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Abstract
Forecasting precipitation is a crucial input to hydrological models and hydrological event management. Accurate forecasts 
minimize the impact of extreme events on communities and infrastructure by providing timely and reliable information. In 
this study, six artificial intelligent hybrid models are developed to predict daily rainfall in urban areas by combining the firefly 
optimization algorithm (FA), invasive weed optimization algorithm (IWO), genetic particle swarm optimization algorithm 
(GAPSO), neural network (ANN), group method of data handling (GMDH), and wavelet transformation. Optimization 
algorithms increase forecasting accuracy by controlling all stages. A variety of criteria are used for validating the models, 
including correlation coefficient (R), root-mean-square error (RMSE), mean absolute error (MAE), critical success index 
(CSI), probability of detection (POD), and false alarm ratio (FAR). The proposed models are also evaluated in an urban area 
in Ahvaz, Iran. The GAPSO-Wavelet-ANN model is superior to other models for predicting daily rainfall, with an RMSE 
of 1.42 mm and an R of 0.9715.
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Introduction

Throughout history, understanding weather patterns has 
been a fundamental human concern. Water is an inevitable 
part of any country’s economic and social life. Since global 
warming has increased in different parts of the world, fore-
casting and estimating precipitation have become more criti-
cal (Mostaghimzadeh et al. 2021). The accuracy of precipita-
tion forecasting is essential for hydrological models and the 
management of urban events. Accurate forecasts minimize 
the impact of extreme weather events on communities and 

infrastructure by providing timely and reliable information 
This is because timely forecasting reduces losses and dam-
ages caused by natural disasters, prevents flooding, protects 
urban and agricultural areas, and ensures proper resource 
utilization in various sectors, including agriculture and food 
production (El-shafie et al. 2011; Trinh 2018; Haddad 2011; 
Samsudin et al. 2010; Adib et al. 2021a, b). There are two 
main categories for simulating rainfall: numerical simula-
tion and data-driven simulation (Shuman 1989; Olson et al. 
1995).

Numerical weather forecasting models are deterministic 
and approximate complex physical processes for weather 
forecasting. Several research studies have utilized these 
models, multiple regressions, and climatological averaging 
methods. In traditional rainfall models, long-term measure-
ments correlate with other meteorological factors, including 
air temperature, cloud information, solar radiation, sunshine 
duration, wind speed, and relative humidity (Mostaghimza-
deh et al. 2023). A rainfall model can also be developed 
using autoregressive moving averages (ARMA) and autore-
gressive integrated moving averages (ARIMA). These mod-
els, however, have limitations in terms of the initial condi-
tions and parameterization of the models, making them less 
reliable when used for forecasting at a smaller scale (Dabhi 
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and Chaudhary 2014; Pham et al. 2020; Silvestro and Rebora 
2014; DelSole and Shukla 2002; Azadi et al. 2013; Novak 
et al. 2014; Gouda et al. 2020; Nayagam et al. 2008).

In the past decade, data-driven models have gained sig-
nificant popularity for their versatility and effectiveness. The 
models are based on intelligence computing and machine 
learning techniques and utilize large amounts of data related 
to a modeled system's physics (e.g., hydraulic and hydrologi-
cal phenomena). As technology advances, new tools have 
been developed to improve data collection, analysis, and 
presentation. In addition, as computer science (hardware 
and software) continues to evolve and develop, data-driven 
modeling has become increasingly in recent decades; neural 
networks have been widely used in time series modeling 
as part of data-oriented methods. Many researchers have 
proven the ability of neural networks to model and forecast 
natural time series. Furthermore, in several studies, arti-
ficial neural networks have been used to predict seasonal, 
monthly, and daily rainfall (Kuligowski and Barros 1998; 
Abrahart and See 2000; Luk et al. 2000; Luk et al. 2000; 
Valverde Ramírez et al. 2005; Sedki et al. 2009; Abudu et al. 
2010; Wu and Chau 2013; Nastos et al. 2013; Gökbulak 
et al. 2015; Moazami et al. 2016; Nourani 2017; Qiu et al. 
2017; Danladi et al. 2018; Le et al. 2020; Ashrafi et al. 2020; 
Mostaghimzadeh et al. 2021; Mostaghimzadeh et al. 2022).

An effective rainfall-runoff model relies on accurate and 
practical input data. These models use hydrological time 
series that are non-stationary or have seasonal patterns. 
These time series typically include a wide range of time 
scales. Preprocessing of data reduces the effects of these 
factors in modeling. In the context of time–frequency 
representation, the wavelet transform is a powerful math-
ematical approach that analyzes a signal in the time domain 
(Daubechies 1990). In recent years, wavelet transformation 
has become one of the valuable methods for analysis, such 
as periodic changes and tendencies (trends) in time series. 
Researchers have analyzed and reduced the input noise of 
observations using wavelet transforms for better training and 
improved prediction results. Nayak et al. (2013) and Par-
tal and Kişi (2007) developed neural fuzzy wavelet hybrid 
models to forecast daily rainfall in the watersheds of Turkey. 
They selected the daily rainfall data from three stations in 
Turkey and used wavelet transformations to decompose it 
into several subseries, which were then used as inputs to the 
neuro-fuzzy model to predict the daily rainfall. The neuro-
fuzzy wavelet hybrid model performed well, especially for 
time series with zero rainfall in the summer months and 
maximum values during the test (handling missing data). 
As a final step, this model was compared with the neuro-
fuzzy model. According to their results, this model makes 
more accurate predictions than the neuro-fuzzy model. Nou-
rani et al. (2009) used a combined wavelet neural network 
approach for rainfall-runoff modeling. As a result, rainfall 

and runoff time series were divided into subseries by wave-
let transformation. This subseries was then entered into the 
artificial neural network to predict the next day’s runoff. 
The results showed that the model could predict long-term 
and short-term runoff using multi-scale rainfall-runoff time 
series as input (Partal and Cigizoglu 2009; Altunkaynak and 
Nigussie 2015). Farajpanah et al. (2020) stated that wave-
let functions play a significant role in improving the per-
formance of the artificial intelligence (AI) models used for 
estimating daily flow discharge. In the study, five types of 
mother wavelet functions (MWFs) were employed. Wavelet 
functions were applied to decompose the input data, particu-
larly the variables of daily flow discharge, temperature, and 
precipitation, using a technique called discrete wavelet trans-
form (DWT). The DWT breaks down the data into different 
frequency components, allowing the AI models to analyze 
and capture the variations in the data at different scales. By 
incorporating wavelet functions, the researchers aimed to 
enhance the AI models' ability to capture and represent the 
complex patterns and variations present in the daily flow 
discharge data. The combination of AI models with wavelet 
functions improved the models' performance, as indicated by 
increased correlation. The wavelet functions played a crucial 
role in preprocessing the data and providing a more detailed 
and informative representation of the input variables, ena-
bling the AI models to make more accurate estimations of the 
daily flow discharge. The study highlights the importance of 
accurately selecting the appropriate AI-based model, deter-
mining the relevant input data, and choosing the most effec-
tive MWF to improve the estimation of daily flow discharge. 
The findings have implications for water resource planning 
and management. Adib et al. (2021a, b), for estimating snow 
depth from microwave imager sounder (SSMIS) data, used 
several wavelet transforms, such as discrete wavelet trans-
forms (DWT), maximum overlap discrete wavelet transforms 
(MODWT), multiresolution-based MODWT (MODWT-
MRA), and wavelet packet transforms (WP), in combina-
tion with artificial intelligence models such as multilayer 
perceptrons, radial basis functions, adaptive neuro-fuzzy 
inference systems (ANFIS), and gene expression program-
ming. Ashrafi et al. (2020) proposed an efficient operating 
reservoir rule curve using discrete wavelet transforms and 
artificial neural networks. A discrete wavelet decomposi-
tion model was used to determine the input variables for 
the artificial neural network training process. Thus, using 
forecasts, the shortage’s severity was generally reduced over 
a long time 60-year period. Another data-oriented method 
is the artificial model of the group method of data handling 
(GMDH), developed by Ivakhnenko (1968), as a multivari-
ate analysis and plan for identifying and modeling complex 
systems. The GMDH model is a sub-model of the ANN used 
to model complex systems. With sufficient data, it is possible 
to model such systems without having prior knowledge of 
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the processes involved. Various scientific fields have utilized 
this method to model time series, including science, medical 
diagnosis, signal processing, engineering, control systems, 
economics, and water resources management (Nikolaev and 
Iba 2003; Amanifard et al. 2008; Li et al. 2020). Wang et al. 
(2021) compared this method with regression neural net-
works (BPNN) and ARIMA models. Narawi et al. (2022) 
used the GMDEH model to predict rainfall in a watershed 
in Malaysia. Lake et al. (2022) in their study discuss various 
mathematical aspects of GMDH, including data partitioning, 
partial description synthesis, and using an external criterion 
for polynomial selection. They also investigate methods for 
improving modeling accuracy, such as hybridization with 
most miniature square support vector machines (LSSVM), 
the application of filters for parameter estimation, and the 
combination with signal processing techniques like ensem-
ble empirical mode decomposition (EEMD), wavelet trans-
formation (WT), and wavelet packet transformation (WPT). 
The inclusion of exogenous data and its integration into 
the GMDH modeling paradigm are also discussed. Alves 
et al. (2023) presented a methodology for monthly rainfall 
forecast is presented using the group method of data han-
dling (GMDH) and sea surface temperature (SST). After a 
variable selection step, the intelligent model gets the mean 
monthly SST in predefined and temporally lagged areas. For 
model training, precipitation data from the Climate Predic-
tion Center were used. The methodology was applied in a 
particular area of the municipality of Marabá, located in 
the southeastern region of the Pará state. Results show the 
GMHD’s effectiveness for the monthly rainfall prediction, 
constituting an essential tool for planning and assistance to 
decision-makers. Mohseni and Muskula (2023) present a 
study on developing rainfall-runoff models using artificial 
neural networks (ANNs) in the Yerli sub-catchment. The 
study covers a period of 36 years, from 1981 to 2016. The 
ANN models, specifically the feed-forward backpropagation 
neural network (FFBPNN) and cascade-forward backpropa-
gation neural network (CFBPNN), were used to establish the 
correlation between input (rainfall) and output (runoff) data 
sets. The results showed that the FFBPNN model outper-
formed the other models. The study also compared different 
training algorithms, including Levenberg–Marquardt (LM), 
Bayesian regularization (BR), and conjugate gradient scaled 
(CGS) and found that the LM-trained model with 30 neurons 
performed the best.

One of the challenges observed in previous studies is the 
manual selection and optimization of inputs, preprocessing, 
and simulation parameters, which leads to inaccurate predic-
tions. The present study aims to develop and compare sev-
eral artificial intelligence hybrid models for predicting daily 
rainfall in urban basins. The models used in this research 
include ANN, GMDH simulators, IWO, FA, and GAPSO 
optimizers using wavelet transformation. It is important to 

note that this study is the first to develop a combination of 
models for predicting daily rainfall in urban basins in order 
to manage urban floods, which are IWO-Wavelet-ANN 
(IWA), IWO-Wavelet-GMDH (IWG), FA-Wavelet-ANN 
(FWA), FA-Wavelet-GMDH (FWG), GAPSO-Wavelet-ANN 
(GPWA), and GAPSO-Wavelet-GMDH (GPWA). Automatic 
and optimal control processes of the various modeling stages 
are included in the proposed models, such as the selection of 
the decomposition level, mother wavelet, inputs, and simula-
tor parameters that enhance the prediction accuracy.

The rest of this article is organized as follows. First, the 
algorithms and models used (including GAPSO, FA, IWA, 
Wavelet, ANN, and GMDH) and other assumptions are dis-
cussed in the “Materials and Methods” section. The “Results 
and Discussion” section describes the study area, input data, 
and results of developing different hybrid models for daily 
rainfall in urban areas. Finally, the “Conclusion” section 
concludes the paper.

Materials and methods

Figure 1 shows how to predict daily rainfall by the devel-
oped models. In this research, precipitation forecasting is 
carried out using three components: optimizer models, 
wavelet transforms, and simulators. Optimizers have the 
role of controlling wavelet transforms and simulators to 
perform their most optimal function. According to Eq. (1), 
the available data are scaled from 0 to 1 and 2019 for testing 
it. The current research’s target cost function is the root-
mean-square error (RMSE). Next, the optimizer evaluates 
the cost function’s value at a specific decomposition level 
to select the best mother wavelet, decomposed input sub-
series, and simulation parameters. In each model execution, 
the inputs are specified first. Then, a decomposition level 
between 1 and 10 is selected during the second step. The 
third step involves choosing the mother wavelet and decom-
posing the input series into subseries (approximation and 
detail features).

In the fourth step, the simulation parameters are deter-
mined, and the simulator begins working; finally, the amount 
of the target cost function is checked, and if the stopping 
criterion has been satisfied, the forecasting process stops, 
and the outputs are stored for final processing, along with a 
return to the original scale. Otherwise, the model execution 
process is repeated from the second stage.

For developing the IWG, FWG, and GPWG models, 
the IWO, FA, and GAPSO optimizers, discrete wavelet 
transforms (DWT), and the GMDH simulator are used. 
This model decomposes input series at ten levels into 

(1)Xscaled =
Xi − Xmin

Xmax − Xmin
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approximate and detailed subseries using discrete wavelet 
transforms. The model is executed after selecting the ini-
tial mother wavelet type, the top ten subseries, and setting 
the simulator’s effective parameters (number of neurons 
and layers). Then, the optimizer increases the prediction 
accuracy by optimizing each iteration’s model components 
(mother wavelet type, the top ten subseries, number of 
neurons, and layers).

The steps of the previous models are repeated in IWA, 
FWA, and GPWA models, with the difference being that 
the neural network is used instead of the GMDH simulator. 
In these models, feed-forward and cascade-feed-forward 
backpropagation networks are used to construct neural 
networks with training functions, including quasi-Newton 
backpropagation (BFGS quasi-Newton backpropagation), 
scaled conjugate gradient backpropagation, regularization 
backpropagation, Levenberg–Marquardt backpropaga-
tion, and resilient backpropagation. In addition, the train-
ing epoch ranges from 1 to 30. Finally, it is essential to 
note that the model optimization part is responsible for 
selecting and optimizing all the effective parameters of the 
model (mother wavelet type, the top ten subseries, network 

type, training function, and training epoch) to reduce the 
RMSE error between predictions and observations.

Group method of data handling (GMDH)

GMDH is a network statistical training technology devel-
oped through cybernetics research. GMDH can be applied 
to various topics, including discovering relationships, fore-
casting, modeling, optimization, and recognizing nonlin-
ear patterns. GMDH algorithm has several advantages for 
simulating time series data. It can capture nonlinear rela-
tionships, adapt its model structure, handle complex rela-
tionships, generate interpretable models, handle small and 
noisy datasets, work with various types of time series data, 
avoids overfitting, uses cross-validation to prevent overfitting 
to training data, fast training, and computationally efficient 
iterative training procedure. These advantages make GMDH 
a versatile and powerful tool for simulating time series, espe-
cially in scenarios with nonlinear dynamics and limited data 
availability. GMDH contains a set of layers and neurons that 
are created by connecting different pairs through a second-
degree polynomial. Each layer has two inputs and one output 
for each processing unit (neurons). As a result of regression 

Fig. 1  General schematic of the proposed models
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techniques, the coefficients of neural transfer functions are 
derived as polynomials (Green et al. 1988; Tsai and Yen 
2017; Lake, 2022). According to Eq. (2), a polynomial func-
tion can be used to express the connection between input and 
output variables (Zhang et al. 2013):

In this equation, Xi is the input variable, Y is the estimated 
target value, and a is the coefficient. The form of the second 
degree and two variables of these sentences are in the form 
of Eq. (3):

In this equation, each pair of input variables Xi and Xj 
are used to calculate the unknown coefficient  ai to mini-
mize the difference between the estimated Y value and the 
actual target, Y. A group of polynomials is constructed using 
the above relationship. Then, each unknown coefficient is 
determined by applying the least squares method (Amiri 
and Soleimani 2021). Figure 2 represents the structure of a 
general GMDH neural network.

Artificial neural networks

An artificial neural network is considered a black box 
method. A network’s input and output data allow it to 
determine relations between them without considering the 

(2)Y = a. +

n
∑

i=1

aixi +

n
∑

i=1

n
∑

j=1

aijxixj +

n
∑

i=1

n
∑

j=1

n
∑

k=1

aijkxixjxk

(3)
Y = G

(

XiXj

)

= a0 + a1Xi + a2Xj + a3X
2
i
+ a4X

2
j
+ a5XiXj

physical processes that govern the system. Artificial neural 
networks process experimental data to transfer knowledge 
or laws hidden behind the data into the network structure. 
ANNs’ models are often characterized by network topology, 
node properties, and learning rules. The general structure of 
ANN consists of several layers. The input layer is respon-
sible for spreading the data in the network, and the inter-
mediate (hidden) layers are responsible for their process-
ing. In addition, the output layer also shows the output and 
performance of the network input vector (Narayanakumar 
and Raja 2016; Matsumura et al. 2019). Equation (4) shows 
the relationship between different parts of a neural network:

where X is the inputs variables vector, Y represents the 
predicted/simulated target value, F stands for the activation 
function, W is the vector of connection weights, L represents 
the hidden cells number, and b is the bias value (Ashrafi 
et al. 2020). Based on the selection of the optimizer, back-
propagation neural networks, either feed-forward or cascade-
feed-forward, are used as simulation models in this study. 
The feed-forward neural network is the most widely used 
type of neural network for rainfall-runoff prediction, and 
its advantages have been explored in previous rainfall fore-
casting studies (Hung et al. 2009; Valverde Ramírez et al. 
2005; Khalili et al. 2016). The feed-forward neural network 
offers advantages for simulating time series data. These 
advantages include arbitrary connections allowing modeling 
complex time series, tapped delay lines capture temporal 
relationships, modeling non-stationary time series, enabling 
continuous adaptation on streaming data, robust activation 
functions handle noisy data, lagged connections providing 
insights into temporal dependencies, weight factorization 
speeds up training, and explicitly designed for one-step 
ahead forecasting. Here are the mathematical formulations 
of a feed-forward neural network:

The forward propagation process involves computing the 
activations of neurons in each layer of the network, starting 
from the input layer and progressing through the hidden lay-
ers to the output layer.

For a given layer l and neuron j, the activation is com-
puted as follows:

Here, Wl
ij
 represents the weight connecting neuron i in layer 

(l-1) to neuron j in layer l, al−1
ij

 is the activation of neuron i 

(4)Y(x) = F

(

L
∑

i=1

Wi(t).Xi(t) + b

)

(5)yl
j
=

L
∑

ij

(Wl
ij
∗ al−1

ij
+ bl

j
)

(6)al
j
= σ

(

zl
j

)

Fig. 2  GMDH network with four inputs and three layers, Blue neu-
rons: verified neurons for the next step, Red neurons: unverified neu-
rons
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in layer (l-1), bl
j
 is the bias term for neuron j in layer l, σ is 

the activation function, and ∑ denotes summation over all 
input neurons in layer (l-1).

Backpropagation is used to compute the gradients of the 
weights and biases with respect to the loss function, which 
allows for their update during the training process.

The gradient of the loss function with respect to a weight 
Wl

ij
 is given by:

Here, E represents the error or loss function, �l
j
 is the error 

term of neuron j in layer l, and al−1
i

 is the activation of neuron 
i in layer (l-1).

The weights and biases of the neural network are updated 
using an optimization algorithm such as gradient descent 
or one of its variants. The update rule typically follows the 
form:

Here, Wl
ij
(t + 1) is the updated weight, Wl

ij
(t) is the current 

weight, η is the learning rate, and �E∕�wl

ij
 represents the 

gradient of the loss function with respect to the weight.

Algorithm of weeds

In the agricultural sector, weeds are plants that grow in 
unwanted places and pose a severe threat to the growth of 
agricultural plants. Mehrabian and Lucas (2006) introduced 
and used the invasive weeds algorithm with inspiration from 
nature. This algorithm has several advantages, including 
its speed and effectiveness in finding the optimal points. 
It maintains diversity in the population, adapts to different 
problem types, and does not require gradient information. It 
is robust to parameter choice, suitable for parallel comput-
ing, and uses a dynamic population size to reduce memory 
usage. The system has a very high success rate because the 
system is based on weeds’ primary and natural characteris-
tics, such as growth, seed production, and survival conflict 
within colonies. These advantages make IWO effective in 
solving optimization problems with non-differentiable, dis-
continuous, and noisy objective functions while being versa-
tile and efficient in various problem domains. The steps for 
implementing the weed algorithm are as follows:

Generating the primary population: A certain number 
of answers are selected with uniform distribution in the 
search space of the question.
Calculating the degree of fit: The compatibility of weeds 
is measured with the fit function.

(7)�E∕�wl
ij
= �l

j
+ al−1

i

(8)Wl
ij
(t + 1) =

(

Wl
ij
(t) − � ∗

�E

�w

l

ij

)

Determining the number of new seeds: According to each 
parent weed’s competence level, the number of new seeds 
around each weed is determined.
The relationship of seed number production is in the form 
of Eq. (9):

where N is the number of seeds produced, f is the compat-
ibility of the current weed, and fmax and fmin are, respec-
tively, the most and least compatible of the current pop-
ulation.  Smax and  Smin are the maximum and minimum 
possible seed production amounts, respectively.
Determination of new seeds: In this stage, the produced 
seeds are randomly dispersed throughout the multidi-
mensional problem space during this stage. Usually, the 
random distribution function has an average value of 
zero and a standard deviation that fluctuates from stage 
to stage. Therefore, it guarantees that the randomly dis-
tributed seeds are very close to the parent weed.

The value of the standard deviation of this distribution is 
determined by Eq. (10):

In this regard, itrmax is the maximum number of repeti-
tions, σitr is the standard deviation value of each stage, σinitial 
is the standard deviation of the seed propagation around the 
parent weeds in the first propagation stage, and σfinal is the 
standard deviation of the seed propagation in the last propa-
gation stage in this research (Mehrabian and Lucas 2006).

Firefly algorithm

An optimization algorithm based on collective intelligence, 
the firefly algorithm (FA), was introduced by Yang in 2008. 
FA can converge relatively quickly to an optimal or near-
optimal solution. It achieves this by leveraging the com-
munication and attraction between fireflies. The attractive-
ness between fireflies influences their movement, promoting 
convergence toward better solutions over time. FA applies 
to a wide range of problem sizes and complexities. It can 
handle both small-scale and large-scale optimization prob-
lems, making it versatile in various domains. In summary, 
the FA algorithm works this way; it begins by randomly 
dispersing several artificial oscillating fireflies within the 
search area. There is a relationship between the intensity of 
the light emitted by each firefly and the degree of optimal-
ity of its location. In order to compare the light intensities 
of the different fireflies, each one is constantly compared 

(9)N =
f − fmin

fmax − fmin

(

Smax − Smin

)

+ Smin

(10)�itr =

(

itrmax − itr
)n

(

itrmax

)n

(

�initial − �f inal
)

+ �f inal
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with the light intensities of other fireflies. Therefore, the less 
bright firefly is attracted to the more brilliant fireflies. At the 
same time, the best firefly also moves randomly in the search 
domain to increase the chance of finding the best solution. 
Finally, fireflies exchange information with each other by 
emitting light. The combination of these group operations 
causes the general tendency of the fireflies to be more opti-
mal points (Yang 2009). The calculation of the light inten-
sity at the distance r is based on Eq. (11):

Accordingly, I0 shows the primary light intensity, and γ 
is a medium (such as air) that has a constant coefficient of 
light absorption. However, sometimes a function is needed 
that decreases uniformly and slower. In such a case, Eq. (12) 
is used:

A firefly’s attractiveness is proportional to the intensity of 
light observed by its neighbors, so its attractiveness param-
eter β can be determined by Eq. (13):

where β0 stands for the attractiveness of the firefly at 
a distance is r = 0. The motion of a firefly attracted by a 
brighter firefly is defined by Eq. (14):

In this regard, a significant role is played by α in the 
randomization process. Additionally, the rand expression 
generates random numbers between 0 and 1. Experiments 
in solving relatively complex continuous optimization prob-
lems show that even when faced with such issues, the FA 
algorithm can quickly and most likely find the optimal solu-
tion (Yang 2009).

GAPSO hybrid algorithm

The GAPSO algorithm is a combination of two genetic 
algorithms (GA) and the particle swarm optimization 
(PSO) algorithm, which was first introduced in 2004 by 
Juang (Juang 2004). Consequently, the advanced GAPSO 
algorithm merges the advantages of GA and PSO algo-
rithms. By combining the sensitivity and accuracy of 
the genetic algorithm (GA) for population selection with 
the rapidity of the particle swarm optimization (PSO) 
in determining solutions, the newly proposed algorithm 
demonstrates superiority over both methods. In this hybrid 
algorithm, GA operators are first applied, and then PSO 

(11)I = I0e
−�r

(12)I(r) =
I0

1 + �r2

(13)�(r) =
�0

1 + �r2

(14)Xi = Xi + �0e
−�r2

ij

(

Xi − j
)

+ �(rand −
1

2
)

operators are applied to the generated population mem-
bers. In this algorithm, two types of search techniques 
are used: The first is a local search technique, in which 
the solutions obtained by each group improve their posi-
tion compared to the best solution, and the second is a 
method of exchanging information between groups. After 
each local search in each group, the obtained information 
is compared between the groups. The advantage of this 
algorithm is its rapid convergence. GAPSO hybrid pro-
gramming algorithm has already been successfully used 
in various scientific fields due to its high efficiency (Kao 
and Zahara 2008; Wu et al. 2009; Jeong et al. 2009). This 
algorithm is schematically illustrated in Fig. 3.

The mathematical formulations of the GAPSO algo-
rithm involve the concept of particle positions and veloci-
ties being represented as chromosomes and the update 
equations for particle positions and velocities being 
updated according to t.

The update equation for the position of particle i in the 
GA component of GAPSO is given by:

Here, Mi,t represents a random mutation that is gener-
ated based on a specified probability distribution, such as 
a normal distribution.

The best mutation, X\_{g,t}, is selected based on the 
highest objective function value:

In this formulation, f(Xi, t) represents the objective func-
tion, and Xg,t is the mutation with the highest objective 

(15)Xi,t+1 = Xi, t +Mi,t

(16)(Xg,t = argmax(f (Xi, t)), i = 1, ,N

Fig. 3  GAPSO flowchart
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function value. These formulations are iteratively applied 
in each iteration of the algorithm until a near-optimal solu-
tion is obtained.

The velocity update equation for particle i in the PSO 
algorithm is given by:

In these equations, Vi,t+1 represents the velocity of particle 
i at time t, Xi, t represents the position of particle i at time 
t, Pi,t represents the best position achieved by particle i up 
to that time, Pg,t represents the best position achieved by 
any particle up to that time, and w, c1, and c2 are control 
parameters of the algorithm. rand1 and rand2 are random 

(17)
Vi,t+1 =w ∗ Vi,t + c1 ∗ rand1 ∗ (Pi,t − Xi,t)

+ c2 ∗ rand2 ∗ (Pg,t − Xi,t)

(18)Xi,t+1 = Xi, t + Vi,t+1

numbers between 0 and 1 used to introduce diversity in the 
optimization process.

Wavelet transformation

Many researchers have used wavelet transforms in recent 
years (since their inception in the early 1980s), and their 
popularity has increased (Nourani et al. 2014). Wavelet 
transformation is a powerful mathematical tool that offers 
numerous advantages in data analysis. It enables multireso-
lution analysis, localization in time and frequency domains, 
adaptability to different signal characteristics, efficient data 
compression, denoising capabilities, and feature extrac-
tion. In the context of rainfall analysis, wavelet analysis is 
particularly useful. It allows for the identification of vari-
ations at different temporal scales, detection of specific 

Fig. 4  Location of the Ahvaz meteorological synoptic station



Applied Water Science (2023) 13:232 

1 3

Page 9 of 19 232

rainfall events, efficient data compression, and the detec-
tion of trends and changes in rainfall patterns over time. 
Wavelet analysis is a versatile tool with broad applications 
in data analysis and processing, including rainfall analysis 
for hydrology, climate studies, and water resource manage-
ment. A wavelet is a small wave with three characteristics: 
the limited number of oscillations, the fast return to zero 
in both positive and negative directions in its range, and 
the mean of zero. The wavelet function, Ѱ, is called the 
mother wavelet. The term “mother” is used for the reason 
that different functions (wavelets) created based on scale and 

transfer parameters are all derived from the primary function 
(mother wavelet) and are called daughter wavelets. In other 
words, the mother wavelet is the main wavelet for generat-
ing other window functions. In addition, the mother wavelet 
has shock characteristics and can quickly decrease to zero. 
The mother wavelet function is defined in the mathematical 
form of Eq. (19):

Table 1  Statistical characteristics of the data used

Parameter Mean Wind 
speed (m/s)

Mean 
temperature 
(°C)

Relative 
humidity (frac-
tion)

Solar radia-
tion (MJ/m2)

Evaporation Dew spot (°C) Soil tem-
perature 
(°C)

Daily rain-
fall (mm)

Minimum 0.00 3.60 6.63 0.00 0.00 − 9.18 − 5.00 0.00
Maximum 8.13 44.00 96.38 13.00 29.00 25.98 34.00 73.70
Average 2.22 26.81 42.13 8.65 8.15 9.95 16.03 0.53
Standard deviation 1.14 9.74 19.79 3.44 5.35 5.05 8.63 3.33

Table 2  Results of the 
IWGM model at each level of 
decomposition

*FK: Fejer-Korovkin, S: Symlet

Decomposi-
tion level

The selected input subseries Wave* Neurons in 
a layer

Layers

1 1 9 6 4 18 15 14 17 16 13 FK 7 3
2 11 29 23 5 27 5 20 14 1 22 FK 5 2
3 6 34 35 1 30 12 25 9 34 25 FK 3 4
4 35 42 5 27 5 43 20 15 37 43 FK 6 3
5 44 40 4 50 55 42 37 46 57 19 S 2 5
6 59 24 30 58 2 51 40 55 30 20 FK 20 2
7 42 62 66 60 41 28 50 58 67 18 FK 2 5
8 62 12 33 47 29 61 72 75 74 62 FK 17 3
9 83 72 82 78 57 6 96 26 30 55 FK 15 3
10 49 79 51 90 11 5 54 27 32 40 FK 5 2

Fig. 5  Predicted versus target rainfall for the testing dataset using: a IWG, b FAWG, and c GPWG models
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There are two types of wavelet transformation: 1. continu-
ous wavelet transform (CWT) and 2. the discrete wavelet trans-
form (DWT). Due to the absence of additional components in 
the transformed data, DWT is more suitable for the process-
ing and decomposition of time series than CWT. Therefore, 
each frequency and time data group can be changed inversely 
(Toufani et al. 2011). The discrete wavelet transform of a time 
series, f, is defined by Eq. (20):

(19)

+∞

∫
−∞

�(t)dt = 0

(20)f (a.b) =
1
√

a

+∞

∫
−∞

f (t)�
�

t − b

a

�

dt

f(a, b) can simultaneously reflect the original time series 
features in the time b and frequency domain. In the decom-
position stage, the discrete wavelet transform decomposes 
the time series into a set of high frequencies (detail signal) 
and low frequencies (approximate indication). In multi-stage 
decomposition, the wave decomposition continues after the 
first decomposition stage, with the re-decomposition of 
the approximate part (Merry and Steinbuch 2005; Venkata 
Ramana et al. 2013; Goyal 2014; Mostaghimzadeh et al. 
2023). As a part of this study, CWT is employed to decom-
pose the input time series into subseries (detail and approxi-
mation). In a subsequent stage, optimizers (IWO, FA, and 
GAPSO) select ten subseries and enter them into the simula-
tors (ANN and GMDH). Developed models use six wave-
lets (Haar, Meyer, Symlet, Coiflet, Daubechies, and Fejer-
Korovkin) at different decomposition levels (1 to 10). In the 

Table 3  Results of the IWG, 
GPWG, and FAWG models at 
ten levels of decomposition

Model IWG FWG GPWG

Index Average best Average best Average Best

RMSE (mm) 2.0677 1.8400 2.2006 1.8371 1.7610 1.7610
MAE (mm) 0.8556 0.8059 0.9436 0.7834 0.8250 0.8250
R 0.9136 0.9319 0.8988 0.9356 0.9368 0.9368

Table 4  Results of IWG, 
GPWG, and FAWG models

*FK: Fejer-Korovkin

Model The Selected 
input subseries

Decomposition level Wave* Neurons Layers

IWG 59 24 30 58 2 51 40 55 30 20 6 FK 20 2
FWG 35 18 31 34 27 16 34 7 12 30 3 FK 12 5
GPWG 92 56 37 98 90 91 107 8 41 79 4 FK 6 3

Table 5  Best results of the 
GPWA model at each level of 
decomposition

*FK: Fejer-Korovkin, C: Coiflet, M: Meyer, S: Symlet
**BR: Bayesian regularization backpropagation, LM: Levenberg–Marquardt backpropagation
***C: Cascade-forward backpropagation, F: Feed-forward backpropagation

Decom-
position 
level

The Selected input subseries Wave  name* Train 
 Function**

Net*** Epoch

1 18 11 1 10 14 4 7 14 16 4 FK LM F 14
2 23 26 21 29 19 22 27 24 3 22 S LM F 19
3 17 32 14 35 14 22 39 36 30 35 M LM C 14
4 37 37 48 10 20 42 47 43 41 21 FK BR C 20
5 47 46 12 41 22 50 29 44 35 51 M LM C 22
6 6 59 58 42 24 44 18 11 4 53 M BR C 24
7 3 16 39 40 14 3 58 17 68 40 M LM C 14
8 23 24 39 87 19 65 88 84 67 67 M LM C 19
9 93 72 61 17 10 94 86 92 8 93 M BR F 10
10 93 72 61 17 10 94 86 92 8 101 C BR C 10
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proposed model, the optimizer is responsible for selecting 
the best subseries, mother wavelet, and decomposition level.

Validation criteria

Models are validated using various criteria, including mean 
absolute error (MAE), correlation coefficient (R), root-mean-
square error (RMSE), probability of detection (POD), critical 
success index (CSI), and false alarm ratio (FAR). When using 
the R function, a zero value indicates no correlation between 
observable and predicted results, while a value of one indicates 
a complete correlation. Therefore, the model’s performance 
will improve if its RMSE and MAE values are close to zero. 
The formulas for calculating possible POD, CSI, and POD 
indices are as relations 21–23:

(21)POD =
Hits

Hits + Misses

In terms of Hits, this refers to the number of days in 
which the output of the models predicts precipitation, and 
the observations indicate that rainfall has also occurred. 
The number of Misses is the number of days when rain is 
observed, but the models have predicted no rain. Finally, 
False Alarm is a number of days observed without rain but 
predicted rain by the models. (Chokngamwong and Chiu 
2008; Golian et al. 2011).

(22)CSI =
Hits

Hits + Misses + False Alarm

(23)FAR =
False Alarm

Hits + False Alarm

Fig. 6  Predicted versus target rainfall for the testing dataset using: a IWA, b FAWA, and c GPWA models

Table 6  Results of the IWA, 
GPWA, and FAWA models at 
ten levels of decomposition

Model IWA FWA GPWA

Index Average Best Average Best Average Best

RMSE 1.4394 1.2384 1.5896 1.3790 1.3633 1.1953
MAE 0.6121 0.5742 0.6933 0.6298 0.6364 0.5731
R 0.9583 0.9694 0.9500 0.9618 0.9635 0.9715

Table 7  Results of IWG, 
GPWG, and FAWG models

*M: Meyer, FK: Fejer-Korovkin
**BR: Bayesian regularization backpropagation
***C: Cascade-forward backpropagation, F: Feed-forward backpropagation

Wave* Train 
 function**

Network*** Epoch Wave* Train 
 function**

Network***

IWA 23 27 26 30 13 20 1 24 9 22 2 M BR F 12
FWA 37 37 48 10 14 42 47 43 41 36 4 FK BR C 20
GPWA 26 10 24 29 22 27 23 20 1 5 2 M BR C 10
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Study area
For this study, the meteorological data of the Ahvaz synoptic 
weather station, which is located at a latitude of 31.345 m, a 
longitude of 48.744 m, and an altitude of 22.5 m above sea 
level, were used to predict urban rainfall. The city of Ahvaz, 

Fig. 7  Boxplot of models results

Fig. 8  Cumulative graph of 
error with different levels of 
decomposition

Fig. 9  Prediction error histogram in IWG, GPWG and FWG models
Fig. 10  Prediction error histogram in IWA, GPWA and FWA models
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the capital of Khuzestan province and the seventh most pop-
ulous in Iran, is situated in a plain region at 31 degrees 30 
min north latitude and 45 degrees 65 min east longitude, 
with an altitude of 22 m. In Fig. 4, the location of the Ahvaz 
synoptic station is shown. Input time series include average 
daily temperatures, average daily wind speeds, average daily 
relative humidity, solar radiation, evaporation, dew point, 
soil temperatures, and precipitation with a 1- to 3-day delay, 
and output data include daily rainfall. Between January 1, 
2010, and December 31, 2019, 3652 data samples were col-
lected. Table 1 presents the statistical characteristics of the 
data used in this study.

Results and discussion

IWG, FWG, and GPWG models

In the hybrid models of IWG, FWG, and GPWG, GMDH 
simulator models are used. The number of neurons, lay-
ers and inputs is optimized using optimization algorithms 
IWO, FA, and GAPSO. For example, Table 2 shows the 
best results of the IWGA hybrid model at different decom-
position levels. As shown in Table 2, the most optimal 
set of ten subseries of the model input, the most optimal 

Table 8  Error distribution of 
intelligent models

Index/model IWG FWG GPWG IWA FWA GPWA

Q25 0.061 0.017 0.064 − 0.049 − 0.073 − 0.070
Q50 0.185 0.188 0.213 0.085 0.008 0.029
Q75 0.186 0.189 0.214 0.187 0.164 0.140
Mean − 0.067 − 0.156 − 0.036 0.079 − 0.012 − 0.039
STD 1.839 1.830 1.761 1.236 1.379 1.195

Fig. 11  Evaluation of indicators: a POD, b CSI, c FAR, d General diagram of POD, CSI, and FAR
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mother wavelet, the most optimal number of neurons, and 
the most optimal number of GMDH simulator layers are 
displayed at each level of decomposition. The scatter dia-
gram in Fig. 5 and the final results of each artificial intelli-
gence prediction model are presented in Tables 3 and 4. In 
comparing the average results of each model, GPWG has 
a better overall performance than IWG and FWG models 
with RMSE values of 2 mm, MAE equal to 0.8442 mm, 
and R equivalent to 0.92 (Table 3). Moreover, the best 
results are related to the same model with decomposition 
level 3, Fejer-Korovkin mother wavelet, and the number 
of 12 neurons in 5 layers, which has the lowest RMSE, 

equivalent to 1.7610 mm. For each model, according to 
Fig. 5, the linear fit equation indicates that the coefficient 
of determination exceeds  R2 = 86, and the angle between 
the linear fit and the 45-degree line is 17 degrees for the 
IWG, 20 degrees for the FWG, and 11 degrees for the 
GPWG models. In other words, all three models performed 
appropriately within 80% confidence intervals, whereas 
the GPWG model performed within an 89% confidence 
bond. All three models have been developed using the 
same simulator, and the GPWG model is superior to the 
other two due to the use of the GP optimizer, which com-
bines GA and PSO features to achieve better results.

Fig. 12  a Prediction results of IWG, FWG, and GPWG models versus observational data (the year 2018) (b) Prediction results of IWG, FWG, 
and GPWG models versus observational data (the year 2019)
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IWA, FWA, and GPWA models

For developing the hybrid models of IWA, FWA, and 
GPWA, neural networks have been used in both feed-for-
ward and cascade-feed-forward backpropagation modes, 
with different training functions and training epochs from 1 
to 30 as determined by the optimizer. As shown in Table 5, 
the GPWA model results include the best set of ten decom-
posed subseries, the best mother wavelet, the best network 
function, and the epoch displayed at each decomposition 
level. The scatter diagram in Fig. 6 and the final results of 
each three artificial intelligence prediction models are pre-
sented in Tables 6 and 7.

Comparing the average results of each model, GPWA 
with RMSE values of 1.19 mm, MAE equal to 0.57 mm, and 
R equal to 0.97 perform better than IWG and FWG (Table 6). 
For all three models, the linear fit equation indicates that 
R2 is greater than 92%, and the angle between the linear fit 
and the 45-degree line is 4 degrees for IWA, 9 degrees for 
FWA, and 7 degrees for GPWA, respectively. These results 
are within a 90% confidence band, and all three models dem-
onstrate appropriate performance. It is evident from Table 6 
that the most optimal model is GPWA, which has RMSE 
values of 1.19 mm, MAE values of 0.57 mm, and R values 
of 0.9785. This model is optimized in level 2 decomposition 

Fig. 13  a Prediction results of IWA, FWA, and GPWA models versus observational data (the year 2018) b Prediction results of IWA, FWA, and 
GPWA models versus observational data (the year 2019)
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using a Fejer-Korovkin wavelet and a cascade-feet-forward 
backpropagation network with ten epochs.

This study has developed six artificial intelligence mod-
els named IWG, FWG, GPWG, IWA, FWA, and GPWA to 
predict daily rainfall. The error boxplots of the models are 
shown in Fig. 6 at ten different decomposition levels. GPWG 
and GPWA models provide similar and more stable results at 
different decomposition levels, as shown in Fig. 6. Figure 7 
illustrates the cumulative error value of the models based 
on the decomposition level. According to Fig. 7, cumulative 
error increases in the beginning levels and decreases in lev-
els eight and nine, but as more decomposition is performed, 
the error rates of the models increase again. Levels 2 and 3 
are the best decomposition levels with the lowest cumulative 
error rate (Fig. 8).

Figures 9 and 10 show the histograms of the models’ 
prediction difference error (∆e) and the relevant statistical 
data in Table 8. The formula ∆e can be calculated by using 
Eq. (24):

According to the information in Figs. 9, 10, and Table 8, 
IWA, GPWA, and FWA models generally have lower error 
values than IWG, GPWG, and FWG models in all indica-
tors. GPWA and FWA models have the lowest error, with 
an average of − 0.039 and − 0.012, respectively. In the first 
quadrant, the FWG model, in the second or middle quad-
rant, the FWA model, and third quadrant, the GPWA model 
have the lowest error rate, close to zero. Also, the GPWA 
model has the lowest error standard deviation. Considering 
all the indicators in Table 8, the GPWA model performs best 
with the lowest error, close to zero. The main reason for the 
superiority of the GPWA model, in addition to the use of the 
artificial neural network (which has better results compared 

(24)Δe = Predicted − Target

to GMDH), is the GAPSO hybrid optimizer. As optimizers 
play a significant role in this research (selection and control 
of all forecasting stages), GAPSO performs better than other 
optimizers by combining the advantages of GA and PSO 
optimizers.

Artificial intelligent models were also evaluated using 
probability indicators (POD, CSI, and FAR). The daily 
rainfall threshold ranges from 2 to 74 mm. Figure 11 shows 
the evaluation results of CSI, POD, and FAR. It can be seen 
from Fig. 11 that as the precipitation threshold increases, 
the CSI and POD values increase, while the FAR value 
decreases. Therefore, based on the POD index, the GPWA 
model performs better, with a value of 0.82, while based 
on the CSI and FAR indices, the GPWG and FWG models 
perform better, respectively, with values of 0.38 and 0.46. 
Therefore, as a result of the evaluation based on these indi-
cators, it is concluded that all artificial intelligence models 
have accurate predictions.

As mentioned, the results have been verified using 20% 
of the available data (2018–2019). In Figs. 12, 13, 14, the 
prediction results of the intelligent models developed in this 
research are plotted against the observational data.

One of the capabilities of rainfall forecasting models is 
the ability to transfer from non-rainy days to rainy days. 
From May to November, there are often no daily rain-
falls in the region under study, which makes the ability to 
transfer the model in this region vital. The results shown 
in Figs. 12 and 13 indicate that the developed models 
demonstrate excellent performance in transitioning from 
non-rainy to rainy days despite the sudden changes in rain-
fall. A critical factor in this can be found in the optimal 
selection of the inputs, optimal decomposition level, and 
mother wavelet by the model’s optimization part, which 
significantly impacts predicting the critical points of the 

Fig. 14  Comparison of the 
proposed model of the present 
research with previous research
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rainfall time series. According to Figs. 12 and 13, it is 
clear that IWA, FWA, and GPWA models have a better 
performance in predicting rainfall than IWG, FWG, and 
GPWG models, especially at peak points. Accurate pre-
diction of peak values is a crucial and difficult stage of 
intelligent water resources management (Mostaghimzadeh 
et al. 2022).

According to the current research, GPWA was the best 
model for forecasting daily rainfall based on its RMSE value 
of 1.19 mm and R-value of 97.15, as well as its superiority 
over other models on the indicators evaluated. The proposed 
GPWA model results were compared with previous research 
for further evaluation. The results presented in Fig. 14 indi-
cate that the proposed model performs better than other 
research in predicting daily rainfall. The significant advan-
tage of the presented models lies in their automatic and 
optimal selection of the inputs, decomposition level, mother 
wavelet, and simulators’ effective parameters.

There are some limitations to the models that are being 
used in current research; it is because they are based on his-
torical data and assumptions. In this way, the ability of these 
instruments to record events related to severe or unprec-
edented weather is limited. Moreover, regional or tempo-
ral changes in rainfall patterns can affect models’ perfor-
mance, underscoring the need for continuous validation and 
adaptation to local conditions. Future climate change may 
also affect model performance, indicating the need to com-
bine current models with climate change models in future 
research.

Conclusion

In this study, six artificial intelligence models were devel-
oped (IWG, FWG, GPWG, IWA, FWA, and GPWA) by com-
bining FA, IWO, and GPSO optimization algorithms with 
ANNs and GMDH simulators and wavelet transformation 
to predict daily rainfall. Also, they are used to predict the 
daily rainfall of Ahvaz city, Iran, to measure their efficiency. 
The significant advantage of the presented models is their 
automatic and optimal selection of the inputs, decomposition 
level, mother wavelet, and simulators' effective parameters to 
reduce RMSE, which are handled by optimizers that, like an 
intelligent brain, enhance prediction accuracy by controlling 
all the model components. The results of the models were 
validated using RMSE, MAE, R, POD, CSI, and FAR indi-
cators. Our finding shows the proposed models are highly 
appropriate for predicting rainfall. The GPWA model has the 
highest accuracy and stability of the prediction results. Fur-
thermore, based on the daily rainfall forecasts for Ahvaz city 
provided by the GPWA model for 2018 and 2019, the model 
can effectively transfer between non-rainy and rainy days and 
predict peak points more accurately. Thus, the GPWA model 

is the best current research model recommended for predict-
ing daily rainfall. To facilitate the development of models, 
it is recommended to forecast rainfall data over an extended 
duration. Additionally, it is feasible to integrate existing 
research models with simulations of urban events, specifi-
cally focusing on the prediction of urban floods, which will 
be our future study. Finally, it is important to acknowledge 
the limitations of these models. One limitation is the reli-
ance on historical data and assumptions, which may restrict 
their performance in capturing unprecedented or extreme 
weather events. Additionally, the models’ performance could 
be affected by regional or temporal variations in rainfall pat-
terns, emphasizing the need for continuous validation and 
adaptation to local conditions. Further research and devel-
opment are recommended to address these limitations and 
enhance the models’ applicability for urban flood prediction.
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