatively correlated with pH values (-0.003  a−1) (Riedel 
2019). This observation was further in line with the out-
comes of laboratory incubation experiments, which used 
original aquifer material from an ATES site (Brons et al. 
1991). Here, controlled temperature increases resulted in 
 CO2 production from the microbial mineralization of OM, 
which finally caused a decrease in pH.

A decreasing pH results in turn in the dissolution of 
calcite and the release of dissolved  Ca2+ into groundwa-
ter (McDonough et al. 2020). Furthermore, pH-controlled 
silicate dissolution and an associated release of Si and  K+ 
has been observed in field (Saito et al. 2016) as well as lab-
oratory warming experiments (Arning et al. 2006; Bonte 
et al. 2013b). Enhanced mineral weathering resulting from 
a decreasing pH has also been attributed an increase in geo-
genic contaminants such as  F− (Riedel 2019), which can 
ultimately lead to a deterioration in groundwater quality.

Microbial mineralization of OM may also cause a deple-
tion of TEA and subsequently a decrease in the redox poten-
tial. A change in the redox potential toward more reducing 
conditions is further modifying the mobility of toxic trace 
elements. Here,  Mn2+ is of particular importance as chronic 
overexposure was found to be associated with neurotoxic 
health effects in humans (O’Neal and Zheng 2015) as well 
as negative effects in aquatic organisms (Peters et al. 2011). 
The removal of  Mn2+ during water treatment requires addi-
tional efforts and therefore costs (Tobiason et al. 2016). 
Reduced  Mn2+ is easily released into groundwater due to 
microbial redox reactions as soon as anoxic conditions are 
reached, which is often associated with shallow aquifers that 
are prone to warming impacts (Riedel 2019).

Warming-induced  Mn2+ releases into groundwater have 
been well-documented at RBF sites, where the raw water 
composition is closely monitored. For example, substantial 
increases in dissolved  Mn2+ concentrations from below 0.1 
to above 0.6 mg  L−1 were observable during the 2015 sum-
mer at the Waterworks Dresden-Tolkewitz (East Germany), 
when river-water temperatures rose to over 20 °C for three 
months (Paufler et al. 2018). (Paufler et al. 2018). Moreo-
ver,  Mn2+ concentrations were found to be constrained 
by sorption as well as (re-)oxidation and precipitation of 
Mn-oxides along the groundwater flow path due to chang-
ing hydrogeochemical conditions. Similarly,  Mn2+ con-
centrations in groundwater at the Lot River (France) were 
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found to be positively correlated to the water temperature 
(Bourg and Bertin 1994). Here, a threshold groundwater 
temperature of 10 °C was reported that triggered microbial 
Mn(IV)-reduction.

Due to the pollution of the river Rhine with degradable 
dissolved organic substances in the 1970s, connected flood-
plain aquifers also became extensively anoxic, leading in 
turn to considerable increases in dissolved  Mn2+ as observed 
from 1968 on at Düsseldorf (Germany) (Kübeck et al. 2009). 
As the water quality of the Rhine improved,  Mn2+ concentra-
tions in shallow groundwater decreased sharply from 1988. 
Thus, changes in the river water composition can be also rel-
evant regarding the quality of associated groundwater bodies 
in addition to increasing temperatures (Sprenger et al. 2011). 
On the other hand, the river water composition, especially 
DO concentrations, are increasingly impacted by warming 
(Ducharne 2008; Whitehead et al. 2009), which will in turn 
impact redox conditions in shallow floodplain aquifers.

Local shifts toward anoxic conditions during summer 
months reaching Mn(IV)- and even Fe(III)-reducing con-
ditions were reported from stormwater infiltration basins 
(Fischer et al. 2003; Massmann et al. 2006). The reductive 
dissolution of Mn(IV)- and Fe(III)-(hydr)oxides may also 
release other problematic geogenic trace elements such as As 
or P, which are either sorbed to the mineral surfaces or are 

incorporated as impurities within the crystal lattices (Borch 
et al. 2010; Neidhardt et al. 2021).

Furthermore, warming-induced releases of trace elements 
into groundwater have been observed in several field and 
laboratory experiments, comprising a wide range of tem-
peratures and elements such as B, Li, As, Mo, V, P, Sb, Ba, 
Co, Tl, Mn, and U (Bonte et al. 2013a, b, 2011; Lüders et al. 
2020; Saito et al. 2016). While the reductive dissolution of 
Mn(IV)- and Fe(III)-(hydr)oxides was generally considered 
as principal mobilization mechanism for these elements, 
several authors argued that temperature-dependent cation 
exchange as well as anion desorption may have also been 
involved (Bonte et al. 2013b; Lüders et al. 2020; Saito et al. 
2016). The latter is of relevance for all elements that form 
oxyanions, comprising As, V, Mo and P. Knowledge of the 
release mechanisms involved is important because some 
(i.e. the release of cations and anions through adsorption 
reactions) are reversible if groundwater temperatures should 
decline (Lüders et al. 2020).

Warming may also provide ideal conditions for the degra-
dation of organic pollutants (Cavelan et al. 2022; Popp et al. 
2015). For example, the outcomes of a microcosm experi-
ment using contaminated soil and aquifer material showed 
that warming did not only result in a shift in the composi-
tion and activity of microbial communities, but also in an 

Table 2  Summary of key impacts of climate change-induced warming on groundwater temperatures and resulting impacts

*As compared to pre-industrial times
pCO2  CO2 partial pressure, conc. concentration, DO dissolved oxygen, DOC dissolved organic carbon, Eh redox potential, LST land surface tem-
perature, OM organic matter, a−1 per year, Eh redox potential, temp. temperature

Groundwater temperature
Current state: Water temp. in many shallow unconfined aquifers has increased by + 1 K *, closely following land surface warming

Warming rates in shallow aquifers accelerating since the 1990’s, currently + 0.01 to + 0.05 K  a−1

Groundwater temp. also increasing at greater depths with slower warming rates
Local groundwater warming in urban areas superimposed by anthropogenic activities

Future trends: Groundwater temp. further following average increases in LST
regional and local groundwater warming up to + 10 K * likely until 2100
Regions of high altitudes and latitudes especially vulnerable to warming

Groundwater quality
Processes and changes: Biotic: increasing microbial activity coupled to OM mineralization and DO consumption,  CO2 release, pH change 

and Eh decrease
Abiotic: impact on ion exchange, desorption and mineral dissolution reactions
Various impacts on groundwater properties (e.g., DO, pH,  Eh,  pCO2, DOC, major and trace element conc.)
Trace element conc. controlled by sorption / desorption processes (reversible) and reductive dissolution of metal-

oxides (irreversible)
Changing microbiological community composition feedbacks on redox reactions, nutrient cycles and food webs

Further aspects: Temp. increase of ≤  + 10 K sufficient to modify groundwater quality
Warming effects highly site-specific and heterogeneous
OM- and nutrient-rich systems highly vulnerable to short- and long- term temp. changes
Shallow groundwater near rivers particularly susceptible to changes during summer
Aquifer-specific threshold temp. may be reached (e.g. for specific redox processes)
Shifts in microbial communities and redox processes may degrade (mobilization of toxic trace elements) or improve 

(enhanced mineralization of organic pollutants) groundwater quality
Shift from oxic to anoxic conditions able to render aquifers uninhabitable for invertebrates
Decreasing groundwater quality impacts on drinking water purification costs
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increased degradation of aromatic hydrocarbons (Zeman 
et al. 2014).

In addition to the previously mentioned impacts of 
warming on abiotic processes (e.g., ion exchange, desorp-
tion, and solubility of minerals and gases, see Table 2), 
rising water temperatures also influence various hydroge-
ological properties like water density and viscosity. While 
these properties influence groundwater flow velocity and 
contaminant transport, it can be assumed that their com-
bined effects on groundwater quality are only minor com-
pared to the direct impact of biogeochemical processes.

A summary of groundwater warming and its impacts 
on biogeochemical processes and water quality in aquifers 
is provided in Fig. 1 and Table 2. For a detailed over-
view of publications reporting on impacts of warming 
on groundwater the reader is referred to Table 3. The 
studies presented cover a wider range of methodological 
approaches and are based on groundwater monitoring data 
from regular aquifers, systems particularly influenced by 
warming effects (RBF, ATES and MAR sites) and tem-
perature manipulation experiments in the field and in 
the laboratory. Note that the studies presented all share a 
pronounced spatial focus on regions in Europe and north-
ern America. However, the consequences of warming on 
biogeochemical reactions and microbial communities can 
largely be applied to aquifers in general.

Aquifers affected by groundwater warming

Changing groundwater temperatures at a regional 
scale

Current and future temperature changes and associated 
consequences for aquifers are highly variable for different 
climatic regions. In the vast cold regions of the Arctic and 
Antarctic tundra as well as in parts of the boreal coniferous 
forests, increases in surface temperatures already clearly 
exceed the global average (Anisimov and Nelson 1996; 
Pörtner et al. 2022; Romanovsky et al. 2019). In the Rus-
sian Arctic, Alaska and Arctic Canada, average ground tem-
peratures rose during the last three to four decades with a 
rate of 0.1–1.4 K  decade−1 (Biskaborn et al. 2019; Pörtner 
et al. 2022; Romanovsky et al. 2019). This regional pattern 
will further accelerate during the next decades according 
to modeling predictions. For example, under the business 
as usual scenario (RCP8.5), GCM projections predict most 
pronounced temperatures increases in the 2090s for coun-
tries with boreal forests (i.e. Canada with 5.44 °C followed 
by Finland 5.37 °C (Lee et al. 2019)). Due to the close 
relationship of land surface and groundwater temperatures 
(Benz et al. 2017), similar regional warming patterns can be 
expected for shallow groundwater.

Groundwater warming in temperate regions has been 
documented by some few previously mentioned studies 

Fig. 1  Conceptual overview 
how groundwater warming 
impacts on water properties 
and biogeochemical processes. 
DO dissolved oxygen, DOC 
dissolved organic carbon, TEA 
terminal electron acceptor, OM 
organic matter, Eh redox poten-
tial, temp. temperature
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(Hemmerle and Bayer 2020; Riedel 2019). So far, observed 
temperature increases in shallow groundwater closely fol-
lowed the average global land surface warming. It is there-
fore reasonable to expect similar warming patterns for tem-
perate aquifers in the near future. However, temperatures 
in Europe have increased more than twice the global aver-
age during the 1991–2021 period (WMO 2022). Therefore, 
many temperate aquifers are also likely to be affected by 
warming above the global average.

In dry regions, the impact of climate change-induced 
warming on groundwater temperatures should be less and 
also slower due to a generally lower and more episodic 
recharge as compared to temperate regions (Opie et  al. 
2020). However, these considerations only apply to anthro-
pogenically undisturbed catchments. The impact of irriga-
tion on temperatures of shallow groundwater can be severe 
in dry regions, which artificially increases recharge during 
summer with warm water (Riedel 2019).

For tropic regions, information on groundwater warm-
ing is scarce. Available data mainly originates from densely 
populated urban areas, showing an additional warming due 
to anthropogenic heat fluxes (heat island effects, see Tani-
guchi et al. 2007).

In sum, current and future groundwater warming at a 
regional scale may largely exceed global average warming, 
especially in regions of high latitudes, dry regions under 
irrigation as well as densely populated areas. However, there 
is a considerable lack of case studies to estimate warming 
impacts as well associated consequences for groundwater 
quality at regional scales.

Aquifers vulnerable to warming‑induced changes 
in groundwater quality

The impacts of warming on groundwater resources may 
vary spatially, in both vertical (local scale) and horizon-
tal (regional scale) extent. At the local scale, shallow and 
unconfined aquifer systems and fractured rock aquifers 
respond faster to groundwater warming as deeper and con-
fined aquifers (Cavelan et al. 2022; Hemmerle and Bayer 
2020). In addition, from a microbial point of view, organic-
rich aquifers are especially sensitive to temperature changes, 
comprising anthropogenically contaminated urban or agri-
cultural areas as well as natural alluvial floodplains. Here, a 
temperature increase of only a few K can already lead to an 
increased turnover of OM and related DO depletion, which 
strongly affects the local groundwater fauna (Griebler 2015).

At the regional scale, groundwater systems in continental 
northern latitudes or alpine regions (e.g. Canada, Scandi-
navia, Russia) are especially sensitive to warming, where 
aquifers are heavily impacted by thawing permafrost (Hal-
dorsen et al. 2012). Assuming a + 2 K global warming under 
the RCP8.5 scenario, about one-third of the permafrost will Ta
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disappear during the next decades (Kong and Wang 2017; 
Wang et al. 2019), which fundamentally alters the local 
hydrology by modifying for example recharge and ground-
water tables (Haldorsen et al. 2012; Walvoord and Kurylyk 
2016; Walvoord and Striegl 2007). Consequently, entire 
aquifer systems are being (re-)activated (Bense et al. 2009), 
facilitating microbial activities and associated biogeochemi-
cal redox processes (Cochand et al. 2019; Pi et al. 2021). For 
example, the microbial mineralization of the often consider-
able OM stocks results in a rapid depletion in DO trigger-
ing in turn anoxic biogeochemical reactions, which release 
nutrients (P) and toxic trace elements into the groundwater 
(Bonte et al. 2013b; Pi et al. 2021). Permafrost thawing and 
(re-)activation of dormant groundwater systems may also 
feedback on surface waters, increasing for example the 
export of DOC and DON (dissolved organic nitrogen) into 
rivers (Walvoord and Striegl 2007). Despite the pronounced 
consequences of permafrost thawing for groundwater qual-
ity, only few field studies provided detailed insights into the 
underlying processes and spatial extent so far (Cochand et al. 
2019).

Aquifers in temperate and humid regions may also react 
fast to changing land surface temperatures as observed 
for several aquifers in Europe (Bense and Kurylyk 2017; 
Bloomfield and Jackson 2013; Hemmerle and Bayer 2020). 
Here, temperature thresholds can be locally reached that lead 
to a shift in microbial communities and associated redox 
processes (Griebler et al. 2016). However, further field-
based verification is required to assess the spatial extent of 
the aquifers affected.

A schematic overview of the estimated vulnerability of 
aquifers to warming within different climatic regions is 

provided in Fig. 2. Here, the aspect “cold” comprises regions 
at high altitudes as well as high latitudes, whereas “dry” 
includes regions with an aridity index of < 0.65 (Middleton 
and Thomas 1997). “Shallow” and “deep” refer to the depth 
below ground (< 60 and > 60 m, respectively). “Unconfined” 
conditions usually apply to shallow and porous floodplain 
aquifers or fractured aquifer systems, whereas “confined” 
aquifers are often found in floodplains and river deltas, 
where clayey and loamy deposits form confining layers. The 
properties “eutrophic” (i.e. nutrient-rich) and “oligotrophic” 
(nutrient-poor) are related to groundwater quality. For exam-
ple, shallow oligotrophic aquifers are sensitive to increasing 
water temperatures, but warming has only little impact on 
the water quality as microbial activities are limited by a low 
nutrient availability. Eutrophic but confined aquifers are only 
minor susceptible to warming and warming-induced quality 
changes due to slow recharge.

In sum, aquifers can be considered vulnerable either due 
to (i) pronounced absolute increases in groundwater tem-
peratures (e.g. organic-rich unconfined shallow alluvial 
aquifers), or (ii) significant changes that arise even from 
small temperature increases (as for example in permafrost 
regions).

Conclusion

The effects of climate change-induced warming on ground-
water temperature (Sect.  2) and groundwater quality 
(Sect. 3) are already visible in groundwater monitoring 
data sets. So far, groundwater temperatures have risen by 

Fig. 2  Schematic overview illustrating the vulnerability of aquifers in different climatic regions to warming-induced changes in groundwater 
temperature (red text) and quality (blue text). Photographs by Pixabay
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up to + 1 K compared to pre-industrial times and will likely 
rise up to + 10 K on a local to regional scale by the end of 
the twenty-first century.

Changes in groundwater quality due to rising tempera-
tures are driven by a number of closely interrelated, tem-
perature-sensitive biogeochemical processes, with microbial 
activity playing a central role. From the perspective of water 
work operators, resulting changes in groundwater quality are 
not (yet) problematic, but the transition from oxic to anoxic 
conditions marks a critical threshold for all groundwater 
organisms that depend on the availability of oxygen.

There is also a pronounced temporal aspect to warming-
related impacts on groundwater. In addition to gradual long-
term warming trends, short-term impacts on shallow alluvial 
aquifers become increasingly important as the frequency of 
weather extremes and especially dry spells increases glob-
ally. The resulting short-term impacts are especially relevant 
regarding the operation of RBS systems as well as MAR 
sites.

Importantly, not all groundwater bodies are equally vul-
nerable to warming and resulting quality changes (Sect. 4). 
Deep, confined and/or nutrient-poor aquifers are far more 
robust to warming and associated water quality deteriora-
tions as compared to shallow, unconfined and nutrient-rich 
groundwater bodies. In addition, some regions are more vul-
nerable to groundwater warming than others. For example, 
large areas in the northern latitudes are currently affected by 
the thawing of permafrost, which has a strong impact on the 
groundwater systems there. Warming-induced impacts on 
groundwater quality may also overlap with other environ-
mental changes such as water table fluctuations (induced by 
changing recharges, pumping activities or land use changes) 
or sea-water intrusion.

Knowledge gaps and future challenges

The importance of understanding and predicting ongo-
ing changes in groundwater systems cannot be overstated. 
However, there is a pronounced lack of studies that evaluate 
long-term monitoring data sets in terms of warming-induced 
impacts. The scarce amount of published studies contrasts 
with the meticulously collection of data over often decades 
by many authorities, waterworks or environmental protec-
tion agencies. To identify and tackle upcoming changes in 
groundwater quality, we require solid baseline data. Fur-
thermore, the studies published so far had a strong regional 
focus on Europe and northern America. Thus, there is a sys-
tematic lack of information on main aquifer types in differ-
ent climatic regions. Finally, we generally lack knowledge 
regarding the impact of warming on microbial communities 

and the complex biogeochemical interactions they maintain 
in groundwater ecosystems.

To tackle these knowledge gaps, we suggest:

1. Consequent evaluation of long-term monitoring data 
sets, ideally following the principles of open data.

2. Installation and operation of international monitoring 
sites, especially in remote areas.

3. Combination of remote sensing products with ground-
water monitoring data and spatial modeling approaches.

4. Truly interdisciplinary research approaches that cover 
basic physico-chemical properties of groundwater as 
well as microbiological parameters.

Since most of the temperature-dependent processes 
affecting groundwater quality are not or only very slowly 
reversable, we urgently need comprehensive knowledge 
about the changes currently taking place before it is too late 
to develop appropriate countermeasures and management 
strategies.
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