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Abstract
The study focuses on the critical concern of designing secure and resilient bridge piers, especially regarding scour phenom-
ena. Traditional equations for estimating scour depth are limited, often leading to inaccuracies. To address these shortcom-
ings, modern data-driven models (DDMs) have emerged. This research conducts a comprehensive comparison involving 
DDMs, including support vector machine (SVM), gene expression programming (GEP), multilayer perceptron (MLP), gradi-
ent boosting trees (GBT) and multivariate adaptive regression spline (MARS) models, against two regression equations for 
predicting scour depth around cylindrical bridge piers. Evaluation employs statistical indices, such as root-mean-square error 
(RMSE), coefficient of determination (R2), mean average error (MAE) and normalized discrepancy ratio (S(DDRmax)), to assess 
their predictive performance. A total of 455 datasets from previous research papers are employed for assessment. Dimension-

less parameters Froude number 
�

Fr =
U

√

gy

�

 , Pier Froude number FrP =
U

√

g�D
 , and the ratio of scour depth to pier diameter 

(
y

D
) are carefully selected as influential model inputs through dimensional analysis and the gamma test. The results highlight 

the superior performance of the SVM model. In the training phase, it exhibits an RMSE of 0.1009, MAE of 0.0726, R2 of 
0.9401, and SDDR of 2.9237. During testing, the SVM model shows an RMSE of 0.023, MAE of 0.017, R2 of 0.984, and 
SDDR of 5.301. Additionally, it has an average error of − 0.065 and a total error of − 20.642 in the training set and an average 
error of − 0.005 and a total error of − 0.707 in the testing set. Conversely, the M5 model exhibits the lowest accuracy. The 
statistical metrics unequivocally establish the SVM model as significantly outperforming the experimental models, placing 
it in a higher echelon of predictive accuracy.

Keywords  Local scour · Sediment particle · Performance assessment · Meta-heuristic models

Introduction

In the realm of river engineering, scour presents itself as a 
formidable challenge, instigating the gradual erosion and 
degradation of bridge structures. Numerous accounts sub-
stantiate erosion's role as a catalyst for the deterioration 
of bridges. Consequently, the precise estimation of bridge 
scour depth assumes paramount importance. Despite the 
multitude of diverse investigations into bridge pier scour 
depth, its inherent complexity underscores the significance 
of formulating precise simulators, a pursuit that commands 
considerable attention from both researchers and engineers 
alike. Within the USA, the primary contributors to bridge 
damage have been identified as scouring and flooding, as 
attested by numerous sources (Wardhana and Hadipriono 
2003). The Austrian Federal Railways (BBB) experienced 
substantial financial losses amounting to approximately USD 
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113 million due to flooding events coupled with bridge col-
lapses (Kellermann et al. 2016). Additionally, the projected 
expenditure for mitigating scour risk across Europe from 
2040 to 2070 is estimated to reach USD 611 million per 
annum (Nemry and Demirel 2012). Given its integral role, 
this critical infrastructure component underscores the promi-
nence of research endeavors focusing on augmenting safety 
during the design phase and minimizing the likelihood of 
bridge failures. In this context, researchers have introduced 
a range of experimental equations, a selection of which is 
displayed in Table 1. The review of existing literature dem-
onstrates that over the recent decades, a variety of math-
ematical equations have been proposed to forecast the scour 
depth around bridge piers. However, these equations, often 
rooted in empirical observations, are fraught with numerous 
limitations (Brandimarte et al. 2012). Furthermore, their effi-
cacy is typically confined to specific experimental conditions 
(Bateni et al. 2007). Mueller and Wagner (2005) undertook 
an assessment of 22 mathematical equations using field 
data, revealing a consistent trend of overestimating scour 
hole dimensions in comparison with actual measurements. 
Similarly, Landers and Mueller (1996) conducted a com-
parative analysis of five empirical formulas for bridge pier 
scour prediction based on field data, concluding that none of 
the selected formulas yielded accurate estimations of scour 
depth. Gaudio et al. (2010) conducted a comparative study 
involving six design formulas for predicting scour depth, 
juxtaposing the results with field data. Their investigation 
disclosed that all utilized formulas generated predictions 
that were deemed unreasonably inaccurate. Multiple other 
scholars have documented the deficiencies inherent in exper-
imental-based formulations when it comes to forecasting the 
depth of scour around bridge piers (Rahimi et al. 2020).

In response to these challenges, researchers have increas-
ingly directed their efforts towards leveraging artificial 
intelligence (AI) techniques to enhance the accuracy of pier 
scour depth prediction. Within this context, machine learn-
ing methods (MLMs), which constitute a prominent sub-
set of AI methodologies, have garnered significant interest 
among researchers in the realm of engineering prognostica-
tion. MLMs operate by scrutinizing datasets, with a specific 
emphasis on identifying interrelations among input, internal, 
and output variables, all while circumventing the need for 
explicit comprehension of the system's underlying physical 
mechanisms (Qaderi et al. 2020). Table 2 displays the com-
pilation of a literature review encompassing diverse MLMs 
techniques employed for the modeling of scour depth around 
bridge piers.

The primary impetus behind this research stems from 
the prowess and prospective applications of MLMs. In 
pursuit of this objective, the current study systematically 
employed extensive datasets derived from empirical experi-
ments conducted within various laboratory flume settings. 

These datasets encompassed a diverse spectrum of sediment 
gradations and coarse material fractions. The resultant data 
points exhibit a substantial breadth of variability, thereby 
facilitating the utilization of the SVM, the GEP, the ANN 
and empirical equations for the purpose of predicting scour 
depths in the vicinity of cylindrical bridge piers. To discern 
the optimal predictive models, a comprehensive analysis 
involving statistical indices has been undertaken.

Material and methods

The forthcoming research endeavor will encompass a sys-
tematic sequence of steps, characterized by the following 
methodological delineations: (i) data collection and naly-
sis, (ii) dimensional analysis, (iii) sensitivity analysis, (iv) 
identification of key inputs, (v) implementation of pre-
scribed models, (vi) output analysis. This structured frame-
work encapsulates the logical progression of the research 
endeavor, designed to yield robust and substantiated find-
ings. The methodology employed in the current investigation 
for the prediction of bridge pier scour depth is elucidated 
through the schematic representation depicted in Fig. 1.

Fig. 1   Flowchart applied for the present paper to opt superior predic-
tions
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Dataset complied

The data employed in the current investigation were sourced 
from pre-existing studies documented in the literature, spe-
cifically conducted under conditions characterized by clear 
water. These studies encompass a diverse array of laboratory 

flumes and field data, incorporating a wide spectrum of sedi-
ment compositions and hydraulic flow scenarios. In totality, 
a dataset comprising 455 dependable data points was curated 
and subsequently utilized as the foundation for the present 
research endeavors. It is noteworthy that among this total, 
168 datasets pertain to field data, while 287 datasets pertain 
to laboratory data. Table 3 delineates the statistical metrics 
corresponding to the datasets associated with each respective 
reference. Within this tabular representation, the variables 
are defined as follows: D signifies the diameter of the pier, 
Y pertains to the flow depth, U denotes the flow velocity, Uc 
represents the critical velocity, D50 encapsulates the average 
size of sediment particles, and S embodies the scour depth. 
The abbreviations Max, Min and S.D stand for the maxi-
mum value, minimum value, and standard deviation of the 
datasets, respectively. As elucidated in the detailed descrip-
tions outlined in Table 3, the simulation of relative scour 
depth is achieved through a fusion of laboratory and field 
data. To mitigate the impact of numerical scale variations, 
all model inputs have been normalized to a standardized 
range between zero and one.

Table 4   Gamma test result for different input variables

Model Gamma test statistics Mask Opti-
mal 
modelΓ G V-Ratio

1 0.089 0.857 0.402 11,111  × 
2 0.063 0.792 0.352 01100  × 
3 0.090 0.823 0.452 11,000  × 
4 0.097 0.921 0.567 00111  × 
5 0.067 0.587 0.322 11,101  × 
6 0.052 0.372 0.305 11,100 ✓
7 0.072 0.538 0.348 10,101  × 
8 0.069 0.484 0.637 10,001  × 

Table 5   Summary of statistical 
description of parameters 
included

parameter N Mean SD Variance Skewness Kurtosis CV Min Max

Y

D
455 2.97049 2.59749 6.74693 2.30272 7.45131 0.87443 0.125 21.05263

Fr 0.28884 0.17352 0.03011 3.08537 17.55088 0.60076 0.03893 1.69139
FrD 5.24252 6.95738 48.40517 3.80045 15.56992 1.32711 0.59893 45.4895
Ds

Y
0.37165 0.23343 0.05449 0.60449 −0.56044 0.62808 0.0099 1

Fig. 2   A 3D view of scour depth mapping
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Dimensional analysis

The scour hole depth can be elucidated through the consid-
eration of three primary categories: (i) flow conditions, (ii) 
sediment characteristics, and (iii) bridge pier geometry. The 
subsequent equation can be formulated as follows:

In the equation provided, where g represents the accelera-
tion due to gravity, ρ denotes the density of water, ρs signi-
fies the density of sediment, U stands for the mean velocity 
of the flow, Uc represents the critical velocity of sediment 
particles, y represents the flow depth, μ denotes the dynamic 
viscosity of water, D stands for the diameter of the bridge 
pier, and D50 represents the mean diameter of sediment par-
ticles. As duplicate parameters, three D, U, and ρ parameters 
were opted to extract dimensionless parameters using the 
Pi-Buckingham theory. The outcome of the dimensional 
analysis can be articulated as follows:

Here U
√

gy
 is the Froude number (Fr) of the flow, Uc

√

gD50

 is 

the densimetric Froude number (FrD) of the sediment parti-
cle, U

√

gD
 is the Froude number (Frp) of the bridge pier, �Uy

�
 is 

the Reynolds number (Re) of the flow. Due to the presence 
of turbulent flow conditions, the Re was excluded from the 
analysis. Additionally, the parameter U

Uc

 was omitted, given 
the inclusion of the Fr and FrD. Consequently, Eq. (18) is 
simplified to the following form:

(15)S = F(g, �, U, Uc, y, �, D, D50, �s)

(16)
S

D
= G

�

U

Uc

,
y

D50

,
U

√

gy
,

Uc
√

gD50

,
U

√

gD
,
�Uy

�

�

(17)
S

D
= G

(

y

D
, Fr, FrD, FrP,

y

D50

)

Gamma test

As elucidated by Koncar (1997), the gamma test is a non-
parametric statistical method employed to estimate an out-
put by identifying the optimal set of input–output datasets 
based on the best mean square error values. This method is 
introduced as a suitable approach for determining the most 
effective combination of diverse input variables to accurately 
describe the output. In this method, the dataset is supposed 
as 

{(

xi, yi
)

, 1 ≤ i ≤ M)
}

 , where the input vectors xi ∈ Rm 
are m dimensional vectors and corresponding outputs yi ∈ R 
are scalars. The vectors x influences the output y. The asso-
ciation among the inputs and output variables is defined by 
the following equation:

Here G and Γ represent gradient and interception of the 
regression line (x = 0), respectively, and y is output. Smaller 
values of G and Γ indicate that the corresponding input vari-
ables are more suitable. In addition to these two criteria, an 
indicator denoted as V − Ratio =

Γ

�2(y)
 where Γ represents the 

gamma function and �2(y) is the output variance, is 
employed to identify the optimal input parameters. The val-
ues of V-Ratio range from 0 to 1. A V-Ratio value closer to 
zero for each input parameter signifies the effectiveness of 
that particular input. The various combinations of input vari-
ables have been delineated following the format introduced 
by Mask (Malik et al. 2021). Since Eq. (19) incorporates five 
dimensionless parameters, the Mask representation employs 
five digits corresponding to the five parameters: y

D
 , Fr, FrD, 

Frp and y

D50

 , respectively. In the representation provided, the 
digits ’1’ and ‘0’ signify whether an input is included (‘1’) 
or not included (‘0’). Therefore, '10,100' indicates that y

D
 and 

FrD are employed as inputs, while ‘11,111’ indicates that all 
five parameters are utilized as inputs. As previously men-
tioned, the most favorable model is characterized by the 

(18)y = Gx + Γ

Fig. 3   Flowchart of the GEP

Table 6   Types of kernel functions

Kernel name Function

Linear K
(

xi, xj
)

= (xi, xj)

Polynomial K
(

xi, xj
)

= [(xi, xj) + 1]d

Redial basis function (RBF)
K
(

xi, xj
)

= exp

[

−
xi−x

2
j

2�2

]

Exponential radial basis function 
(ERBF)

K
(

xi, xj
)

= tanh[−�(xi, xj) + c]
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lowest values of Γ, G, and V-Ratio. It is important to high-
light that, owing to the distinct ranges of variation for each 
parameter, all analyses have been conducted using normal-
ized data, as described by the following equation:

Here xmin and xmax are the minimum and maximum val-
ues of variable x, and xnormal is the normalized value of xi. 
Table 4 displays the outcomes of the gamma test based on 
Eq. (19). From the data presented in Table 4, it is evident 
that the sixth model, which includes the parameters y

D
 , Fr and 

FrD (11,100), demonstrates the most favorable test results, 
characterized by the lowest values of Γ (0.052), G (0.372), 
and V-Ratio (0.305). Table 5 presents a brief statistical 
characteristics of input and output parameters. An overall 
graphic view for scour depth variation has been illustrated 
in Fig. 2.

(19)xnormal =
xi − xmin

xmax − xmin

Overview of MLMs involved

A general view of the GEP

Proposed by Ferreira (2001), the GEP constitutes a genetic 
algorithm that operates by managing a populace of indi-
viduals. These individuals are selected based on their 
fitness and subsequently subjected to genetic diversity 
through the application of one or more genetic operators, 
as expounded upon by Mitchell (1996). The GEP amalgam-
ates diverse components, encompassing mathematical and 
logical expressions, polynomial constructs, decision trees, 
and assorted operators. The programming of GEP entails 
the utilization of linear chromosomes, which are articulated 
through expression trees (ETs). The procedural depiction 
of GEP's operational sequence is delineated in Fig. 3, as 
illustrated by the GEP simulation flowchart.

The initial phase involves generating an inaugural popula-
tion derived from equations that constitute random amalga-
mations of a predefined array of functions. This assemblage 
encompasses mathematical operators within equations, 
alongside terminating elements like problem variables and 
constants. Proceeding to the subsequent stage, each con-
stituent of the population is evaluated based on established 
fitness criteria. Subsequently, the third stage encompasses 
the generation of a fresh population via the deployment of 
equations. Advancing to the fourth stage, the preceding pro-
cedure is reiterated iteratively with the aim of attaining the 
highest possible yield of outcomes.

A general view of the SVM

Conceived by Vapnik (1995), the SVM stands as a nonlin-
ear search algorithm employed for classification purposes, 
grounded in the structural risk minimization principle 
derived from statistical learning theory, as elucidated by 
Qaderi et al. (2020). Originally introduced for classification 
tasks, this algorithm underwent subsequent development, 

Fig. 4   Splitting the input space X1 × X2 by M5

Fig. 5   Single DT with a 
response Y and two predictors 
X1 and X2 and split points t1, 
t2, … (left panel); prediction 
surface (right panel)
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leading to an extended version designed for non-parametric 
regression analysis, referred to as Support Vector Regres-
sion (SVR). At its core, the SVM draws upon the foundation 
of statistical training theory. Analogous to regression equa-
tions, the linkage between the dependent variable Y and the 
independent variables xi is formalized as an algebraic equa-
tion, encompassing a noise component, as depicted below:

where �i(x) is the kernel function, b is the characteristics 
of the regression function, and Wi is the weighted vectors. 
Table 6 documents distinct categories of kernel functions. 
Notably, empirical evidence stemming from multiple stud-
ies has substantiated the superior efficacy of the radial basis 
function (RBF) over alternative kernel functions, as demon-
strated by Dibike et al. (2001). Within the realm of RBF, two 
pivotal tuning parameters, specifically the penalty parameter 
denoted as C and the epsilon parameter symbolized as ε, are 
identified and calibrated with the aim of optimizing perfor-
mance outcomes.

A general view of the M5

Model trees (MTs) are employed as a strategic approach to 
address intricate problems by partitioning them into more 
manageable subproblems. This technique entails the division 
of the parameter space into distinct subspaces, subsequently 
constructing an Adept linear regression model for each sub-
set, referred to as a terminal, node, or leaf. The M5 algo-
rithm, designed for the creation of model trees, establishes a 
hierarchical tree structure, frequently binary in nature. This 
structure encompasses splitting rules at nonterminal nodes 
and expert models at the terminal leaves. The M5 algorithm 
employs a divide-and-conquer principle, as visually depicted 
in Fig. 4.

Within the M5 algorithm, the standard deviation (SD) 
functions as the designated criterion for performing splits 
based on class distinctions. Furthermore, it computes the 
projected reduction in error resulting from evaluating each 
variable at the designated node. The formulation employed 
to calculate this reduction, known as the SDR, is central to 

(20)Y = f (x) + noise =

[

D
∑

i=1

wi.�i(x) + b

]

+ noise

the construction of the M5 model tree, and can be expressed 
as follows:

where T represents a set of examples that reach the node; 
Ti denotes the sets of examples that have the i-th outcome of 
the potential set; and SD represents the standard deviation.

A general view of the GBT

Statistically expounded upon by Breiman et al. (1984), Hastie 
et al. (2001), and De’ath and Fabricius (2000), contemporary 
decision trees (DTs) employ a strategic methodology for par-
titioning the predictor space into distinct rectangles. This pro-
cess involves the sequential application of rules to delineate 
regions characterized by the highest degree of homogeneity 
in their responses to predictor variables. Illustrated in Fig. 5, 
each of these regions is associated with a constant value. In the 
context of classification trees, this constant value represents 
the most probable class. Conversely, for regression trees, the 
constant value signifies the mean response of observations 
within that specific region. It is noteworthy that regression 
trees operate under the assumption of errors conforming to a 
normal distribution, as stipulated by Hastie et al. (2001).

To improve the DTs precise, boosting methods have been 
developed based on this idea that it is easier to find and aver-
age many rough rules of thumb, than to find a single, highly 
accurate prediction rule (Schapire 2003). Gradient boosting is 
one of the common boosting method that a DT of fixed size 
is utilized as a base learner to improve fitting quality of every 
base learner, so-called gradient boosting tree, GBT. In the 
GBT, each subset tree is trained primarily with data that has 
been erroneously predicted by the previous tree. This makes 
the model more focused on complex cases and less on issues 
that are easy to predict (Breiman 1984).

A general view of the MARS

Developed by Friedman (1991) as a nonparametric regression 
model, the MARS is an algorithm with remarkable perfor-
mance to estimate and simulate the interaction between input 
and target parameters of a linear or nonlinear continuous 

(21)SDR = SD(T) −
∑

i

|

|

Ti
|

|

|T|
× SD

(

Ti

)

Table 7   Opted formula to 
predict scour hole depth

Equation Equation No Recommendation Reference

S
y
= K1K2K3K4

(

D
y

)0.65
(

U
√

gy

)0.43 (24) For the round nose, K1 = 1.0
For circular pier, K2 = 1.0
1.1 ≤ K3 ≤ 1.3
0.7 ≤ K3 ≤ 1.0

DOT (1993)

S
b
= 1.39

(

U
√

g′D

)0.77( y
b

)0.036( b
D

)−0.194 (25) g’ = (Sg-1)g Aksoy and Eski (2016)
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dataset. The MARS system fits an adaptive nonlinear regres-
sion model using multiple piecewise linear basis functions 
hierarchically ordered in consecutive splits over the predictor 
variable space. In other words, it is a high-precision technique 
for modeling systems which is based on the dataset. The gen-
eralized form of the MARS model can be expressed as follows:

(22)y = f (x) = c0 +

n
∑

n=1

cNHkN(x�(k,n))

(23)HkN(x�(k,n)) =

K
∏

k=1

HkN

where y is the output parameter and co and N are the con-
stant, the number of basic functions, respectively. HkN(x�(k,n)) 
is basis function where x�(k,n) is the predictor of the k-th of 
the m-th product.

A general view of the MLP

MLPs represent a fundamental and versatile class of the 
ANN that have found widespread application in various 
fields. The MLPs are a type of feedforward artificial 
neural network characterized by their layered structure. 
Their architecture includes three main parts as follows: 
(i) input layer; (ii) hidden layer; and (iii) output layer. The 
input layer of an MLP receives the initial data or features 
and transmits them to the hidden layers. Each neuron in 
the input layer corresponds to a feature in the input data. 
MLPs can have one or more hidden layers between the 
input and output layers. These hidden layers contain neu-
rons (or nodes) that apply weighted sums and activation 
functions to their inputs. The number of hidden layers 
and neurons in each layer is a crucial architectural choice. 
The output layer produces the final result or prediction of 
the network. The number of neurons in the output layer 
depends on the nature of the task. MLPs are trained using 
supervised learning, where they learn to map input data 
to target output values. The most common training algo-
rithm for MLPs is backpropagation, coupled with gradient 
descent or its variants. This process involves adjusting 
the weights and biases of the neurons to minimize a pre-
defined loss function, typically mean squared error for 
regression tasks and cross-entropy for classification tasks. 
Neurons in MLPs use activation functions to introduce 
nonlinearity into the model. Common activation functions 
include sigmoid, hyperbolic tangent (tanh), and rectified 
linear unit (ReLU). The choice of activation function can 
significantly impact training and model performance.

NLR models

Various empirical and experimental formulas were pro-
posed to estimate scour hole depth base on flow, sedi-
ment, and bridge pier characteristics. The formulas that 
are more compatible with collected data in this research 
work have been presented in .

Table 7 The formulas listed in.
Table 7 are used to compare performance between 

experimental models and AIs.

Analyzing performance through statistical metrics

The performance of DDMs and empirical models is 
appraised using root-mean-square error (RMSE), mean 

Table 8   The outcomes assessment metrics of the DDMs included

Bold numbers defines the superior performance metric

RMSE MAE R2 DDRmax

Training phase
SVM 0.1009 0.0726 0.9401 2.9237
GEP 0.2229 0.1674 0.7796 1.2109
M5 0.5129 0.3583 0.5348 0.5343
GBT 0.3667 0.2599 0.6708 0.7579
MARS 0.2022 0.1441 0.8373 1.4324
MLP 0.1545 0.1116 0.8781 1.8315
Testing phase
SVM 0.023 0.017 0.984 5.301
GEP 0.114 0.071 0.872 1.553
M5 0.284 0.183 0.698 0.591
GBT 0.125 0.084 0.819 1.148
MARS 0.090 0.057 0.917 1.883
MLP 0.058 0.041 0.964 2.924

Table 9   A summary of residuals for DDMs involved

Max Min Mean Sum

Training phase
SVM 0.076  − 0.366  − 0.065  − 20.642
GEP 0.235  − 0.674  − 0.142  − 45.456
M5 0.459  − 1.931  − 0.286  − 91.593
GBT 0.365  − 1.220  − 0.215  − 68.893
MARS 0.156  − 0.716  − 0.130  − 41.629
MLP 0.137  − 0.513  − 0.097  − 30.913
Testing phase
SVM 0.065  − 0.084  − 0.005  − 0.707
GEP 0.182  − 0.639  − 0.055  − 7.483
M5 0.157  − 1.611  − 0.162  − 21.830
GBT 0.325  − 0.591  − 0.051  − 6.917
MARS 0.130  − 0.389  − 0.041  − 5.501
MLP 0.019  − 0.291  − 0.039  − 5.222
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average error (MAE), coefficient of determination (R2). 
These indices are defined as follows:

(26)RMSE =

�

∑N

i=1
(Oi − Pi)

2

n

(27)

R2 =
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�
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Fig. 6   Distribution of dataset and residuals for the SVM

Table 10   Setting parameters of GEP to predict scour depth

Parameters Value

Head size 6
Chromosomes numbers 43
Number of genes 3
Mutation rate 0.047
Inversion rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1
Gene transposition rate 0.1
IS transposition rate 0.1
RIS transposition rate 0.1
Fitness function error type RMSE
Linking function *
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Fig. 7   Tree expression of the 
GEP output

Fig. 8   Distribution of dataset and residuals for the GEP
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Here O and P are observed and predicted values of scour 
depth, respectively, and N is the total number of the dataset. 
Aforementioned indices represent average error values of 
the implmented models. To rectify this fault, the developed 
discrepancy ratio (DDR) statistic has been represented:

For better judgment and visualization, the Gaussian 
function of DDR values should be illustrated in a standard 
normal distribution. To this end, firstly, the DDR values of 
scour depths must be standardized and then using Gaussian 
function the normalized value of DDR (SDDR) is calculated. 
Secondly, the values of SDDR are plotted against standardized 
values of scour depth (ZDDR). At ZDDR vs. SDDR graph, more 
tendencies in error distribution to the centerline and larger 
values of SDDR have more precision (Noori et al. 2010).

Results and discussion

Using performance evaluation metrics, the simulation accu-
racy of each DDMs has been assessed and is presented in 
Table 8. This table provides a comprehensive overview of 
the performance of DDMs during both their training and 
testing phases. The data have been partitioned into a 70% 
training set and a 30% testing set. In addition to the statistical 

(29)DDR =
Predicted value

Observed value
− 1

metrics delineated in Table 8, an examination of the residual 
distribution and the alignment between observed and calcu-
lated data, as depicted by the compliance curve, has been 
employed to assess the fidelity of the model simulations. In 
this context, Table 9 showcases several key statistical prop-
erties pertaining to the residual errors associated with each 
model's output.

In reference to Table  8, the performance indices 
(RMSE, MAE, R2, DDRmax) for the SVM model during 
the training and testing stages are (0.1009, 0.0726, 0.9401, 
2.9237) and (0.023, 0.017, 0.984, 5.301). Furthermore, 
the associated hyperparameters for the SVM model, spe-
cifically the setting parameters C, ε and γ, are set to 63, 
0.5, and 0.2, respectively. Additionally, the radial basis 
function (RBF) kernel function has been selected as the 
kernel function for the SVM model. The error variation 
range exhibits fluctuations within the span of -0.366 to 
0.076 throughout the training phase, and a narrower range 
of − 0.084 to 0.065 during the subsequent testing phase 
(Table  9). Furthermore, noteworthy is the substantial 
decrease in the mean error value, which decreases sharply 
from − 0.065 in the training phase to an analogous value 
of − 0.005 in the test phase. This dramatic reduction is 
further underscored by the total error count diminishing 
markedly, plummeting from an initial − 20.642 during the 
training phase to a mere − 0.707 in the test phase. The 
tabulated data unequivocally establish that this model 

Fig. 9   The output of the M5 model through the training and the testing phases
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possesses the most favorable statistical indices related 
to errors, signifying its unequivocal superiority over the 
other models. Figure 6 depicts the graphical represen-
tation of data fitting for the SVM model, illustrating its 
conformity with the observed data and the distribution of 
residuals. The salient observation and overarching infer-
ence gleaned from this graphical representation are that 
the model's precision is notably conducive for diminutive 
scour values. Furthermore, it is noteworthy that the model 
exhibits higher errors when dealing with larger datasets.

The performance metrics are RMSE = 0.2229, 
MAE = 0.1674, R2 = 0.7796, DDRmax = 1.2109 for the train-
ing phase and RMSE = 0.114, MAE = 0.071, R2 = 0.872, 
DDRmax = 1.553 for the testing phase. These performance 
indicators have been computed based on the setting 

parameter values specified in Table 10. The structural rep-
resentation of the GEP model, including the functions uti-
lized, is visually represented in the form of a tree expression 
in Fig. 7. Additionally, the specific values of the constants 
employed in Fig.  7 are as follows: G1C0 = 9.322418, 
G1C1 = 3.138397, G2C0 =  − 0.491638, G2C1 = 2.819794, 
G3C0 = 0.961823, G3C1 = 5.220947. This observation sug-
gests a tendency for overestimation within the GEP model. 
Reffering to Table 9, the error fluctuation range observed 
during the training period spans from − 0.674 to 0.235, while 
in the subsequent test phase, it narrows to a range of − 0.639 
to 0.182. This marked reduction is vividly apparent in the 
average error values, diminishing notably from − 0.142 
in the training phase to − 0.055 in the test phase. Such a 
discernible trend is further corroborated by the total error 

Fig. 10   Distribution of dataset and residuals for the M5



Applied Water Science (2023) 13:231	

1 3

Page 15 of 22  231

count, which undergoes a substantial decline, decreasing 
from an initial − 45.456 during training to − 7.483 in the 
test phase. With regard to the performance evaluation of 
the GEP model, the residual distribution and the alignment 
between observed and predicted data are visually presented 
in Fig. 8. Notably, it becomes apparent from this figure that 
the data do not adhere to the assumptions of the SVM model. 
Furthermore, the distribution of residual in the GEP exhibits 
a resemblance to the SVM model, particularly in the region 
characterized by predominantly negative values.

The M5 and GBT models exhibit notably diminished 
accuracy relative to the other models under examination. 
In the training phase, the M5 model registers values of 
0.5129 (RMSE), 0.3583 (MAE), 0.5348 (R2) and 0.5343 
(DDRmax), while in the testing phase, it yields values 

Fig. 11   Distribution of dataset and residuals for the GBT

Table 11   The MARS model constructed BFs with their correspond-
ing coefficients

BF Coefficient Equation

Hk1 0.0862 Max(0,
Y

D
−4.6000)

Hk2  − 1.0163 Max(0, Fr − 0.2861)

Hk3  − 0.9431 Max(0, 0.02861−Fr)
Hk4  − 0.0369 Max(0, FrD−3.8814)
Hk5  − 0.0830 Max(0, 3.8814−FrD)
Hk6 0.0387 Max(0,FrD−8.7525)
Hk7 1.1149 Max(0, Fr-0.38741)
Hk8  − 0.09360 Max(0,

Y

D
−1.8364)
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of 0.284 (RMSE), 0.183 (MAE), 0.698 (R2) and 0.591 
(DDRmax). In contrast, the GBT model demonstrates simi-
lar trends with values of 0.3667 (RMSE), 0.2599 (MAE), 
0.6708 (R2) and 0.7579(DDRmax) during the training phase, 
and values of 0.125 (RMSE), 0.084 (MAE), 0.819 (R2) and 
1.147 (DDRmax) in the testing phase. Figure 9 provides 
a visual representation of the output structure of the M5 
model, illustrating its performance during both training and 
testing phases.

For the M5 model, a notable contrast exists between 
the minimum and maximum error values, which range 
from − 1.931 to 0.459 during the training period and 
from − 1.611 to 0.157 in the test phase (Table 9). This dis-
crepancy is further emphasized by the average error values, 
which stand at − 0.286 in the training phase and − 0.162 in 
the test phase. Remarkably, the cumulative errors for this 

model exhibit substantial magnitudes, amounting to − 593.91 
during training and − 21.830 during testing. In the case 
of the GBT model, the range of error fluctuations spans 
from − 1.220 to 0.365 during training and from − 0.591 to 
0.325 in the test processes. Notably, the total error value 
decreases significantly, with a reduction of nearly tenfold, 
declining from -68.893 during training to − 6.917. Notably, 
Figs. 10 and 11 reveal the conspicuous lack of alignment 
between observed and computed data, underscored by the 
substantial residual error in both models. In the presented 
figures, the disparity between the observed and computed 
values becomes readily apparent, particularly in datasets 
characterized by substantial values. Notably, when assessing 
the comparative performance of the M5 and GBT models, it 
is evident that the latter yields outputs with a higher degree 
of relative accursacy. Moreover, the conspicuous presence 

Fig. 12   Distribution of dataset and residuals for the MARS
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of overestimation is unmistakably evident in both of these 
models.

The accuracy assessment of the MARS model outputs is 
predicated on several statistical indicators, including RMSE, 
MAE, R2, and DDRmax. In the training phase, these indi-
cators yield values of 0.2022, 0.1441, 0.8373, and 1.4324, 
respectively. In the test phase, corresponding values are 
0.090, 0.057, 0.917, and 1.883, respectively. The relative 
scour depth can be computed using the following mathemat-
ical relationship, with specific details of the BFs provided 
in Table 11:

The values 0.156 and − 0.716 denote the upper and 
lower bounds of errors observed during the training period, 
while during the test phase, the range contracts − 0.389 and 
0.130, respectively (Table 9). A noteworthy decrease in the 
cumulative error is evident, with a reduction of nearly eight-
fold, transitioning from − 41.629 during the training phase 
to − 5.501 during testing, underscoring the model's improved 
performance. Figure 12 illustrates the output of the MARS 
model, representing both the distribution of residual errors 

(30)
Ds

Y
= 0.006500112 +

8
∑

i=1

cNHkN(X)

Fig. 13   Distribution of dataset and residuals for the MLP
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and the alignment with observational data, presented for 
scrutiny throughout the training and test phases.

The performance evaluation indicators for the MLP 
model are derived from the MLP architecture with a 

configuration of 3 input nodes, 10 hidden nodes, and 1 out-
put node. Activation functions employed are Tanh for the 
hidden layer and Identify for the output layer. The computed 
performance metrics, including (RMSE, MAE, R2, DDRmax) 
indices are reported for both training and testing phases. 
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Fig. 14   Scatter plot 0f observed vs. predicted values of relative scour depth for DDMs
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Fig. 15   The DDMs performance based on the DDR distribution

Table 12   The outcomes assessment metrics of the empirical predic-
tors

Reference RMSE MAE R2 DDRmax

US (2003), DOT 0.2108 0.1505 0.6696 0.9931
Aksoy and Eski (2016) 0.2632 0.1867 0.5319 0.6863

Table 13   Summary of residuals for DDMs involved

Reference Max Min Mean Sum

The US, DOT (1993) 0.483  − 0.864  − 0.068  − 30.885
Aksoy and Eski (2016) 0.648  − 1.093  − 0.044  − 20.054
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These metrics yield values of (0.1545, 0.1116, 0.8781, 
1.8315) for the training dataset and (0.058, 0.041, 0.964, 
2.924) for the testing dataset. Furthermore, a visual repre-
sentation of the MLP model's output is depicted in Fig. 13. 
Upon revisiting Table 9, it becomes evident that, in the case 
of the MLP model, the fluctuations in error values during the 
training period span from − 0.513 to 0.137, while during the 
test period, they range from − 0.291 to 0.019. Furthermore, 
the mean error has witnessed a noteworthy reduction, declin-
ing from − 0.097 in the training phase to − 0.039 in the test 
phase. This performance enhancement is underscored by a 
30% reduction in the total error index, as clearly indicated 
by the tabulated figures.

In our comprehensive comparison of the the DDMs 
employed in this research, we leverage the distribution curve 
of observational and computational data plotted around 
the ideal 1:1 line, as illustrated in Fig. 14. Points situated 
closer to this line signify the relative superiority of a given 
model's output. Notably, the black filled dots within this fig-
ure represent the performance of the SVM model, which 
conspicuously stands out as the most superior among the 
models under consideration. This distinction is both clear 
and unequivocal. Furthermore, as an additional metric for 
comparing the data-driven models, we analyze the graphical 
characteristic of the DDR index, depicted in Fig. 15. The 
compactness of the curve in proximity to the vertical axis 
and the heightened peak value along the vertical axis serve 

Fig. 16   Distribution of dataset and residuals for empirical equations
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as indicators of a superior model. Remarkably, the SVM 
model maintains its supremacy throughout both the train-
ing and testing phases, firmly establishing its prowess in 
this context.

Regression equations

In this section, we assess the outcomes derived from the 
regression equations, as indicated in Table 7. The efficacy 
of predicting relative scour depth is presented in Table 12, 
which portrays the quality of these predictions. Within 
Table 12, it is evident that the statistical performance eval-
uation metrics for both models exhibit remarkable proxim-
ity to each other. However, the most substantial disparity 
lies in the value of the DDRmax index, where the the US, 
DOT (2003) equation achieves a notably higher score of 
0.9931, in contrast to the Aksoy and Eski (2016) equa-
tions, which yield a lower score of 0.6863. Additionally, 
as per the data provided in Table 13, the residual indicators 
for both models manifest nearly identical values. Figure 16 
visually portrays the distribution of residual in the experi-
mental equations, revealing a pronounced non-compliance 
trend among data points with higher values. Moreover, 
Fig. 17 illustrates the distribution of data estimated by the 
emprical equations, with points closely clustered around 
the 1:1 line. This clustering, particularly evident in the 
predictions made by the US, DOT (2003) equation, under-
scores its relative superiority. Lastly, Fig. 18 reinforces 
the notion of the US, DOT (2003) equation’s superior per-
formance in comparison with the equation presented by 
Aksoy and Eski (2016), as evidenced by the higher peak 
value along the vertical axis.

Conclusion

Scour phenomena around bridge piers are inherently intri-
cate, necessitating a comprehensive understanding of their 
underlying mechanisms in order to effectively assess and 
predict scour hazards. To date, the development of precise 
methods for estimating scour depth remains an ongoing 
challenge. In the contemporary context, machine learn-
ing techniques have emerged as potent tools for predicting 
scour depth, leveraging experimental data to enhance our 
predictive capabilities in this domain. This study under-
takes a comprehensive comparative analysis to evaluate the 
efficacy of various DDMs, specifically the SVM, the GEP, 
the MLP, the GBT, The M5, the MARS and two experi-
mental equations, in the computation of scour depth around 
circular bridge piers. The outcomes of this investigation, 
while affirming the capacity and potential of DDMs in fore-
casting the scour depth of bridge piers, exhibit a notably 
enhanced relative precision in comparison to alternative 
models. Sequentially, the MLP, the MARS, the GEP, the 
GBT and the M5 models have ascribed themselves to sub-
sequent ranks of the SVM. For the purpose of juxtaposing 
and assessing the relative accuracy of the results derived 
from DDMs, empirical equations were employed to assess 
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depth for empirical equations
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the scour depth of bridge foundations. The precision of the 
outputs generated by this subset of equations demonstrates 
their occupancy of lower echelons when ranked against the 
DDMs. In a holistic appraisal, it can be posited that both 
categories, namely DDMs and empirical equations, exhibit 
proficiency in scour depth prediction. Nonetheless, the uti-
lization of AI-based models yields more precise outcomes, 
as elucidated by the findings expounded by researchers in 
Table 2, albeit predicated upon the availability of an exten-
sive repository of recorded data encompassing both inde-
pendent and dependent variables, thereby serving as a pre-
liminary and indispensable prerequisite for the application 
of these models.
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