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Abstract

The impacts of climate change-induced warming on our ecosystems can no longer be neglected, but our understanding of
consequences for groundwater ecosystems in general and groundwater quality in particular is alarmingly incomplete. In this
review, we therefore provide an overview of the current state of knowledge related to the impact of global warming on our
precious groundwater resources. Groundwater warming in shallow aquifers is closely associated with increasing average land
surface temperatures and has already reached + 1 K compared to pe-industrial times. Until the end of the twenty-first century,
temperature increases in local groundwater of up to + 10 K are possible. Monitoring data, laboratory and field experiments all
provide evidence that such temperature increases are sufficient to substantially modify groundwater quality through numer-
ous and interlinked biogeochemical processes, which we have summarized in a conceptual overview. Warming impacts on
groundwater are highly site-specific and spatially heterogeneous, which complicates their assessment and prediction. Locally,
shallow unconfined and nutrient-rich floodplain aquifers are most susceptible to warming-induced changes. Importantly,
processes affecting water quality are not only modified by a long-term rise in groundwater temperatures, but also in the
short-term during weather extremes, which is of great relevance for riverbank filtration. At the regional scale, aquifers in
cold regions impacted by permafrost thawing are especially vulnerable to warming. As the majority of temperature-sensitive
processes affecting groundwater quality are not or only very slowly reversable, we pressingly require comprehensive mecha-
nistic understanding before it is too late to develop suitable countermeasures and management strategies.
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Abbreviations IPCC Intergovernmental Panel on Climate Change
a”! Per year LNAPL Light non-aqueous phase liquids
ATES Aquifer thermal energy storage LST Land surface temperature
°C Degree celsius MAR Managed artificial recharge
CMIP6 Coupled Model Intercomparison Project Phase MAT Mean annual air temperature
6 OM Organic matter
DO Dissolved oxygen pCO, CO, partial pressure
DOC Dissolved organic carbon RBF Riverbank filtration
DON Dissolved organic nitrogen RCP Representative Concentration Pathway
E, Redox potential SSP Shared Socioeconomic Pathways Scenario
GCM General Circulation Models TCE Trichloroethene

GSHP  Ground source heat pump
GWHP  Groundwater heat pump
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and review papers published until now focused on the quan-
titative impact of climate change on this natural georesource
(i.e. changes in groundwater recharge and its implications
for management practices) (Costa et al. 2021; Green et al.
2011; Johnson et al. 2022; Klgve et al. 2014; Taylor et al.
2013). On the other hand, climate change-induced influences
on physico-chemical and biochemical properties and under-
lying processes in aquifers have received little attention so
far (Bloomfield and Jackson 2013; Green et al. 2011; Hem-
merle and Bayer 2020). Without going into details, the sixth
assessment report (AR6) of the Intergovernmental Panel on
Climate Change (IPCC) states medium confidence that cli-
mate change is impacting groundwater quality negatively
(Portner et al. 2022). As groundwater is the most important
source of raw drinking water and for irrigation (Margat and
Van der Gun 2013; UN 2022), potential negative impacts of
global warming on its quality cannot be ignored.

By groundwater, all forms of subsurface water is
included in the following, reaching from the saturated
zone near the soil surface down to depths of hundreds of
m in thick alluvial or karstic aquifer systems. Defining the
term groundwater quality is more challenging, as two only
partially overlapping points of views shall be considered
here. From the anthropogenic perspective, using ground-
water as drinking water and for irrigation, it is primarily a
question of the absence of substances hazardous to health
(such as heavy metals, organic pollutants or pathogenic
germs). Considering drinking water production, other
physico-chemical properties are also important, such as
pH, salinity and the concentration of dissolved organic
carbon (DOC), reduced Fe?* and Mn?* that can interfere
with raw water treatment and therefore impact on pro-
duction costs. From an ecological point of view, aquifer
systems represent complex ecosystems and habitats for
diverse communities of organisms, which are vulnerable
to hazardous compounds as well. Moreover, most inhabit-
ants of aquifer ecosystems (i.e. stygobionta) react highly
sensitive to changes in physico-chemical parameters such
as temperature, dissolved oxygen (DO) concentration or
redox conditions (Goldscheider et al. 2006; Hahn 2006;
Humphreys 2009).

While the demands of human use on groundwater quality
are very clear and legally regulated, the ecological perspec-
tive of groundwater systems is often neglected (Griebler
et al. 2014). This is even more concerning in regard to the
upcoming effects of climate change on groundwater systems,
which is likely to affect a number of essential ecosystem
services, comprising provision and production of safe drink-
ing water, degradation of pollutants, retention of nutrients
or elimination of pathogenic microorganisms (Goldscheider
et al. 2006; Griebler et al. 2019).
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Impacts of climate change on groundwater quality are
already observable in aquifers. The impact of tempera-
ture change on abiotic reactions (i.e. individual mineral
solubilities, sorption equilibria, reaction kinetics) was
largely assessed through laboratory experiments (Jesu-
Bek et al. 2013; Partey et al. 2008; Welch and Ullman
2000). However, our understanding of how biogeochemi-
cal cycles and processes in aquifers are altered by warm-
ing is incomplete (Green et al. 2011). Studies investigat-
ing climate change-induced feedbacks on groundwater
quality can be generally categorized based on the impact
pathway: (1) increasing water temperatures, (2) changing
groundwater tables (increases and decreases) and (3) sea
water intrusion in the case of coastal aquifers. Whereas
(2) and (3) are rather locally constrained, warming of
groundwater (1) represents a global phenomenon.

To discuss how warming may affect groundwater qual-
ity, it is first important to know how much groundwater
temperatures have risen so far and could continue to rise.
Published groundwater temperature data from long-term
monitoring programs is yet scarce, but several studies
consistently described increases in groundwater tem-
peratures along with increasing mean air and land sur-
face temperatures (Kurylyk et al. 2013; Menberg et al.
2014). Groundwater temperatures are being modified by
climate change either due to an increase in the tempera-
ture of recharge water (Burns et al. 2017) and/or from
thermodynamic coupling between the atmosphere and the
ground (Hemmerle and Bayer 2020). A detailed overview
of documented increases in groundwater temperatures is
provided in the following section.

The overarching aim of this review is to summarize the
present knowledge on climate change-induced warming on
groundwater temperatures and quality. We have therefore
applied a systematic literature review by conducting a rigor-
ous literature research based on Clarivate’s™ Web of Science
core collection. We used case studies to synthesize the current
state of knowledge, which we complement by own reflections
wherever appropriate. This work distinguishes itself from pre-
vious reviews, which generelly focused on the entire impact of
climate change on groundwater systems and considered quality
related impacts only briefly, if at all (Amanambu et al. 2020;
Earman and Dettinger 2011; Green et al. 2011; Klgve et al.
2014).

The following three main sections are each attributed to a
specific research question: How much have groundwater tem-
peratures increased so far and what can we expect for the near
future (Sect. 2)? How does climate change-induced warming
modify groundwater quality, and which biogeochemical pro-
cesses are responsible (Sect. 3)? Which aquifers are most vul-
nerable to groundwater warming and resulting consequences
for water quality (Sect. 4)?
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Impact of climate change on groundwater
temperatures

Current state of groundwater warming

In general, groundwater temperatures are closely linked
to land surface temperatures (Menberg et al. 2014; Tay-
lor and Stefan 2009). For shallow groundwater down to a
depth of 60 m below ground level, a near-linear relation-
ship between both has been reported for a global data set
with groundwater temperatures ranging from 1 to 31 °C
(Benz et al. 2017). Considering the close relationship
between land surface and groundwater temperatures, it is
not surprising that the impact of global warming is already
visible in groundwater temperatures. For example, the
regional mean annual air temperature in Bavaria (south-
ern Germany) has increased by +0.035 K a~! between
the early 1990s to 2015, which was closely followed by
temperatures in shallow groundwater with an increase of
+0.028 K a~' at 20 m and +0.009 K a~! at 60 m depth,
respectively (Hemmerle and Bayer 2020). Similarly, sur-
face air temperatures in Austria have increased on average
by +0.025 K a™! from 1994 to 2013, while groundwater
temperatures rose by +0.035 K a~! (Benz et al. 2018b).
Annual warming of groundwater and aquifers in range
of +0.01 to+0.04 K a~! since the late 1970s has further
been described for the UK (Bloomfield and Jackson 2013;
Stuart et al. 2010), the Netherlands (Bense and Kurylyk
2017), Switzerland (Figura et al. 2011) and Germany
(Menberg et al. 2014; Riedel 2019). Note that several stud-
ies reported accelerating groundwater warming rates since
the 1990s (Figura et al. 2011; Menberg et al. 2014), which
was especially pronounced in shallow groundwater bodies.
Looking at the last three decades, the warming for shallow
groundwater totals almost+ 1 K, which corresponds to the
general regional warming effects.

Thermal signals from changing regional air tempera-
tures arrive damped and delayed in the subsurface (Hem-
merle and Bayer 2020; Menberg et al. 2014), which
emphasizes vertical aspects of groundwater warming.
The faster the groundwater recharge, the faster warming
progresses into the subsurface, which is especially pro-
nounced for small, shallow unconfined aquifers as com-
pared to usually larger, deep confined aquifers (Klgve et al.
2014).

It should not go unmentioned that anthropogenic activi-
ties may cause additional groundwater warming. In densely
populated areas, subsurface energy fluxes are modified
through buildings and infrastructure, which amounts to
the so-called urban heat island effect (Benz et al. 2018a;
Perrier et al. 2005; Taniguchi et al. 2007). Groundwater
temperatures can be also affected by managed aquifer

recharge (MAR), in which treated waste water or excess
water is introduced into receiving aquifers (Dillon et al.
2019). Through aquifer thermal energy storage (ATES),
thermal energy is seasonally stored and recovered from
aquifers for heating purposes (Dillon et al. 2019; Doughty
et al. 1982). More recently, open- or closed-loop ground
source heat pump (GSHP) systems (including groundwa-
ter heat pump systems, GWHP) are installed for heating
and/or cooling purposes, which have lasting effects on
shallow groundwater temperatures (Lee and Hahn 2006;
Russo et al. 2012). Another important anthropogenic activ-
ity affecting groundwater temperatures is riverbank filtra-
tion (RBF), which is commonly used in drinking water
production. Here, the recharge of near-surface and uncon-
fined floodplain aquifers from river water is forced through
targeted pumping in extraction wells (Eckert et al. 2008;
Ray et al. 2002; Schubert 2002). While all anthropogenic
effects causing groundwater heating overlap with indi-
rect warming through climate change, comparisons with
groundwater temperatures in rural and less anthropogeni-
cally disturbed areas allow to distinguish between the dif-
ferent warming effects (Taniguchi et al. 2007; Taylor and
Stefan 2009).

In summary, global warming is increasing groundwater
temperatures, which is already detectable in monitoring
data (for an overview of literature documenting ground-
water warming, refer to Table 1). Note that the presented
studies have a strong spatial focus on regions in Europe,
whereas other regions remain largely understudied. How-
ever, considering the global increases in surface and air
temperatures, it is safe to assume that many shallow porous
and fast-recharging fissure aquifers have already suffered
increases in groundwater temperatures of + 1 K as com-
pared to pe-industrial times. Larger temperature increases
at a local to regional scale are further likely considering the
spatially uneven distribution of global warming (Hansen and
Sato 2016; Portner et al. 2022).

Future trends and regional differences

To tackle the potential impact of warming on groundwa-
ter for the near future, it is of great importance to provide
robust estimates of water temperature increases at a regional
to local scale. Unfortunately, only few modeling-based pre-
dictions for groundwater temperatures are currently avail-
able. For a shallow aquifer in Minnesota (US), outcomes of
a heat transport model suggested an increase in groundwater
temperature of +3 to +4 K within the next decades (Tay-
lor and Stefan 2009). This estimated range of groundwater
warming agrees well with other local and regional modeling
studies. For example, based on General Circulation Models
(GCM) and different greenhouse gas emission scenarios

@ Springer
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(Representative Concentration Pathway, RCP), Gunaward-
hana and Kazama (2012) estimated that aquifer temperatures
at 8 m depth in the humid subtropical climate of the Sendai
Plain (Japan) will increase by + 1.00 to+4.28 K until 2080
as compared to 2007 observations. For northern European
cold-water springs in Finland and Sweden, a mean water
temperature increase of +0.7 (RCP2.6 scenario) to+5.9 K
(RCPS8.5 scenario) was predicted by 2086 (Jyvisjdrvi et al.
2015). This is in line with modeling-based estimate of a+ 3
K increase for temperature of discharged shallow ground-
water in temperate forests of Canada (Kurylyk et al. 2014).

Considering regional model predictions for surface tem-
peratures (see IPCC Interactive Atlas; Masson-Delmotte
et al. 2021), greatest warming is expected for the Arctic
and midlatitudes in the northern hemisphere (Cogswell and
Heiss 2021). Here, the predicted median of mean tempera-
ture change in the Russian Arctic Region for the 2081-2100
period (relative to 1850-1900, based on CMIP6 and a pes-
simistic global warming level of 4°C under SSP5-8.5) is
an impressive + 9.6 K. Based on previous observations that
show a tight correlation between land surface and ground-
water temperatures (Benz et al. 2017), it is reasonable to
assume that warming of shallow groundwater in northern
regions may reach values close to+ 10 K.

Consequences of warming for groundwater
quality

Microbial activity, community structure
and metabolic pathways

The intensification of microbial metabolic rates represents
one of the most important consequences of rising tem-
peratures in groundwater for most aquifers (Brielmann
et al. 2011). For example, a higher microbiological activ-
ity as indicated by increasing microbial colony counts was
reported from an ATES field site at the Netherlands, where
16 °C warm water was seasonally introduced into the aquifer
(Bonte et al. 2011). However, linking increasing microbial
activities to warming in aquifer systems is extremely difficult
because of analytical limitations. Therefore, indirect proxies
for microbial activities in groundwater are commonly moni-
tored, such as DOC and NH,* that are released as by-prod-
ucts during the microbial mineralization of organic matter
(OM) (Brons et al. 1991; Du et al. 2020; Rivett et al. 2008).

In order to alter groundwater properties in the long-term
under rising temperatures, microbial activities require suffi-
cient supplies with key nutrients, terminal electron acceptors
(TEA) and degradable OM (Brielmann et al. 2011; Grie-
bler 2015; Griebler et al. 2016). Degradable OM comprises
DOC (e.g. from sewage contamination) or sedimentary
OM that is contained within the aquifer matrix. However,

the response of microbial activities to warming is complex
and non-linear, especially due to the involvement of a vast
variety of microorganisms and aquifer properties that may
considerably vary at a small scale (Griebler 2015). Gener-
ally, eutrophic aquifers are especially vulnerable to warm-
ing-induced changes through an intensification of microbial
activities as high amounts of degradable OM and nutrients
are available (Griebler et al. 2016).

The intensification of microbial activities may also result
in the consumption and depletion of DO, causing a shift
from oxic to anoxic conditions. A shift to anoxic conditions
has several further important consequences for groundwater
ecosystems. A gradual or temporary depletion in DO leads to
a decline in the local redox potential, a change in the micro-
bial community structure and also shifts in the dominant
metabolic pathways as described in the following. Generally,
the consumption of DO succeeds with the reduction of dis-
solved NO;™ (Borch et al. 2010). For example, a depletion in
DO during summer at a RBF site in Germany (Flehe Water-
works at the River Rhine, Diisseldorf) showed that microbial
communities shifted from aerobic respiration toward anoxic
denitrification (Sharma et al. 2012). Increasing groundwa-
ter temperatures further enhance microbial NO;™ reduction
rates if conditions are already anoxic (Cogswell and Heiss
2021). At the same time, NH,* is released as by-product,
which accumulates in groundwater near-proportionally to
the decline in NO;~ (Cogswell and Heiss 2021). Predominat-
ing redox processes may also shift due to different tempera-
ture optima of the microbial redox processes involved (Bonte
et al. 2013a). For example, microcosm incubations of origi-
nal groundwater and aquifer material from two ATES sites
in the Netherlands showed that an increase in water tempera-
ture from 11 °C (natural background) to 25 °C caused a shift
from Fe(III)- to SO,-reduction and methanogenesis (Bonte
et al. 2013a). Similar observations were made by JesuBek
et al. (2013), who incubated Tertiary lignite sand from an
aquifer in northern Germany. As a response to warming,
redox conditions shifted from NO;™- (10 °C) to NO;™- and
Fe(III)-reduction (at 25 and 40 °C).

Increasing groundwater temperatures also cause shifts
within the microbial community structure. This was shown
for example for an aquifer impacted by a closed-loop GSHP
system in New Jersey (USA) (Sowers et al. 2006). Although
limited to culturable bacteria, the outcomes from two sam-
pling campaigns (1997 and 2005) suggested pronounced
changes in the microbial community structure. Warming-
induced shifts in microbial communities and dominant
metabolic pathways were further observed for two Quater-
nary alluvial aquifers in southern Germany (Munich and
Freising), representing eutrophic and oligotrophic aquifer
systems, respectively (Brielmann et al. 2009, 2011; Griebler
et al. 2016). Here, warming resulted in complex changes
within the aquifers, comprising the chemical composition

@ Springer
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(e.g., depletion in DO), the microbial biodiversity and com-
munity composition as well as metabolic processes and
finally ecosystem functions. Specifically, the diversity of
aquifer microbial communities increased with warmer tem-
peratures and the microbial community structure changed.
Whereas natural ground water temperatures of 10—12 °C
provided ideal living conditions for psychrophile und psy-
chrotolerant microorganisms, warming to 15—20 °C fos-
tered the prevalence of mesophile species. Importantly,
microbial biomass and activities were found to additionally
depend on the availability of nutrients and substrates (e.g.,
OM, P). When groundwater temperatures exceeded 20 °C, P
limitation occurred due to an increase in metabolic activities
and an associated demand in essential nutrients. Thus, not
only the relative changes in groundwater temperatures are
important in regard to the water quality, but also absolute
temperatures that are reached.

Impact on water quality

One major change in groundwater properties arising from an
increase in microbial metabolic activity is the shift from oxic
to anoxic conditions (Stumm and Sulzberger 1992). In addi-
tion to the consumption of DO by microorganisms, warming
of groundwater also reduces the solubility of oxygen in infil-
trating water. A gradually decreasing O, saturation (on aver-
age —0.24% a~') parallel to rising groundwater temperatures
(+0.012 K a~!) was observed by Riedel (2019) for ground-
water in southern Germany. Furthermore, a temporary DO
depletion in groundwater was reported for shallow flood-
plain aquifers used for RBF. For example, an exceptionally
hot and dry summer in 2003 caused a temporary temperature
increase close to 20 °C in groundwater of the Lower Rhine
Valley (Germany), which was accompanied by an approxi-
mately four months long decline in DO concentrations to
below 1 mg L~! (Eckert et al. 2008). Similar observations
were made in 2003 for the River Thur (Switzerland), where
an increase in microbial activity resulted in DO depletion in
groundwater near the river (Hoehn and Scholtis 2011). The
impact of rising groundwater temperatures on DO during
summer months was further observed in shallow groundwa-
ter below stormwater infiltration basins (Datry et al. 2004;
Foulquier et al. 2009). Thus, temperature-induced changes in
surface waters that precede groundwater recharge can further
enhance DO depletion in shallow unconfined aquifers, which
is particularly important during the summer months.

Note that groundwater warming and an associated shift
from oxic to anoxic conditions is highly problematic for
groundwater invertebrates. Field observations and controlled
experiments showed that species-dependent threshold val-
ues exist regarding groundwater temperatures and DO con-
centrations (Brielmann et al. 2011; Foulquier et al. 2011;

@ Springer

Griebler 2015). For example, no invertebrates were found in
shallow groundwater of a stormwater infiltration site when
the DO declined to below 0.5 mg L™! (Foulquier et al. 2011).

The enhanced microbial mineralization of OM is accom-
panied by the release of CO, as a byproduct, which raises
in turn the CO, partial pressure (pCO,) and causes a sub-
sequent decline in pH (Hoehn and Scholtis 2011). This was
observable in southern Germany, where rising groundwater
temperatures (on average, +0.012 K a~") were found to be
negatively correlated with pH values (-0.003 a~!) (Riedel
2019). This observation was further in line with the out-
comes of laboratory incubation experiments, which used
original aquifer material from an ATES site (Brons et al.
1991). Here, controlled temperature increases resulted in
CO, production from the microbial mineralization of OM,
which finally caused a decrease in pH.

A decreasing pH results in turn in the dissolution of
calcite and the release of dissolved Ca’* into groundwa-
ter (McDonough et al. 2020). Furthermore, pH-controlled
silicate dissolution and an associated release of Si and K*
has been observed in field (Saito et al. 2016) as well as lab-
oratory warming experiments (Arning et al. 2006; Bonte
et al. 2013b). Enhanced mineral weathering resulting from
a decreasing pH has also been attributed an increase in geo-
genic contaminants such as F~ (Riedel 2019), which can
ultimately lead to a deterioration in groundwater quality.

Microbial mineralization of OM may also cause a deple-
tion of TEA and subsequently a decrease in the redox poten-
tial. A change in the redox potential toward more reducing
conditions is further modifying the mobility of toxic trace
elements. Here, Mn>* is of particular importance as chronic
overexposure was found to be associated with neurotoxic
health effects in humans (O’Neal and Zheng 2015) as well
as negative effects in aquatic organisms (Peters et al. 2011).
The removal of Mn** during water treatment requires addi-
tional efforts and therefore costs (Tobiason et al. 2016).
Reduced Mn?* is easily released into groundwater due to
microbial redox reactions as soon as anoxic conditions are
reached, which is often associated with shallow aquifers that
are prone to warming impacts (Riedel 2019).

Warming-induced Mn?* releases into groundwater have
been well-documented at RBF sites, where the raw water
composition is closely monitored. For example, substantial
increases in dissolved Mn?* concentrations from below 0.1
to above 0.6 mg L™! were observable during the 2015 sum-
mer at the Waterworks Dresden-Tolkewitz (East Germany),
when river-water temperatures rose to over 20 °C for three
months (Paufler et al. 2018). (Paufler et al. 2018). Moreo-
ver, Mn?* concentrations were found to be constrained
by sorption as well as (re-)oxidation and precipitation of
Mn-oxides along the groundwater flow path due to chang-
ing hydrogeochemical conditions. Similarly, Mn** con-
centrations in groundwater at the Lot River (France) were
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found to be positively correlated to the water temperature
(Bourg and Bertin 1994). Here, a threshold groundwater
temperature of 10 °C was reported that triggered microbial
Mn(IV)-reduction.

Due to the pollution of the river Rhine with degradable
dissolved organic substances in the 1970s, connected flood-
plain aquifers also became extensively anoxic, leading in
turn to considerable increases in dissolved Mn>* as observed
from 1968 on at Diisseldorf (Germany) (Kiibeck et al. 2009).
As the water quality of the Rhine improved, Mn?* concentra-
tions in shallow groundwater decreased sharply from 1988.
Thus, changes in the river water composition can be also rel-
evant regarding the quality of associated groundwater bodies
in addition to increasing temperatures (Sprenger et al. 2011).
On the other hand, the river water composition, especially
DO concentrations, are increasingly impacted by warming
(Ducharne 2008; Whitehead et al. 2009), which will in turn
impact redox conditions in shallow floodplain aquifers.

Local shifts toward anoxic conditions during summer
months reaching Mn(IV)- and even Fe(Ill)-reducing con-
ditions were reported from stormwater infiltration basins
(Fischer et al. 2003; Massmann et al. 2006). The reductive
dissolution of Mn(IV)- and Fe(IIl)-(hydr)oxides may also
release other problematic geogenic trace elements such as As
or P, which are either sorbed to the mineral surfaces or are

incorporated as impurities within the crystal lattices (Borch
et al. 2010; Neidhardt et al. 2021).

Furthermore, warming-induced releases of trace elements
into groundwater have been observed in several field and
laboratory experiments, comprising a wide range of tem-
peratures and elements such as B, Li, As, Mo, V, P, Sb, Ba,
Co, T1, Mn, and U (Bonte et al. 2013a, b, 2011; Liiders et al.
2020; Saito et al. 2016). While the reductive dissolution of
Mn(IV)- and Fe(III)-(hydr)oxides was generally considered
as principal mobilization mechanism for these elements,
several authors argued that temperature-dependent cation
exchange as well as anion desorption may have also been
involved (Bonte et al. 2013b; Liiders et al. 2020; Saito et al.
2016). The latter is of relevance for all elements that form
oxyanions, comprising As, V, Mo and P. Knowledge of the
release mechanisms involved is important because some
(i.e. the release of cations and anions through adsorption
reactions) are reversible if groundwater temperatures should
decline (Liiders et al. 2020).

Warming may also provide ideal conditions for the degra-
dation of organic pollutants (Cavelan et al. 2022; Popp et al.
2015). For example, the outcomes of a microcosm experi-
ment using contaminated soil and aquifer material showed
that warming did not only result in a shift in the composi-
tion and activity of microbial communities, but also in an

Table 2 Summary of key impacts of climate change-induced warming on groundwater temperatures and resulting impacts

Groundwater temperature

Current state:

Water temp. in many shallow unconfined aquifers has increased by + 1 K *, closely following land surface warming
Warming rates in shallow aquifers accelerating since the 1990’s, currently +0.01 to+0.05 K a

-1

Groundwater temp. also increasing at greater depths with slower warming rates
Local groundwater warming in urban areas superimposed by anthropogenic activities

Future trends:

Groundwater temp. further following average increases in LST

regional and local groundwater warming up to+ 10 K * likely until 2100
Regions of high altitudes and latitudes especially vulnerable to warming

Groundwater quality

Processes and changes:
and £, decrease

Biotic: increasing microbial activity coupled to OM mineralization and DO consumption, CO, release, pH change

Abiotic: impact on ion exchange, desorption and mineral dissolution reactions
Various impacts on groundwater properties (e.g., DO, pH, E,, pCO,, DOC, major and trace element conc.)
Trace element conc. controlled by sorption / desorption processes (reversible) and reductive dissolution of metal-

oxides (irreversible)

Changing microbiological community composition feedbacks on redox reactions, nutrient cycles and food webs

Further aspects:

Temp. increase of < + 10 K sufficient to modify groundwater quality

Warming effects highly site-specific and heterogeneous

OM- and nutrient-rich systems highly vulnerable to short- and long- term temp. changes

Shallow groundwater near rivers particularly susceptible to changes during summer

Aquifer-specific threshold temp. may be reached (e.g. for specific redox processes)

Shifts in microbial communities and redox processes may degrade (mobilization of toxic trace elements) or improve
(enhanced mineralization of organic pollutants) groundwater quality

Shift from oxic to anoxic conditions able to render aquifers uninhabitable for invertebrates

Decreasing groundwater quality impacts on drinking water purification costs

*As compared to pre-industrial times

pCO, CO, partial pressure, conc. concentration, DO dissolved oxygen, DOC dissolved organic carbon, E;, redox potential, LST land surface tem-
perature, OM organic matter, a~' per year, E, redox potential, temp. temperature
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increased degradation of aromatic hydrocarbons (Zeman
et al. 2014).

In addition to the previously mentioned impacts of
warming on abiotic processes (e.g., ion exchange, desorp-
tion, and solubility of minerals and gases, see Table 2),
rising water temperatures also influence various hydroge-
ological properties like water density and viscosity. While
these properties influence groundwater flow velocity and
contaminant transport, it can be assumed that their com-
bined effects on groundwater quality are only minor com-
pared to the direct impact of biogeochemical processes.

A summary of groundwater warming and its impacts
on biogeochemical processes and water quality in aquifers
is provided in Fig. 1 and Table 2. For a detailed over-
view of publications reporting on impacts of warming
on groundwater the reader is referred to Table 3. The
studies presented cover a wider range of methodological
approaches and are based on groundwater monitoring data
from regular aquifers, systems particularly influenced by
warming effects (RBF, ATES and MAR sites) and tem-
perature manipulation experiments in the field and in
the laboratory. Note that the studies presented all share a
pronounced spatial focus on regions in Europe and north-
ern America. However, the consequences of warming on
biogeochemical reactions and microbial communities can
largely be applied to aquifers in general.

Aquifers affected by groundwater warming

Changing groundwater temperatures at a regional
scale

Current and future temperature changes and associated
consequences for aquifers are highly variable for different
climatic regions. In the vast cold regions of the Arctic and
Antarctic tundra as well as in parts of the boreal coniferous
forests, increases in surface temperatures already clearly
exceed the global average (Anisimov and Nelson 1996;
Portner et al. 2022; Romanovsky et al. 2019). In the Rus-
sian Arctic, Alaska and Arctic Canada, average ground tem-
peratures rose during the last three to four decades with a
rate of 0.1-1.4 K decade™! (Biskaborn et al. 2019; Portner
et al. 2022; Romanovsky et al. 2019). This regional pattern
will further accelerate during the next decades according
to modeling predictions. For example, under the business
as usual scenario (RCP8.5), GCM projections predict most
pronounced temperatures increases in the 2090s for coun-
tries with boreal forests (i.e. Canada with 5.44 °C followed
by Finland 5.37 °C (Lee et al. 2019)). Due to the close
relationship of land surface and groundwater temperatures
(Benz et al. 2017), similar regional warming patterns can be
expected for shallow groundwater.

Groundwater warming in temperate regions has been
documented by some few previously mentioned studies

Fig.1 Conceptual overview
how groundwater warming

climate change

impacts on water properties
and biogeochemical processes.
DO dissolved oxygen, DOC
dissolved organic carbon, TEA
terminal electron acceptor, OM
organic matter, E, redox poten-

tial, temp. temperature groundwater

properties before
warming

© ©

> shift oxic to anoxic
(critical threshhold for
invertebrates)

increasing groundwater
groundwater temp. properties
+1to +10 K 1 — _ altered by
» shifting species warming

composition
and abundances

» decreasing TEA ®§®

» increasing
microbial activi

» increasing consumption |
OM, DO, NO5, Mn*, Fe*, SO,*
~

» shifting metabolic
pathways

» decreasing pH

st | ) @y

|> reductive dissolution | ﬁ

e

» accumulating
by-products

Legend:
. £, water and heat fluxes

{ from surface into the aquifer

= microorganisms
(bacteria, archaea)

m invertebrates

G feedback (warming)
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» impact /
consequences
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Table 3 (continued)

Further details

Changes observed in ground-

Water temp. ranges/changes®

Methodological approach and  Hydrogeological setting and

References

water, underlying processes

and key conclusions

geographic location

time frame

Reactive transport modeling

Warming-induced mobiliza-

4-60 °C

TCE-contaminated model

Reactive transport modeling

Popp et al. (2015)

comprising TCE biodegrada-
tion and sorption behavior

tion of TCE and increase in

biodegradation of TCE
Temperature-dependencies for

aquifer influenced by sea-
sonal heat storage

abiotic (sorption) and biotic
(microbial degradation)

processes controlling organic
contaminant conc. in aquifers

ATES aquifer thermal energy storage, pCO, CO, partial pressure, conc. concentration, DO dissolved oxygen, DOC dissolved organic carbon, GWHP groundwater heat pump, GSHP ground

source heat pump, LNAPL light non-aqueous phase liquids, MAR managed artificial recharge, OM organic matter, a~! per year, RBF riverbank filtration, temp. temperature, TCE trichloroethene.

“Temperature values rounded to full numbers

(Hemmerle and Bayer 2020; Riedel 2019). So far, observed
temperature increases in shallow groundwater closely fol-
lowed the average global land surface warming. It is there-
fore reasonable to expect similar warming patterns for tem-
perate aquifers in the near future. However, temperatures
in Europe have increased more than twice the global aver-
age during the 1991-2021 period (WMO 2022). Therefore,
many temperate aquifers are also likely to be affected by
warming above the global average.

In dry regions, the impact of climate change-induced
warming on groundwater temperatures should be less and
also slower due to a generally lower and more episodic
recharge as compared to temperate regions (Opie et al.
2020). However, these considerations only apply to anthro-
pogenically undisturbed catchments. The impact of irriga-
tion on temperatures of shallow groundwater can be severe
in dry regions, which artificially increases recharge during
summer with warm water (Riedel 2019).

For tropic regions, information on groundwater warm-
ing is scarce. Available data mainly originates from densely
populated urban areas, showing an additional warming due
to anthropogenic heat fluxes (heat island effects, see Tani-
guchi et al. 2007).

In sum, current and future groundwater warming at a
regional scale may largely exceed global average warming,
especially in regions of high latitudes, dry regions under
irrigation as well as densely populated areas. However, there
is a considerable lack of case studies to estimate warming
impacts as well associated consequences for groundwater
quality at regional scales.

Aquifers vulnerable to warming-induced changes
in groundwater quality

The impacts of warming on groundwater resources may
vary spatially, in both vertical (local scale) and horizon-
tal (regional scale) extent. At the local scale, shallow and
unconfined aquifer systems and fractured rock aquifers
respond faster to groundwater warming as deeper and con-
fined aquifers (Cavelan et al. 2022; Hemmerle and Bayer
2020). In addition, from a microbial point of view, organic-
rich aquifers are especially sensitive to temperature changes,
comprising anthropogenically contaminated urban or agri-
cultural areas as well as natural alluvial floodplains. Here, a
temperature increase of only a few K can already lead to an
increased turnover of OM and related DO depletion, which
strongly affects the local groundwater fauna (Griebler 2015).

At the regional scale, groundwater systems in continental
northern latitudes or alpine regions (e.g. Canada, Scandi-
navia, Russia) are especially sensitive to warming, where
aquifers are heavily impacted by thawing permafrost (Hal-
dorsen et al. 2012). Assuming a+2 K global warming under
the RCP8.5 scenario, about one-third of the permafrost will
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disappear during the next decades (Kong and Wang 2017;
Wang et al. 2019), which fundamentally alters the local
hydrology by modifying for example recharge and ground-
water tables (Haldorsen et al. 2012; Walvoord and Kurylyk
2016; Walvoord and Striegl 2007). Consequently, entire
aquifer systems are being (re-)activated (Bense et al. 2009),
facilitating microbial activities and associated biogeochemi-
cal redox processes (Cochand et al. 2019; Pi et al. 2021). For
example, the microbial mineralization of the often consider-
able OM stocks results in a rapid depletion in DO trigger-
ing in turn anoxic biogeochemical reactions, which release
nutrients (P) and toxic trace elements into the groundwater
(Bonte et al. 2013b; Pi et al. 2021). Permafrost thawing and
(re-)activation of dormant groundwater systems may also
feedback on surface waters, increasing for example the
export of DOC and DON (dissolved organic nitrogen) into
rivers (Walvoord and Striegl 2007). Despite the pronounced
consequences of permafrost thawing for groundwater qual-
ity, only few field studies provided detailed insights into the
underlying processes and spatial extent so far (Cochand et al.
2019).

Aquifers in temperate and humid regions may also react
fast to changing land surface temperatures as observed
for several aquifers in Europe (Bense and Kurylyk 2017;
Bloomfield and Jackson 2013; Hemmerle and Bayer 2020).
Here, temperature thresholds can be locally reached that lead
to a shift in microbial communities and associated redox
processes (Griebler et al. 2016). However, further field-
based verification is required to assess the spatial extent of
the aquifers affected.

A schematic overview of the estimated vulnerability of
aquifers to warming within different climatic regions is

temperate

provided in Fig. 2. Here, the aspect “cold” comprises regions
at high altitudes as well as high latitudes, whereas “dry”
includes regions with an aridity index of <0.65 (Middleton
and Thomas 1997). “Shallow” and “deep” refer to the depth
below ground (< 60 and > 60 m, respectively). “Unconfined”
conditions usually apply to shallow and porous floodplain
aquifers or fractured aquifer systems, whereas “confined”
aquifers are often found in floodplains and river deltas,
where clayey and loamy deposits form confining layers. The
properties “eutrophic” (i.e. nutrient-rich) and “oligotrophic”
(nutrient-poor) are related to groundwater quality. For exam-
ple, shallow oligotrophic aquifers are sensitive to increasing
water temperatures, but warming has only little impact on
the water quality as microbial activities are limited by a low
nutrient availability. Eutrophic but confined aquifers are only
minor susceptible to warming and warming-induced quality
changes due to slow recharge.

In sum, aquifers can be considered vulnerable either due
to (i) pronounced absolute increases in groundwater tem-
peratures (e.g. organic-rich unconfined shallow alluvial
aquifers), or (ii) significant changes that arise even from
small temperature increases (as for example in permafrost
regions).

Conclusion

The effects of climate change-induced warming on ground-
water temperature (Sect. 2) and groundwater quality
(Sect. 3) are already visible in groundwater monitoring
data sets. So far, groundwater temperatures have risen by

tropic

shallow, sbd ot
fined, and

uncon |r.1e ,and/or - XX 2 ?

eutrophic

deep, confined, §4 +

and/or 2

oligotrophic XX X ?

vulnerability:
* watertemperature: +: low
* water quality:

++: moderate +++: high
x: slight xx: moderate xxx: severe ?:unknown

?: unknown

Fig.2 Schematic overview illustrating the vulnerability of aquifers in different climatic regions to warming-induced changes in groundwater

temperature (red text) and quality (blue text). Photographs by Pixabay
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up to+ 1 K compared to pre-industrial times and will likely
rise up to+ 10 K on a local to regional scale by the end of
the twenty-first century.

Changes in groundwater quality due to rising tempera-
tures are driven by a number of closely interrelated, tem-
perature-sensitive biogeochemical processes, with microbial
activity playing a central role. From the perspective of water
work operators, resulting changes in groundwater quality are
not (yet) problematic, but the transition from oxic to anoxic
conditions marks a critical threshold for all groundwater
organisms that depend on the availability of oxygen.

There is also a pronounced temporal aspect to warming-
related impacts on groundwater. In addition to gradual long-
term warming trends, short-term impacts on shallow alluvial
aquifers become increasingly important as the frequency of
weather extremes and especially dry spells increases glob-
ally. The resulting short-term impacts are especially relevant
regarding the operation of RBS systems as well as MAR
sites.

Importantly, not all groundwater bodies are equally vul-
nerable to warming and resulting quality changes (Sect. 4).
Deep, confined and/or nutrient-poor aquifers are far more
robust to warming and associated water quality deteriora-
tions as compared to shallow, unconfined and nutrient-rich
groundwater bodies. In addition, some regions are more vul-
nerable to groundwater warming than others. For example,
large areas in the northern latitudes are currently affected by
the thawing of permafrost, which has a strong impact on the
groundwater systems there. Warming-induced impacts on
groundwater quality may also overlap with other environ-
mental changes such as water table fluctuations (induced by
changing recharges, pumping activities or land use changes)
or sea-water intrusion.

Knowledge gaps and future challenges

The importance of understanding and predicting ongo-
ing changes in groundwater systems cannot be overstated.
However, there is a pronounced lack of studies that evaluate
long-term monitoring data sets in terms of warming-induced
impacts. The scarce amount of published studies contrasts
with the meticulously collection of data over often decades
by many authorities, waterworks or environmental protec-
tion agencies. To identify and tackle upcoming changes in
groundwater quality, we require solid baseline data. Fur-
thermore, the studies published so far had a strong regional
focus on Europe and northern America. Thus, there is a sys-
tematic lack of information on main aquifer types in differ-
ent climatic regions. Finally, we generally lack knowledge
regarding the impact of warming on microbial communities

and the complex biogeochemical interactions they maintain
in groundwater ecosystems.
To tackle these knowledge gaps, we suggest:

1. Consequent evaluation of long-term monitoring data
sets, ideally following the principles of open data.

2. Installation and operation of international monitoring
sites, especially in remote areas.

3. Combination of remote sensing products with ground-
water monitoring data and spatial modeling approaches.

4. Truly interdisciplinary research approaches that cover
basic physico-chemical properties of groundwater as
well as microbiological parameters.

Since most of the temperature-dependent processes
affecting groundwater quality are not or only very slowly
reversable, we urgently need comprehensive knowledge
about the changes currently taking place before it is too late
to develop appropriate countermeasures and management
strategies.
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