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Abstract

There is an increasing demand to enhance infrastructure asset management within the drinking water sector. A key factor for
achieving this is improving the accuracy of pipe failure prediction models. Machine learning-based models have emerged as
a powerful tool in enhancing the predictive capabilities of water distribution network models. Extensive research has been
conducted to explore the role of explanatory variables in optimizing model outputs. However, the underlying mechanisms
of incorporating explanatory variable data into the models still need to be better understood. This review aims to expand our
understanding of explanatory variables and their relationship with existing models through a comprehensive investigation of
the explanatory variables employed in models over the past 15 years. The review underscores the importance of obtaining a
substantial and reliable dataset directly from Water Utilities databases. Only with a sizeable dataset containing high-quality
data can we better understand how all the variables interact, a crucial prerequisite before assessing the performance of pipe
failure rate prediction models.

Keywords Water distribution - Water network - Water pipeline failure - Infrastructure asset management - Pipe burst rate
prediction - Pipe renewal

Introduction

Asset management and its relationship with water
infrastructure modelling

Significant investments are necessary for the construction,
management, and maintenance of water supply and distri-
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The repercussions of WSDN deterioration processes,
including pipe breaks, water losses, substandard service
delivery, compromised water supply quality, and escalating
operational and maintenance expenses, are well-documented
(Bello et al. 2019). Water distribution pipes play a crucial
role in water supply and distribution systems, and their fail-
ures have significant financial, social, and environmental
ramifications (Fan et al. 2021). The pipe replacement rate
by drinking water companies ranges from 0.5 to 4.8% per
year, exemplified by the average annual renewal of 0.67% of
the network length in the case of France (Office Frangais de
la Biodiversité 2022). In comparison, the USA exhibits an
average rate ranging from 1 to 4.8%, representing a one-time
renewal rate. Consequently, it would take approximately
20 to 200 years to renew the current water infrastructures
worldwide fully. Table 1 summarizes the infrastructure and
renewal rates, water losses, leakage, and non-revenue water
in various countries' WSDNs. The deterioration of pipelines
significantly impacts WSDNs globally, evident in metrics
such as water losses and the associated costs, insufficient
network renewal results in deteriorating pipeline conditions
and increased system failures.

The challenges posed by water infrastructure necessitate
a resilient and interdisciplinary approach to implementing
an asset management system. Such a system encompasses a
cohesive network of elements within an organization, defin-
ing the asset management policy, establishing asset manage-
ment objectives, and formulating the necessary processes to
achieve these objectives (ISO/TC 251 2014).

Asset management systems are intricately linked to water
infrastructure management, operating within the framework
of Infrastructure Asset Management (IAM). IAM encom-
passes essential activities geared towards optimizing service
delivery, including inventorying, monitoring, maintenance,
and renovation. This holistic approach seamlessly integrates
engineering and management sciences, aligning technical
aspects with usage, perception, and value considerations.
Such integration enhances informed decision-making and
facilitates the development of efficient management strate-
gies. By intertwining engineering sciences with management
disciplines, IAM is pivotal for Water Utilities in ensuring
the long-term maintenance and adaptability of water infra-
structure, effectively addressing ageing and potential obso-
lescence (Le Gat et al. 2023).

Modelling and optimization in the operation of structures,
coupled with probabilistic modelling of structural deteriora-
tion (performance failure), represent significant and forward-
looking trends as underscored by Le Gat et al. (2023), shap-
ing the strategic objectives of Water Infrastructure Asset
Management (WIAM). These trends align with the findings
of other prominent authors who have extensively researched
IAM. Notable researchers in recent years include Ugarelli
and Saegrov (2022), Okwori et al. (2021), Pathirana et al.
(2021), El-Diraby (2021), Mazumder et al. (2021), Beuken
et al. (2020), Curt et al. (2019), and Carrico et al. (2020),
among others in recent years. These researchers note the
adaptation of WIAM frameworks to embrace digitization
and the implementation of modelling in diverse domains,

Table 1 Status of WSDNss at the national level in terms of infrastructure and renewal rates, water losses and leakage, and non-revenue water

Year Country Status of WSDN Source

2021 USA By 2019, Water utilities replaced between 1 and 4.8% of their pipelines per ASCE (2022)
year on average, a replacement rate that matches water pipes’ lifecycle

2021 Portugal 28.7% of the total water in the distribution system is non-revenue water, with  ERSAR (2021)

actual water losses of 174 million m® of water/year

2020 Spain
more than 40 years old

2020 The UK
due to leaks

The overall network renewal rate is 0.43%, and over 27% of the pipeline is

Almost 1095 million m? of water (20% of the total water supply) are lost daily

AEAS (2021)

National Audit Office (2020)

2020 USA, Canada, and Mexico In North America, the total cost of water losses due to pipe breaks is estimated Snider and McBean (2020)

at USD 3.8 billion per year
2020 Canada

There are over 6000 km of water pipelines in Toronto, 13% are between 80

El-Diraby (2021)

and 100 years old, and 11% are over 100 years old

2019 China

According to the National Bureau of Statistics of China, in 2019, some cities

Liu et al. (2022)

had water leakage rates higher than 40%

2019 Canada

17,788 km (9.6%) of the pipelines were in poor/deplorable condition, and

CIRC (2019)

32,641 km (17.7%) were in fair condition

2019 USA

Drinking water systems currently lose 7.95x 10° million m® of non-revenue

ASCE (2022)

water loss annually, losing an estimated USD 7.6 billion of treated water in
2019 due to leaks, with more than 240,000 pipeline breaks

2018 The USA and Canada

Between 2012 and 2018, overall water pipelines break rates increased by 27%,

Folkman (2018)

from 11.0 to 14.0 breaks/161 km/year
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as expounded in detail by Okwori et al. (2021) and Kerwin
and Adey (2021). As a result, WIAM is evolving and pav-
ing the way for sustainable water infrastructure practices by
incorporating asset modelling.

Modelling in water infrastructure asset
management: significance and diverse outputs
atvarious levels

Models play a crucial role in WIAM as they enable a sys-
tematic approach to understanding and optimizing the opera-
tion of water infrastructure systems. They provide valuable
insights into the complex dynamics of these systems, helping
to enhance decision-making processes and improve overall
performance (Garzoén et al. 2022).

Modelling is vital in comprehending the complex dynam-
ics of water distribution systems, involving the intricate
interplay between water, the environment, and the ageing
infrastructure of WSDN. Employing data-driven models
facilitates the extraction of meaningful insights from data
patterns, capturing variable relationships without predeter-
mined mechanisms or interactions. In the context of WIAM-
focused WSDN modelling, historical datasets of leaks and
pipe failures serve as the foundation to explore factors
influencing pipe lifespan. These influential factors, termed
explanatory variables, constitute this paper's primary focus
of investigation.

WIAM relies on models that perform several critical
roles, such as prediction; models can estimate the perfor-
mance of water infrastructure assets over time. For instance,
the modelling approach in this study considers age, mate-
rial, environmental and social conditions, among other fac-
tors, to predict the likelihood of asset failures, enabling the
implementation of proactive maintenance and replacement
strategies and mitigating potential issues. Optimization,
using models, can enhance the operation and maintenance
of water infrastructure assets (Ulusoy et al. 2021). Models
can identify the most efficient asset management strategies
by assessing cost, resource availability, sustainability met-
rics, and system performance.

Risk Assessment, through modelling, allows for evaluat-
ing potential risks related to various asset management deci-
sions. These models can measure the potential outcomes of
asset failures and pinpoint areas of significant vulnerability,
thereby directing efforts towards mitigating risk (Ugarelli
and S@grov 2022). Models facilitate scenario analysis,
allowing decision-makers to explore different “what-if”
scenarios and their potential impacts, helping to evaluate
the effectiveness of different strategies and identify the best
course of action (Rulleau et al. 2020).

Regarding the types of output provided by models at dif-
ferent levels, it depends on the scope and complexity of the
model and the level of the water infrastructure system being

analysed. At the network level, models may yield outputs
related to the overall system performance, such as predicting
the failure rate, estimating water loss, and assessing energy
consumption; also offering valuable insights into network-
wide asset conditions and identifying critical assets require
immediate attention (Fan et al. 2023).

At the asset level, models can provide predictions specific
to individual components, such as pipelines or pumps, which
may include the probability of failure for each asset, esti-
mations of remaining useful life, and optimal maintenance
schedules. At the strategic level, models can offer outputs
that guide long-term planning and investment decisions,
identifying areas requiring infrastructure upgrades, assessing
the impact of various investment scenarios, and optimizing
capital allocation (Mohammadi and Amador Jimenez 2022).

Models also contribute outputs at the tactical level,
facilitating day-to-day decision-making, influencing the
prioritization of maintenance activities, optimizing inspec-
tion schedules, and identifying short-term risk mitigation
measures (Alegre et al. 2013). Thus, models play a crucial
role in WIAM by predicting asset performance, optimiz-
ing operations, assessing risks, and enabling informed deci-
sion-making (Le Gat et al. 2023). The nature of the outputs
they provide varies depending on the level of analysis and
the specific objectives of the asset management process.
Notably, in the context of this study, the models estimating
Drinking Water Pipe Failure (DWPF) outputs for WSDN
systems offer outcomes that address all identified levels.

Bridging the divide: identifying gaps

and addressing the necessity of a review

on explanatory variables in drinking water pipe
failure models

Numerous review articles have comprehensively summa-
rized and synthesized various facets of water pipe failure
modelling. Notably, Rostum (2000) provides an overview
of developments up to 2000, including the seminal thesis
by Eisenbeis (1994). The works of Pelletier (2000; Mailhot
et al. 2000), Mailhot et al. (2003), among others, have made
significant contributions to this line of research, which was
initially initiated by Shamir and Howard (1979) and further
expanded upon by Kettler and Goulter (1985) and Andreou
et al. (1987) with a primary focus on developing method-
ologies for enhancing the maintenance of long-established
WSDN:Ss. To provide a comprehensive understanding of the
broader aspects of water pipe failure modelling, Table 2 pre-
sents notable publications that aim to encapsulate the field
without explicitly delving into the definition and analysis of
explanatory variables in failure processes.

Three distinct publications have examined the factors
influencing failure prediction models within water infra-
structure. One study explicitly investigates water quality
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Table 2 (continued)

Final recommendations

Type of prediction/nature of the output Described items for each model

Types of models considered

Source

Annual breakage rates, time to next Model methodology, inputs, explana- Models derived from artificial intel-

The review focused on Artificial intel-

Dawood et al. (2020a)

failure, failure rate, structural pipe tory variables, algorithms, imple- ligence and machine learning are

capacity, pipe failure risk, prob-

ligence methods: Failure prediction
models, risk analysis models, water

gradually gaining adoption. None-

mentation examples, brief analysis,

and outcomes

theless, there are still gaps in their

implementation

ability and Consequence of failure,

quality prediction models, condition

risk index of water mains, chlorine
residuals, free ammonia levels,

monitoring and assessment models,
remaining useful life models, leak

performance evaluation, corrosivity
potential, remaining useful life

detection and prediction models, and
decision support system models

The number of failures, failure rates, ~ Model methodology, general formula, The limitation of utilizing restricted

The review focused on Statistical

Barton et al. (2022a)

pipe failure inventories significantly

advantages and disadvantages,

probability of failure, failure age

methods: deterministic, probabilistic,

and machine learning

impacts the quality achieved by com-
plex models. Individual models per

analysis results, limitations, and

comments

probability, time-to-failure, and

failure priority-rank

material yield better performance than

global models

factors (Monfared et al. 2021), while another focuses on
the statistical dependence of such models on explanatory
variables (Gomez-Martinez et al. 2017). Additionally, a
comprehensive examination of general-level factors affect-
ing pipe failure in drinking water networks is presented in
a separate publication (Barton et al. 2019).

In their research, Monfared et al. (2021) identified nine
key factors or explanatory variables related to water qual-
ity data, including pH, chlorine (including free residual
chlorine, chlorine decay, and chlorine concentration), tem-
perature, turbidity, hardness, colour, water age, alkalin-
ity, and conductivity. The study revealed a notable gap in
understanding the precise influence of these variables on
failure prediction models, highlighting the need for further
investigation and analysis in this area.

Gomez-Martinez et al. (2017) examined thirteen
explanatory variables' impact on their models. These vari-
ables encompassed physical characteristics such as diam-
eter, year of installation, pipe material, and environmental
factors like terrain type, land use, and depth of installation.
Additionally, the study included hydraulic-related vari-
ables, namely pressures, velocities, and transients, which
they referred to as internal variables. The research find-
ings indicated that incorporating various explanatory vari-
ables did not yield significant advantages. On the contrary,
simplifying the models by reducing the number of vari-
ables enhanced their reliability and facilitated interpreting
results from a service-oriented perspective, particularly for
water utility applications.

Although Barton et al. (2019) did not directly focus on
failure prediction models, their research extensively exam-
ines the impact of physical, hydraulic, and environmental
factors on the likelihood of failures, explicitly about drinking
water pipes. The study is particularly notable for its compre-
hensive analysis of how these factors influence pipes, con-
sidering variations in materials and their distinct mechanical
and chemical properties, which react differently to these var-
iables. Moreover, the research underscores the significance
of obtaining precise and comprehensive operational data
and pipeline asset inventories to enhance the development
of more accurate predictive models for pipeline failures and
performance.

Despite the apparent contradiction between the latter two
publications regarding the data required to train a model of
this nature effectively, they refer to two different situations.
The first study emphasizes that many variables can lead to
overfitting, a situation where the model appears to fit well
with the current data but fails to validate with future data-
sets due to the inclusion of noise variables (Belkin et al.
2019). On the other hand, the second publication stresses
the importance of having a substantial and precise volume of
inventory data for use in the models. These perspectives do
not conflict, as a balanced number of explanatory variables

@ Springer
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should be selected based on the specific conditions of each
system under analysis and the chosen model.

The significance of Barton's insightful research (Bar-
ton et al. 2022a) is apparent as it showcases the evolution
of statistical modelling by categorizing these models into
three distinct types: deterministic, probabilistic, and machine
learning. This research emphasizes the necessity for addi-
tional research to ensure the appropriate consideration of
variables and other crucial factors in the accurate selection
and execution of these models.

The current literature lacks a comprehensive understand-
ing of how explanatory variables influence water pipe fail-
ure modelling within (WIAM). While previous research
efforts have identified and analysed explanatory variables
to some extent, there is a limited exploration of their impact
on DWPF modelling processes. This review is based on the
identified knowledge gaps, which include the absence of
clear definitions of explanatory variables tailored to local
conditions and specific modelling needs in DWPF models.
Additionally, researchers need criteria to define these vari-
ables, and their influence on model selection and perfor-
mance remains to be seen. Addressing these gaps is crucial
for guiding future research.

To bridge these disparities, this research investigates
methodologies from various studies, uncovering poten-
tial biases and limitations related to choosing and utiliz-
ing explanatory variables according to their model local
conditions. By meticulously examining the literature, this
research seeks to enhance the understanding of how differ-
ent researchers attribute importance to explanatory variables
and their effects on model performance. By shedding light
on these aspects, the review will contribute to improving
water infrastructure management and the performance of
pipe failure prediction models.

Motivation and aim of this review

There are significant motivations to explore this field
beyond the identified gap. Firstly, a transparent intercon-
nection exists between water, energy, and food, with growing
demands for these resources over time. Water plays a crucial
role in all human processes as a fundamental element, under-
scoring the necessity to develop sustainable strategies for its
utilisation (Carmona-Moreno et al. 2021). Leaks and failures
in distribution systems are closely linked to pipe deteriora-
tion. Apart from the direct economic costs of repairing pipe
failures, information on global Water Utilities' energy con-
sumption often needs to be updated or updated. Additionally,
other factors, such as the impact of failures and leaks on
water quality, pose challenges in quantification (Chen and
Guikema 2020).

As reference data, it is estimated that non-revenue water
(NRW) losses accounted for 9.1 x 10’ m® of water volume

@ Springer

and 3100 GWh of energy loss in WSDNs in the USA in
2018 (Chini and Stillwell 2018). A comparison with the
estimated energy consumption of 5600 GWh in the water
distribution systems in the USA for the year 2005 (Mostafavi
et al. 2018) indicates an approximate 44% reduction in the
energy consumption required for WSDN operations. This
reduction demonstrates the evident efforts made by Water
Utilities to improve energy efficiency, despite the increase
in drinking water consumption due to population growth.
Implementing better strategies for hydraulic sectorization,
optimizing pumping systems, advancements in pipe failure
and leakage management processes, and other exogenous
factors like per capita water use reduction have contributed
positively to this trend.

The NRW index is a standard criterion for evaluating
water distribution system performance, particularly concern-
ing water leakage management. This index represents the
difference between the volume of water supplied to the dis-
tribution system and the volume billed to consumers (Alegre
et al. 2016). When the distribution network undergoes higher
maintenance levels and exhibits improved integrity, the rate
of annual pipe failures decreases, consequently leading to
a reduction in NRW (Giing6r-Demirci et al. 2018; Ananda
2019). Roigé et al. (2020) introduced the concept of water
and energy losses as critical environmental criteria, high-
lighting the interconnectedness of service pressure, water
leakage, and subsequent energy wastage. Figure 1 provides
a graphical representation of the global status of pipe fail-
ures in distribution systems, showing a direct proportionality
between higher rates of pipe failures and more significant
NRW indices across various countries (Almheiri et al. 2021).

The environmental ramifications of pipe failures encom-
pass greenhouse gas emissions resulting from non-optimized
energy consumption in various water distribution processes
affected by these failures and the water losses associated
with such occurrences (Nair et al. 2014). In-depth studies,
like those conducted by Herstein et al. (2009), outlined the
economic, environmental, and social consequences of pipe
production, installation, repair/renovation, and ultimate dis-
posal. Additionally, these studies explore the implications
of pumping processes, network pressure management, and
hydraulic optimization in WSDN. While the current research
may not cover the complete life cycle of the distribution
system's diverse components (Herstein and Filion 2011), it
facilitates a priori assessment of potential excess emissions
attributed to network pipe failures.

Roigé et al. (2020) introduced several essential concepts
related to water infrastructure, including the organoleptic
perception of water, the risks associated with potential
events and interruptions in drinking water service, as well
as disruptions in pedestrian and motorized traffic. These
parameters have a measurable impact on the prioritization
of water pipeline renewal.



Applied Water Science (2023) 13:210

Page70of41 210

Although many authors have recognized water leakage in
WSDN to cause significant social impacts (Gupta and Kulat
2018), the social aspects of the effects resulting from pipe
failures, leaks, and water losses in WSDN remain relatively
understudied, with limited research conducted on this sub-
ject beyond the work of Roigé et al. (2020).

Mazumder et al. (2021) evaluated economic, operational,
environmental, and social consequences arising from the
failure of integrated water and road segments, taking into
account factors such as financial aspects (rehabilitation/reno-
vation costs of pipes), operational indicators (service per-
formance, hydraulic efficiency, road closures, and potential
asset damage), as well as environmental and social impacts
(effects on critical infrastructure, traffic, and population
density).

Lee and Kim (2020) provided a summary of studies link-
ing water leakages and other distribution network charac-
teristics to sustainable development practices for WSDNSs,
encompassing economic, social, and environmental consid-
erations. However, understanding the social implications of
water leakages in WSDNs requires further investigation and
exploration in the literature.

These studies consistently provide compelling evidence
regarding the economic impacts of water pipeline failures.
A substantial portion of a Water Utility's assets comprises

Non-revenue water by country (%)
|

2022 Mapbox ® OpenStreetMap

Fig. 1 Non-revenue water by country (%). Green tones indicate a
lower NRW index; red tones indicate a higher NRW index. Data
updated to the year 2021 (FP2E/BIPE 2019; OECD 2020; AEAS

pipelines, prompting numerous investigations focused on
assessing the effects of water pipe failures from various
angles: traffic congestion (Cunningham et al. 2021), pipe-
line characteristics (Mazumder et al. 2021), investment-
based leakage reduction measures (Ahopelto and Vahala
2020), rehabilitation or replacement of failed water pipe-
lines (Kleiner et al. 2010; Rahman et al. 2014), pipe replace-
ment periods (Park 2011), and average network pressure
(AL-Washali et al. 2020), among others. All the methods
employed to estimate the economic impacts are based on
functions and models that enable the analysis of potential
benefits under various parameters and assumptions related
to the technical management of the network.

Pipe failure modelling is a fundamental aspect of asset
management models in WSDNs (Ugarelli and Sagrov
2022). It involves classifying pipe sections based on their
likelihood of failure, which informs decision-making pro-
cesses regarding renewal policies, maintenance strategies,
and the identification of network sectors requiring further
investigation for leak detection (Barton et al. 2021).

As mentioned in the preceding section, within the context
of explanatory variables associated with water pipe failure
modelling, a comprehensive literature review is required
to synthesize previous studies, identify research gaps, and
propose new directions for the field. To date, no study has

2021; Go Associados 2021; Istituto Nazionale di Statistica 2021;
Water and Sanitation Program 2021)
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summarized pipe failure prediction models and their rela-
tionship with explanatory variables, underscoring the neces-
sity to gain insights into the diverse perceptions of explana-
tory variables that may impact these models.

Outline of the work

This review aims to comprehensively present the various
models employed in water pipe failure prediction, focusing
on the explanatory variables utilized in models developed
over the past 15 years. The primary novelty of this review
lies in its exploration of how researchers attribute signifi-
cance to different explanatory variables within their failure
models. By examining the relationships between variables
and the characteristics of the models, potential biases in the
selection or utilization of explanatory variables can be iden-
tified. Moreover, we propose the inclusion of pertinent vari-
ables essential for the accurate execution of failure models
in drinking water pipelines.

This paper is structured into five primary sections. The
introduction provides an overview of Asset Management,
linking it to water infrastructure, and emphasizes its rel-
evance to water utilities. It underscores the significance of
modelling water pipe failures to enhance the efficiency of
water supply systems' operation and planning. Moreover,
the introduction identifies a knowledge gap in these models,
highlighting the necessity to improve the design and analysis
of their explanatory variables.

“Review methodology and research questions” section
outlines the review methodology and research questions,
encompassing search terms, databases used, and exclu-
sion criteria. “Models for prediction of drinking water pipe
failure” section introduces the main categories of DWPF
models under study. “Explanatory variables used for mod-
elling drinking water pipe failures” section examines the
critical explanatory variables that support the DWPF mod-
elling, specifying the type of explanatory variable used, the
employed model type, the model's output, and the time hori-
zon of the model outcomes per publication. “Conclusions
and future research directions” section concisely synthesizes
the findings, providing valuable contributions to the topic,
and outlines potential avenues for future research before con-
cluding the review.

Review methodology and research
questions

Review methodology

This review adopts a mixed approach, incorporating the pos-

tulates of Kitchenham and Charters (2007), Snyder (2019)
and the PRISMA Guidelines (Moher et al. 2009). The

@ Springer

review includes conference proceedings, journal articles,
government documents, doctoral theses, and dissertations
from 2007 to 2023, sourced from five academic databases:
JSTOR, EBSCO, ProQuest, Scopus, and Web of Science.
Initially, a search with the phrase “Drinking water pipe fail-
ure modelling” yielded 2914 results, further refined using
specific search strings and assessed against the exclusion
and inclusion criteria outlined in Table 3. Following this
process, the research narrowed to 103 relevant manuscripts,
as depicted in Fig. 2.

The definition of failure, as employed by Le Gat (2015),
plays a crucial role in delineating the scope of this research.
The water infrastructure under consideration is structured as
a network of interconnected pipelines and failures, encom-
passing leakage or breakage, typically manifest clustered,
affecting specific network segments.

Research questions

This paper aims to conduct a meticulous literature review on
water pipe failure models, primarily focusing on the foun-
dational explanatory variables underpinning their analyses
and outcomes. The study's objectives are framed by eight
research questions (RQ), as outlined in Table 4. These
questions define the study's scope and provide a roadmap
for gathering and analysing relevant information, enabling
the exploration of challenges and potential advancements
in this domain. The Introduction section addresses the first
three questions, setting the main trajectory of the review and
justifying its necessity while establishing its link to asset
management.

Models for prediction of drinking water pipe
failure

A brief overview of modelling for the prediction
of drinking water pipe failure (DWPF)

Employing a water pipe failure prediction model enables
estimating future break/failure events based on historical
observations, determining an appropriate renewal rate, and
supporting decision-making processes related to key indi-
cators, renewal scenarios, and selecting pipes for replace-
ment. In recent decades, water pipe failure modelling has
become a valuable tool for analysing failure data collected
from WSDNSs, serving as a standard planning approach to
investigate potential causes of pipeline failures. Initially,
Water Utilities relied on expert judgement to character-
ize failure events, considering factors such as pipe age and
applied pressure. However, the evolution of this approach
has aimed to enhance the information captured regarding
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network failures and improve analysis through various sta-
tistical techniques.

The progress in failure event studies has facilitated the
identification of specific scenarios and requirements, lead-
ing to more effective proposals for network renovation or
reinforcement. By improving the quantity and quality of
collected information, new indicators can be generated, and
existing ones refined, thus impacting failures. Water Utilities
are increasingly focused on predicting pipe failures or defi-
ciencies before they happen, evident in the analysis of fail-
ure rates per pipe. This involves considering factors related
to existing defects, such as previous failures, leakages, and
ageing, as well as potential improvements, to prioritize and
select pipes for renewal based on their probability of fail-
ure. However, a significant challenge in implementing this
approach lies in the availability of comprehensive historical
data regarding WSDNs, which includes factors such as pipe
material, location, age, and failure history.

The emergence of machine learning techniques has sig-
nificantly enhanced statistical models focused on studying
pipe failure phenomena. This development proves benefi-
cial in addressing the limited availability of historical data
faced by Water Utilities when investigating trends and prob-
abilities associated with pipe failures. Using sophisticated
algorithms, machine learning techniques can effectively
estimate missing data by leveraging the stochastic nature of
the missing values within the WSDN information dataset.
Nonetheless, applying these techniques demands a high level
of reliability in the historical information of the WSDN to
ensure it adequately represents the entire data universe.

While this paper exclusively focuses on water pipe fail-
ure models for WSDN and their associated explanatory
variables, it is crucial to acknowledge the progress made
in pipe-related research for other purposes. This includes
investigations into the mechanical or rheological properties
of piping materials. Although such studies fall outside the
scope of this paper, it is worth noting that the models pre-
sented herein draw upon the knowledge generated in these
areas to enhance the predictive capabilities of failure models
within the context of multi-criteria analysis conducted by
each analysed model.

semination due to its significant contribution from French-

ated valuable knowledge that subsequent publications have
speaking researchers in this field

incorporated
ing explanatory variables and their influence on pipelines

through physical testing conducted in laboratory environ-

line operations, which generates research in these fields
ments

The preceding research conducted before 2007 has gener-
Restriction due to the relevant economic weight of other pipe-
French has been included as an accepted language of dis-

Observation

rheological phenomena and materials’ strength
with no possibility of external validation

nuclear applications)
Models, from a purely mechanical or physical perspective, of A crucial aspect of the excluded publications involves study-

Non-peer-reviewed studies presented in other languages or

Exclusion criterion

Classifications of models applied
to the investigation of pipe failures in drinking
water systems

In recent decades, considerable interest has been in predict-
ing DWPF as WSDN gradually deteriorate. Building upon
the methodologies employed in previous reviews (Dawood
et al. 2020b; Karimian et al. 2021), this study updates the
list of recent research on DWPF models in Table 5 The table
systematically categorizes and provides a concise summary
of all the models employed by researchers in the last fifteen

reviewed and through a recognized publisher

from a drinking water network

water pipes/networks

2023
The manuscript must focus on failure modelling for drinking Any other type of pipeline (e.g. oil pipelines, wastewater,

The manuscript must have been published between 2007 and Publications before 2007 or after March 1, 2023

The manuscript must focus on modelling studies using data
The manuscript must be written in English or French, peer-

Table 3 Inclusion and exclusion criteria for including manuscripts in this review

ID Inclusion criterion

1
2
3
4
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Fig.2 The review process,
PRISMA flow diagram

Web of Science (n=1465)

Scopus (n=725)

Screening

Table 4 Research questions

Identification

Manuscripts screened

Eligibility

Additional sources

EBSCO (n=12) Scientific article databases in French (n=42)

JSTOR (n=11) ProQuest (n=654) PhD Thesis in French TEL (n=5)

Manuscripts listed through databases searching (n=2914)

After title/abstracts
screening (n=1457)

After duplicates
removed (n=1914)

Excluded by
criterion (n=248)

Manuscripts excluded

Written in English
or French (n=227)

For eligibility
(n=125)

Included after quality
assessment (n=103)

ID Research question

Description

1 What is the current application of asset management in WSDN?

2 Why are models crucial in WIAM, and what types of output do they
provide, at different levels?

3 What are the current gaps in the literature concerning the linkage
to explanatory variables, and what specific requirements does this
review aim to fulfil?

4 What models predict WSDN pipe failures?

5  What are the evolving trends in the field of DWPF modelling?

6  What explanatory variables serve as the foundational information for
modelling DWPF in WSDN?

7  What criteria influence the decision to incorporate explanatory vari-
ables into the processes?

8  What potential future research directions exist considering DWPF

modelling?

The importance of water infrastructure in society's well-being under-
scores the need for effective Asset Management, making it crucial
to investigate their relationship. The initial two research questions
are addressed in the Introduction

Models are indispensable in WIAM, and their outputs exhibit
significant heterogeneity, warranting thorough investigation and
explanation

While there are existing studies on failure prediction models, there
needs to be more synthesis and analysis that focuses explicitly on
the role of explanatory variables in these models

This research aims to comprehensively examine models used in
predicting water pipe failures within Water Utilities

By examining model usage trends and their associated explana-
tory variables over time, this study aims to analyse the underlying
reasons driving these developments

This study seeks to compile and present the frequency of usage of
explanatory variables that support the models under consideration

This study aims to enhance researchers' understanding of the critical
role played by identifying and defining explanatory variables in the
modelling process, with specific consideration of the unique condi-
tions present in each Water Ultility

This research seeks to offer valuable insights and improvement
opportunities to researchers, developers, and Water Utility profes-
sionals involved in developing accurate failure prediction models
for drinking water pipes

years, directly addressing research question (RQ,) (Table 6).
The information presented in this table has been extracted
from all the sources listed in Table 7.

The main classifications are derived from the significant
differences observed in the approaches commonly used in
the analysed research. Statistical-based models seek to estab-
lish relationships between variables through mathematical
equations (Fahrmeir and Tutz 2001). In contrast, Machine
Learning-based models take a different approach, utilizing
algorithms to learn from the data and establish these rela-
tionships ICAMLDA 2010). Other proposed classifications

@ Springer

deviate from these definitions, exploring alternative paths
for failure estimation.

Comments on the limitations of current models

The necessity of utilizing historical pipeline inventories
and failure data gives rise to a well-recognized issue of
left-truncation in executing statistical-based survival mod-
els, owing to the nature of event-related data over time.
This phenomenon, along with right-censoring, has been
extensively examined by Le Gat (2015) and other authors
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(Robles-Velasco et al. 2021; Barton et al. 2022b), under-
scoring the significance of mitigating potential interfer-
ences in predictions and time estimations to determine the
first failure (Xu and Sinha 2021). As aptly pointed out
by Scheidegger et al. (2015), left-truncation and survival
selection are prevalent features in the available data con-
cerning urban water services. Nonetheless, a comprehen-
sive analysis of the impact of these features on modelling
processes is lacking in most reviewed studies, and their
direct consideration remains limited to date.

Machine learning models offer several advantages over
statistical models, including their improved response to
outliers and capacity to establish meaningful relation-
ships between explanatory variables and pipe failures, thus
defining the significance of each variable in the model-
ling process. Despite the growing popularity of machine
learning-based models, it is crucial to acknowledge that
they may need help incorporating right-censored informa-
tion, potentially leading to overestimating pipeline faults
beyond their actual occurrences (Snider and McBean
2021).

There are other disadvantages associated with machine-
learning-based methods. One of the main drawbacks is that
these methods, by nature, lack physical constraints. Unless
they are explicitly imposed with specific conditions, they
do not inherently consider the limitations of the physical
environment. As a result, it becomes necessary to critically
assess the results of such models, given the challenge of
internally verifying their implementation.

Another intricate issue with such models is their inter-
pretability (Barton et al. 2022a). These models can become
effective with interpretability, as human interpretation
involves considerations beyond the technical proficiency
of the modelling process. Commonly used techniques, like
SHAP or LIME, are employed in other fields to explain pre-
dictions made by such models; nevertheless, in this field, few
studies utilize these methods (Fan et al. 2021). The outcomes
of these analyses sometimes align with expected or observed
results in the field, and they rely on an in-depth understand-
ing of the variables' components and effects specific to each
environment and network.

Using standard metrics such as RMSE and MCC may not
inherently reflect the practical value of projections made by
a machine-learning-based model concerning service needs.
An example of this occurs when a model achieves high
standard metrics, but its performance may need to be more
optimal when the Lorenz Curve analysis is applied (Le Gat
2015), which significantly illustrates the impact of the mod-
els on renewal needs.

Among the advantages and disadvantages outlined
by Barton et al. (2022a) and Almbheiri et al. (2020a), the
necessity for hyperparameter tuning in certain cases ren-
ders the implementation of such models highly demanding.

Furthermore, it is essential to consider the computational
power requirements highlighted by Gupta and Segal (2022),
as the choice of model type depends on both the service
needs, the scope of the DWPF modelling projects, and the
utility of their outputs for stakeholders.

In addition to variable types, time and spatial frameworks,
the type of response and level of inference, as detailed by
Barton et al. (2022a), the focus of the model application
may also influence the models’ implementation conditions.
For instance, a model aimed at long-term planning would
include distinct modelling capabilities, with survival analy-
sis models being commonly selected in such cases.

The nature of data related to pipeline failure events is
inherently unbalanced, as in most cases, only 0.1% of the
data universe contains one or more failures (Barton et al.
2022b). This significant imbalance underscores the require-
ment for comprehensive records of failures over an extended
period to ensure that the limited data can offer sufficient
representativeness for unbiased analysis. An insufficient
number of periods considered may lead to underfitting in
machine-learning-based models, where the model needs
more information due to either high bias or excessive vari-
ance. This limitation is also evident when there is an inad-
equate amount of data for each feature in the analysis, as it
is essential to have sufficient training instances to adjust the
models effectively.

A prospective area for future research entails addressing
the limitations related to data acquisition within Water Utili-
ties, aiming to ascertain the appropriate proportions and data
volumes required to implement a failure model effectively.
Investigating this direction would encompass various fac-
tors, such as the network's characteristics, the availability
of inventories or changes within the system, and the users'
specific requirements.

Data imbalance constitutes one of the most significant
challenges faced by various service operators, as collecting
this information was only integrated into Water Ultilities'
procedures relatively recently. Addressing the issue of data
imbalance can be achieved through the utilization of syn-
thetic samples (Robles-Velasco et al. 2023). This approach
proves beneficial when faced with limited information, thus
mitigating the challenges posed by significant imbalances
in the data. Caution must be exercised to avoid generating
excessive synthetic samples, which may lead to suboptimal
model performance.

The optimization of calibration thresholds plays a cru-
cial role in mitigating the impact of utilizing imbalanced
data by striking a balance between sensitivity and specific-
ity (Esposito et al. 2021; Barton et al. 2022b). Additionally,
sampling methods, such as stratified sampling, can address
this imbalance and ensure adequate representation of materi-
als in both the training and test datasets (Winkler et al. 2018;
Barton et al. 2022a).
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Table 5 Models applied to analyse and predict pipe failures in drinking water systems, compilation to date

Primary classification Secondary classification Technical foundation of the modelling method—Selected Model WSDN length
source under study (km)
Statistical-based Stochastic Modelling and Proportional hazards models—Bayesian Weibull -WPHM M1 4387
models Survival Analysis (Snider and McBean 2021)
Proportional hazards models—Cox -CHM- (Almheiri etal. M2 1195
2021)
Bayesian Belief Network—BBN (Giraldo-Gonzélez and M3 1819
Rodriguez 2020)
Weibull distribution—WD- (Weeraddana et al. 2020) M4 1888
Linear Extension of the Yule Process with selective sur- M5 721

vival—LEYP2s (Le Gat 2015)

Linear Extension of the Yule Process—LEYP- (Renaud et al. M6 550
2012)

Non-Parametric Estimation/Kaplan—Meier estimator (Le Gat M7 721
2015)

Vector autoregression—VAR- and vector autoregression with M8 -
exogenous variables -VARX- (Almbheiri et al. 2020a)

Hierarchical Beta Process—HBP (Chik et al. 2017) M9 376

Markov model/Markov Chain Monte Carlo—MCMC- MI10 1593
(Osman and Bainbridge 2011)

Monte-Carlo Simulations—MCS (Davis et al. 2007) Ml11 -

Hybrid estimate using Herz distribution (Le Gat et al. 2013) M12 -

Regression analysis Multiple Regression Model—MRM (Wang et al. 2009) MI13 432

Poisson Regression Model -PRM (Asnaashari et al. 2009) Ml14 56

Non-homogeneous Poisson process -NHPP- (Chen and M15 681
Guikema 2020)

Gaussian Process Regression -GPR- (Weeraddana et al. Ml16 1888
2020)

Generalized linear/non-Linear model -GLM-, -GNLM- M17 681
(Chen and Guikema 2020)

Generalized additive model -GAM- (Chen and Guikema M18 681
2020)

Linear mixed-effects model -LMEM- (Chen and Guikema M19 681
2020)

Multivariate Adaptive Regression Splines -MARS- (Aslani M20 3476
et al. 2021)

Time Linear Model -TLM- (Konstantinou and Stoianov M21 374
2020)

Time Exponential Model -TEM- (Konstantinou and Stoianov.  M22 374
2020)

Multi-objective Genetic Algorithm and Evolutionary Polyno- M23 5045
mial Regression -EPR- (Karimian et al. 2021)

Bayesian linear regression -BLR- (Gémez-Martinez et al. M24 17,473
2017)

Ridge Regression -L2 Regularization Method- (Almheiri M25 432
et al. 2020b)

Probabilistic Survival analysis — Parametric (Christodoulou et al. 2010) M26 795

Survival analysis — Nonparametric (Christodoulou et al. M27 795
2010)

Naive Bayes algorithm -NB- (Konstantinou and Stoianov M28 374
2020)

Bayesian network/Bayesian simple model -BSM- (Tang et al. M29 342,850
2019)

Linear discriminant analysis -LDA- (Konstantinou and M30 374
Stoianov 2020)
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Table 5 (continued)

Primary classification Secondary classification Technical foundation of the modelling method—Selected Model WSDN length
source under study (km)
ML- and Al-based Artificial neural networks Advanced Meta-Learning -AdvaML- (Almheiri et al. 2021)  M31 1195
dels
frodess Multilayer Back-propagation Neural Network -BPNN-/Multi- M32 411
layer Perceptron -MLP- (Kerwin et al. 2020)
Extreme Learning Machine -ELM- (Sattar et al. 2019) M33 971
General Feed Forward Neural Network -FFNN- (Aslani et al. M34 3476
2021)
Radial-Based Function Neural Network -RBFNN- (Jafari M35 80
et al. 2021)
Generalized Regression Neural Network -GRNN- (Aydogdu M36 440
and Firat 2015)
Supervised learning Least Squares Support Vector Machine -LS-SVM- (Aydogdu M37 440
and Firat 2015)
Support Vector Machine/Regression/Classification -SVM- M38 1195
(Almbheiri et al. 2021)
Random Forest -RF- (Snider and McBean 2021) M39 4387
Survival Random Forest -SRF- (Almheiri et al. 2021) M40 1195
Boosted Decision/Regression Trees -BRT- (Aslani et al. M41 3476
2021)
Gradient-Boosted Trees, Networks and Frameworks -Gradi- M42 681
ent boosting- (Chen and Guikema 2020)
Ensembles, Decision Tree -EDT-, Bagging, Boosting (Alm- M43 432
heiri et al. 2020b)
Bayesian Model Averaging -BMA- (Demissie et al. 2019) M44 1480
Clustering Classification: K-means/K-nearest neighbours -KNN- M45 1819
(Giraldo-Gonzalez and Rodriguez 2020)
Cluster-weighted modelling -CWM- (Chen and Guikema M46 681
2020)
Fuzzy logic-based Fuzzy system Hierarchical Fuzzy inference system -HFIS- (Ward et al. M47 -
models 2017)
Adaptive Neuro-Fuzzy Inference Systems -ANFIS- (Tabesh ~ M48 579
et al. 2009)
Mamdani method (Fares and Zayed 2010) M49 153
Lifecycle analysis Lifecycle cost Life Cycle Cost Analysis -LCCA- (Francisque et al. 2017) M50 216
models
Evolutionary compu- Evolutionary algorithm Gene Expression Programming -GEP- (Sattar et al. 2016) M51 1021
tation models
Geospatial Data Ana- Satellite observations Pixel-based approach—Soil deformation analysis -SDA- M52 4309
lytics models (Arsénio et al. 2015)
Decision-making Multiple criteria Analytic Hierarchy Process -AHP- (Al-Barqawi and Zayed M53 -
models 2008)
Risk analysis models  Probability-consequence Weighted risk analysis -WRA- (Barton et al. 2022b) M54 38,424

model

Despite the assertion that machine-learning-based mod-
els do not effectively address the issue of data imbalance,

leading to lower accuracy in failure prediction (Robles-
Velasco et al. 2021), it is worth exploring the solutions
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Table 6 (continued)

(5

In the two study cases, the variable of pipe

Noteworthy insights

The objective is to compare the accuracy of

Primary aim of the research

This paper compares two ML techniques

Key notes

Shirzad and Safari (2019)

References

Springer

installation depth was discarded for the two

both ML models to predict the PFR in two real

WDNs and identify the most important vari-

-MARS and RF- to predict pipe failures for
two WDNS, considering pipe information

methods analysed as it was not identified as a

ables affecting the PFRs for these case studies variable that affects the results of the models.

-diameter, length, depth, age, and average

hydraulic pressure- as input variables

The research does not describe the time range

supported by its predictions

One of the study's objectives was to determine  In compliance with the authors, despite the

The research examined whether applying

Chen et al. (2019)

limited accuracy of models that do not account

whether a classification approach based on

statistical models without using data from the
WDN pipes, but considering other variables

for detailed pipe data, they may better prioritize
high-risk assets than a historical ranking based
on failure rate. The research does not describe

the time range supported by its predictions

the predictions of a statistical model can reach
greater accuracy than one based on historical

failure rates for this specific case

and the failure history, can still provide help-
ful information to guide asset management

despite its limited accuracy

The proposed model includes the pipe protec-

This research presents an ML approach -extreme This research compares the developed model's

Sattar et al. (2019)

tion method as a variable and shows how the

precision and another algorithm based on ML
-feed-forward ANN trained by backpropaga-

learning machine- to predict the TtNFE of

individual pipes for a WDN

pipe coating with cement mortar and cathodic
protection could significantly increase pipe

tion, support vector regression, and nonlinear

regression-

lifespan. The research does not describe the
time range supported by its predictions

proposed by Kaur et al. (2020). Chen et al. (2019) suggested
increasing the spatial resolution of the data, resulting in a
loss of accuracy in predicting non-failure events but an
improvement in failure predictions.

An essential aspect of model generation lies in the neces-
sity for expert knowledge to define model parameters and
conduct data preparation processes. This expertise allows for
assessing the models' predictions concerning real-world field
conditions. Moreover, expert knowledge facilitates the inclu-
sion of external factors that may be challenging to quantify
and integrate into the models, leading to manual parameter
adjustments (Barton et al. 2022b) to align the results with
the specific context of the Water Utility concerning budget
and strategy.

Given the diverse characteristics of each WSDN inven-
tory, direct comparisons of model performance metrics
across different networks become problematic because these
metrics heavily depend on the quality and size of the inven-
tory on which the models are based (Robles-Velasco et al.
2021). While these inventory differences hinder the ability to
compare metrics directly, it is possible to compare different
network models under specific conditions where data avail-
ability limitations can be overcome.

In cases where complete and reliable inventories are
available as the base data for the models, it becomes feasi-
ble to compare different network models. To achieve this,
algorithms purely based on this comprehensive data are uti-
lized. Additionally, in the case of machine-learning-based
models, comparisons are possible when the same algorithm,
configured with the same parameters and hyperparameters,
is applied. Through such rigorous comparative approaches,
the metrics of these models can be effectively compared.

Expert criteria are paramount in model development,
particularly in aiding the selection of the appropriate model
type to align with the specific needs of the WSDN system.
Understanding the stakeholders' requirements necessitates
collaboration between system operators and model devel-
opers, mainly when they belong to different domains. For
machine-learning-based models, selecting hyperparameters
presents a complex task, and their variability can signifi-
cantly impact the model's outcomes. This selection process
is computationally expensive, as the effects of hyperpa-
rameters become evident only after executing all model
processes. Therefore, validation and feedback from system
experts are crucial.

While specific tools exist to optimize hyperparameters
and enhance model performance automatically, they have
yet to deliver optimal results in environments with highly
unbalanced data (Czako et al. 2021), which is characteristic
of our particular case study.

By defining the weights of each criterion, these experts
can tailor the model to the specific requirements of each
WSDN (Assad and Bouferguene 2022). The absence of
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expert judgement may include irrelevant explanatory vari-
ables that do not influence pipeline failure processes, leading
to suboptimal selection of a reference model or misinterpre-
tation of model outcomes. Such misinterpretations can lead
to misguided investments directed towards infrastructure
within their amortisation period (Almbheiri et al. 2021).

Robles-Velasco et al. (2021) assert that machine-learning-
based models with more precise pipeline failure predictions
tend to exhibit reduced non-failure forecasts. Barton et al.
(2022b) explain how this challenge can be addressed through
appropriate threshold optimization—a critical decision-mak-
ing step unique to each Water Utility, necessitating expert
judgement.

An inherent challenge in model generation and optimi-
zation is the selection of suitable explanatory variables.
One approach to tackle this is by analysing small groups of
variables to assess their significance (Robles-Velasco et al.
2021). In the case of medium-sized WSDNss, reducing the
number of explanatory variables helps mitigate the risk of
model overfitting (Jenkins et al. 2015).

Establishing the number of explanatory variables is a pri-
ority process (Fan et al. 2014), and it can be distilled into
three constraints: the relevance and redundancy of the vari-
able, the availability of computational resources and time
for model execution, and the interpretability of the model
outcomes enabling the understanding of complex relation-
ships between the variables involved. The evident necessity
for a comprehensive study encompassing the explanatory
variables used in the models further reinforces the rationale
behind this research.

Table 6 summarizes critical features from selected studies
on the subject. It outlines their outputs' scope, objectives,
and nature and presents meaningful insights specific to each
case study.

Evolving trends in modelling for predicting DWPFs

The subsequent three figures and their corresponding con-
cepts are based on developments derived from the open-
source “bibliometrix” R-package (Aria and Cuccurullo
2017). Figure 3 depicts the conceptual structure of the
research topic, highlighting the interconnections between
the concepts used in the titles and abstracts of the relevant
manuscripts. The size of the circle and the text in the figure
represent the current importance of each concept, as deter-
mined by applying the Fruchterman—Reingold algorithm
(Aria and Cuccurullo 2017).

The figure reveals a lack of uniformity in the use of
terms such as “water main,” “pipe,” and “pipelines,” as
well as “breaks” and “failure”. The analysis suggests
that five key concepts unify the research into distinct
clusters, namely the analysis of pipeline failures and

infrastructure asset management through machine learn-
ing and modelling.

Figure 4 highlights the most frequently used keywords in
the studied manuscripts over the past 15 years, illustrating
their evolution. Notably, the term “corrosion,” which was
once considered a crucial explanatory variable, has seen a
decline in usage, while “replacement” and “patterns” have
also diminished in popularity. Conversely, terms associated
with applying artificial intelligence and machine learning
methods are gaining prominence.

The significance of critical concepts is depicted in Fig. 5
using the Sankey diagram (Aria and Cuccurullo 2017). The
diagram illustrates these concepts' evolution, with the rec-
tangles' size representing their relevance during the speci-
fied period. Notably, the “Statistical analysis” concept has
not seen new developments in the last two years. On the
other hand, “Asset management” and “Pipe Failure” con-
cepts have paved the way for “Machine learning” and “Data
Mining.” Additionally, the diagram indicates that Bayesian
model averaging has yet to experience recent advancements.
This chapter confirms the paramount importance of machine
learning techniques in the research topic, effectively address-
ing RQs.

The term “Data mining” does not signify a new trend
but rather its repeated mention in articles involving machine
learning techniques. The interpretation of Fig. 5 reveals that
the focus of applied research has shifted from using com-
plex statistical models to harnessing sufficient computational
power for implementing and testing various machine learn-
ing techniques. This trend is corroborated by the work of
Barton et al. (Barton et al. 2022a), which outlines the evo-
lution of DWPF models from statistical applications to the
adoption of machine-learning-based models, as illustrated
in Fig. 6.

This trend overlooks the significant potential that statisti-
cal models hold. As previously noted, statistical-based mod-
els directly incorporate external knowledge into the model, a
crucial difference from machine learning-based models that
require adjustment parameters governing the incorporation
of superficial knowledge (Binder 2014). Such models need
more extensive development, which might not be replicable
in other systems without a similar adjustment phase.

It is essential to acknowledge that the concepts depicted
in Fig. 5 do not solely dictate the current and future trends
in model evolution. With advancements in modelling tech-
niques, there is a greater capacity to analyse uncertainties
and sensitivities associated with the employed variables.

Most studies that address modelling failure for drinking
water pipes and uncertainties are predominantly based on
Monte Carlo simulations (Beh et al. 2017; Jafari et al. 2021;
Fan et al. 2023) and Poisson distributions (Xu et al. 2018).
However, these methodologies have also been extensively
employed in various related disciplines, such as hydraulic

@ Springer
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Fig.3 The conceptual structure
of the modelling of DWPF for
the last 15 years

water supply

infrastructure planning

prediction models

.

pipe failure

water main

modelling (Braun 2019), optimization in water infrastructure
planning (Beh et al. 2017) and flood damage assessments
(de Brito et al. 2019; Morita and Tung 2019) among numer-
ous other applications, which illustrates the importance of
analysing uncertainties in modelling processes.

These concepts continuously evolve and provide fertile
ground for extensive research and exploration. Research pre-
dicting or forecasting events based on highly unbalanced
data, such as in our case, emphasizes the utmost importance

Models -
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Machine Learning -
Risk -
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of data quality. Hence, mitigating the influence of uncer-
tainty throughout all stages of the modelling process will not
only enhance the reliability of the models but also minimize
potential biases inherent in the analysis (Fan et al. 2023).

e Term frequency
e ° 5
® 10
® 15
d ® 20
e ® 25

2008
2010
2012
2014

Fig.4 The presence of research keywords from 2007 to 2023. The
blue line's length represents the years in which the publications men-
tion the keywords. The position of the blue ball indicates the year

@ Springer

2016
2018
2020
2022

Year

with the highest frequency of mentions for each keyword, and the size
of the ball reflects the frequency of mentions in that particular year
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Fig.5 Evolution of critical concepts researched for the periods 2007-2015 -left-, 2016-2019 -centre- and 2020 to 2022 -right-

Explanatory variables used for modelling
drinking water pipe failures

Table 7 in Appendix 1 summarizes the explanatory variables
extracted from the publications from 2007 to early 2023.
This table establishes a link between the model typology
proposed in Table 5 and the models implemented in each
study, enabling an analysis of the selected model trends.
Additionally, it outlines the optimal performance exhibited

W Statistical-based models
B ML and Al-based models
- Other model types

40

30

20

10

Total number of reviewed models

2007 2009 2011

2013

2015
Years

2017 2019 2021

Fig.6 Comparison of trends in DWPF model types between 2007
and 2022. The graph illustrates a substantial increase in the utiliza-
tion of Machine Learning-based models in the last four years (on the
left). Among these machine learning models, those employing super-

2023

by each model in the respective studied network. The table
also indicates the type of output generated by each study,
encompassing failure probabilities, estimated failure times,
failure prediction focus, and the creation of performance or
failure-related risk indexes and curves.

Table 7 also presents a detailed account of the primary
explanatory variables employed in the modelling process. It
delineates the type of explanatory variable utilized, the cor-
responding model output, and the time horizon for the model
outcomes in each publication. Through this comprehensive

Models classification

@ A1 - Stochastic Modelling and Survival Analysis +
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vised learning techniques have experienced a remarkable peak (on the
right), surpassing models based on statistics, particularly those with
regression analysis
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analysis of 103 studies, the list of covariates or explanatory
variables reveals the key factors influencing drinking water
pipe failures, effectively addressing RQg. It is important to
note that research in this field remains limited, primarily due
to the intricacies posed by the unique local conditions of
each WSDN. Consequently, there is a demand for in-depth
investigations at the WSDN level to discern the impact and
interrelationships among variables.

Among the noteworthy studies, Konstantinou and Stoi-
anov (2020) stand out for their meticulous examination of
explanatory variables beyond the fundamental analysis typi-
cally observed in most publications. Additionally, Robles-
Velasco et al. (2020) have provided valuable insights, lead-
ing to the proposed organizational framework of variables
based on different factors, as outlined in Table 7. These ref-
erence studies have significantly contributed to advancing
understanding in this domain.

Kerwin et al. (2020) investigated the relationship between
variables in sixteen studies, with only one study (Amaitik
and Amaitik 2008) employing “time between failures” as
an explanatory variable. The insights gathered from these
diverse studies unequivocally demonstrate that pipes previ-
ously afflicted by failures exhibit a heightened vulnerability
to subsequent failures. “Time between failures,” also known
as “inter-failure times”, emerges as a central variable with
a profound impact on the probability of failure (Garcia-
Mora et al. 2015; Le Gat 2015), attributable to its stochastic
nature within the process. Thus, the inclusion of this variable
becomes indispensable in forthcoming research endeavours.

The implementation of process variables varies across
different studies; some opt to segregate variables based on
their time dependence (Konstantinou and Stoianov 2020),
while others apply all variables in one scenario and prior-
itize variables based on their linearity in another (Chen et al.
2019), exemplifying the importance of judiciously select-
ing and incorporating variables in failure modelling. It also
underscores the uniqueness of failure models, necessitating
bespoke approaches to suit the sensitivities of each WSDN.
Such meticulous customization ensures that failure mod-
els align precisely with the complexities of the individual
WSDN.

Before the advent of studies predicting the failure of
drinking water pipes, the age of the pipe held paramount
significance when defining renewal requirements. Counter-
intuitively, the wear of materials due to age does not always
emerge as the most critical variable in failure processes;
instead, factors such as pipe length and material composition
often prove more crucial (Almbheiri et al. 2020b). Several
sensitivity analyses elucidate the importance of variables
and their interactions within specific contexts, prompting
the grouping of variables based on their relevant application
environment. This categorization provides valuable insights

@ Springer

into the criteria influencing the decision to incorporate each
variable, addressing RQ-.

Limited research has been conducted to explore the sig-
nificance or impact of the identified variables on pipe failure
processes, which would facilitate the correlation of these
variables with risk factors associated with either inherent
system functioning or external conditions. In a noteworthy
study, Barton et al. (2022b) conducted a compelling analysis
by estimating variable influences, confirming that the num-
ber of previous failures holds the most dominant influence,
followed by pipe length and soil moisture deficit, according
to the particular conditions of their study. With a different
approach, Fan et al. (2021) found that time interval—related
to the number of previous failures—and the ambient tem-
perature were the most critical factors. The incidence of cold
days, pipe length, and hot days as significant contributors to
the pipe failure process followed this.

Prevalent explanatory variables

A fundamental objective of studies in this domain is to dis-
cern the critical explanatory variables that potentially drive
variations in the frequency of failures in both the short and
long terms. Furthermore, it is essential to determine how
these variables can elucidate past observations and enable
accurate predictions. The identified variables generally fall
into three categories of paramount importance. Firstly, there
are those frequently mentioned in most studies, such as the
physical characteristics of the pipes, which encompass mate-
rial composition, age, length, and diameter. These variables
benefit from an abundance of data records provided by Water
Utilities. Examining the prevalence of physical factors and
their ubiquitous inclusion in nearly all studies can be readily
justified by the traceability of historical and contemporary
data associated with this category. Incorporating pipelines as
assets within geographic information systems coupled with
hydraulic models for efficient network management renders
this information essential to handle for service-providing
companies.

Most studies consistently highlight the substantial
influence exerted by this group of variables on pipe fail-
ures (Robles-Velasco et al. 2021). The extensive impact of
these variables on the modelling processes can introduce
significant biases in algorithms and hinder the interpreta-
tion of results. For instance, a pertinent example is when
a model indicates that a more extended pipe section corre-
lates with a higher probability of failure (Jafari et al. 2021),
linking this probability to factors such as traffic and opera-
tional stress (Mesalie et al. 2021). Numerous investigations
affirm that length and the number of previous failures stand
out as the most significant variables (Barton et al. 2019,
2022b; Robles-Velasco et al. 2023). It is worth contemplat-
ing the normalization of explanatory variables, including



Applied Water Science (2023) 13:210

Page210f41 210

length, during the data pre-processing stage and consider-
ing whether the normalized data adheres to a normal distri-
bution. If not, alternative statistical distributions should be
employed for standardization processes.

The number of documented previous failures serves as
an operational parameter derived from the influential work
of Le Gat and Eisenbeis (2000) and has demonstrated its
significance in various model applications. Lastly, research-
ers often select additional variables tailored to the specific
conditions of the studied networks. For instance, seismic
activity is relevant for networks in regions susceptible to
seismic events.

Physical conditions

Pipe materials constitute one of the most crucial variables
influencing failures in drinking water pipes. Different mate-
rials exhibit distinct responses to changes in soil conditions
and corrosion effects, necessitating the segregation of pipe
material groups in failure models (Kabir et al. 2015b). As
Barton et al. (2022b) stated, whether to separate or group
various material types in the model inputs have been associ-
ated with differences in failure mechanisms based on mate-
rial type. Nevertheless, it has been proposed that considering
the influence of variables on all materials, the seasonal vari-
ation in failure rate by material, and the lower failure rate
of certain materials, leading to convergence failures in the
models, a more realistic approach would be to implement a
global model. A global model refers to one that incorporates
all materials together in the analysis. Robles-Velasco et al.
(2020) indicate that a global pipeline model performs effec-
tively, surpassing many models that segment their imple-
mentations based on material.

According to Nugroho et al. (2022) and Dawood et al.
(2020b), introducing relatively new materials, such as vari-
ous densities of polyvinyl chloride, and the limited availabil-
ity of historical data pose challenges in the implementation
of modelling compared to using data from older pipelines
with different materials. These assertions stem from a sur-
vey that analysed failures in various materials for 1992 and
1993. Regardless, there may need to be more historical data
for these years for plastic materials, raising questions about
such claims' validity.

The mechanisms leading to pipe failures, which vary
based on the material, are well-documented and can be
attributed to factors such as poorly manufactured pipes,
improper installation, excessive operating conditions, or
third-party damage (Mohammadi and Amador Jimenez
2022; Nugroho et al. 2022). These failure mechanisms
may also include susceptibility to corrosion, degradation,
and structural weaknesses. Nonetheless, it is essential to
acknowledge that each network's specific operational, main-
tenance and environmental conditions introduce variability,

preventing the generalization of observed behaviour for each
material. Furthermore, the diversity in installation processes
worldwide further impedes the standardization of failure
causes.

An illustrative example of the variability in failure behav-
iour based on materials is evident when comparing results
from different studies involving diverse networks and mate-
rials. For instance, Robles-Velasco et al.’s (2021) study
reveals that asbestos-cement and cast-iron materials exhibit
inferior performance. Conversely, Martinez Garcfia et al.’s
(2021) study indicates that in comparison with asbestos-
cement pipes, ductile-iron and PVC pipes exhibit higher
failure rates. These findings indicate that the failure rates of
specific materials can vary significantly depending on the
characteristics of the case in consideration.

Several authors indicate that older pipes are expected to
have significantly higher failure rates, with studies suggest-
ing that pipe age has the most substantial influence on failure
risk (Dawood et al. 2022). Regardless, in relatively young
networks, age only emerges as a significant factor (Liu et al.
2022). In other cases, age is an important explanatory vari-
able but not the most decisive in failure processes (Jafari
et al. 2021; Assad and Bouferguene 2022).

According to Nugroho (2022), the precise factors influ-
encing the relationship between pipe age and failure rate
have yet to be discovered. Variations might be attributed
to differences in the quality and strength of the materials
used. Some studies differentiate between the age of the pipe
sections and the age of the connections and fittings. This dif-
ference may be significant at an operational level since the
connections may have a different age than the sections and
present distinct failure patterns, such as installation errors,
compared to the pipe sections, which are more influenced
by other failure processes.

Only one identifies length as one of the least critical vari-
ables among the studies analysed (Almheiri et al. 2021).
Most studies agree that pipe length is either the most cru-
cial or one of the most significant variables. However, this
assertion necessitates careful examination, as it is subject
to essential conditioning factors. While longer pipelines
are more exposed to physical risks such as loads from
busy roads, varying soil and geological conditions, and an
increased number of accessories due to their length, the
probability of failure increases with the length, but it does
not necessarily mean that length is the most decisive vari-
able. Therefore, standardizing variables becomes a funda-
mental process to avoid biases in the modelling process.
Nevertheless, it is essential to recognize that length remains
a fundamental factor.

The relationship between pipe length and failures is
significant, influenced by various physical-chemical phe-
nomena affecting the pipe, such as the Soil Moisture Deficit
(Barton et al. 2022b). These effects become more prominent
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in long sections, including new installations and derivations,
considering that longer pipe lengths often entail more acces-
sories, thereby increasing the likelihood of failure (Moham-
med et al. 2022). Additionally, terrain variability, factors
like roads along the pipe route and pressure variations, can
further influence failure probabilities over an extended pipe
length.

In certain studies, researchers opted to omit pipe sections
shorter than 0.5 m during data pre-processing to stream-
line the cleaning process of raw data (Robles-Velasco et al.
2023). Other methodologies focus on identifying short pipe-
line segments for specific repair and replacement, avoiding
substituting simultaneously entire kilometres of pipelines
(Barton et al. 2022b). However, in the dataset of some stud-
ies (Almheiri et al. 2021; Barton et al. 2022b), pipes with a
minimum length of 2 m are considered, and the concept of
cleaning the raw data for these shorter pipe sections is also
utilized.

Environmental conditions

As previously mentioned, soil's corrosiveness is a signifi-
cant environmental variable influencing water pipe integrity,
particularly affecting susceptible pipe materials like steel
(Kimutai et al. 2015). Soil movements and shrink—sink
phenomena are considered less critical variables (Barton
et al. 2022b). Regardless, these phenomena still need to be
explored at the entire network level or for a more extensive
pipeline dataset. Their long-term impacts under varying
conditions may surpass their current understanding from
laboratory-based studies. Further investigation is war-
ranted to assess their implications in real-world scenarios
comprehensively.

A notable characteristic of each WDN originates from
researchers' diverse interpretations of climatic variations
(Laucelli et al. 2014). A prime example is the influence of
winter conditions in regions experiencing ground freezing.
In such cases, it becomes essential to distinguish failure
events between warm and cold seasons to avoid introduc-
ing biases (Harvey et al. 2014). Nevertheless, a comprehen-
sive examination of the relationship between mean severity,
installation, operation, maintenance conditions, and pipe
failures is still needed to adequately cater to specific local
requirements and address these local complexities. Fur-
ther research should be directed towards addressing these
aspects.

Operational and management conditions
A variable that profoundly influences pipe failure processes

yet is often overlooked in most studies is the time interval
between failures (Robles-Velasco et al. 2023). Whether the
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time between failures or since the last failure is short or
long, it has various impacts. This variable is associated with
discovering failure events shortly after installation or repair
(Fan et al. 2021), underscoring the critical importance of
Water Utilities' installation, maintenance, and pipe repair
processes.

The number of previous failures also exerts a significant
impact on model performance. One reason is that Water
Utilities can feasibly build a failure database, providing a
valuable source of case histories with sufficient traceability
to rely on for data. Nevertheless, other operational factors,
such as hydraulic network configuration, population density
(Fan et al. 2021), pressure changes, transient phenomena,
water velocity, and temperature, present complexities in the
assessment and calibration phases (Robles-Velasco et al.
2020). Consequently, further research is necessary to evalu-
ate their relationship with pipe failure processes.

A dedicated study focusing on evaluating water physico-
chemical variables has revealed that residual chlorine and
the number of road lanes influence the failure models' out-
comes (Almbheiri et al. 2021). Another significant factor is
the type of soil cover surrounding the pipes, which critically
impacts failure probabilities, primarily when the pipes are
situated under roads with heavy traffic.

Analysis of the different model outputs

As outlined in Table 8, the outputs of the different models
can be grouped according to the specific interests of each
group of researchers. Nevertheless, the criteria for these
groupings often need to be clarified or reported. The risk
estimation approaches (Rof and CRS), widely utilized in
flooding studies and climate change resilience, have yet to be
utilized in this field, with only 3% of the analysed publica-
tions employing these approaches.

Conversely, the Likelihood of Failure (LoF) approach has
been more widely adopted, with 35% of the studies utiliz-
ing it. As defined by Le Gat (2014), the statistical approach
used for estimating failure is based on the developments
proposed by Rostum (2000), which suggested the use of
the non-homogeneous Poisson process (NHPP). The NHPP
approach has gained acceptance within the research commu-
nity due to its reliable results and solid mathematical founda-
tion. Moreover, derivations of Rostum's processes establish a
formula for calculating the probability of a model parameter
given observed failure times within a specific time interval.

Failure rate (FR) is a widely used output measure, reach-
ing 27% of use within this compendium. Statistical mod-
els have been widely used for estimating failure rates. In
addition to these, as noted by Jafari et al. (2021), models
such as artificial neural networks (ANNSs), genetic algo-
rithms (GAs), and fuzzy inference systems (FISs) have also
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emerged as popular alternatives for modelling and predicting
pipe failure rates. The successful implementation of these
models in recent decades stems from their ability to capture
explanatory variables' behaviour, including past failures, and
the data collection improvements that enable such models'
implementation.

A significant category in the model outputs reported in
the literature is the number of breaks/failures (NoB), which
accounts for 27% of the output variability. Use of this out-
put had decreased over time, after reaching a peak between
2008 and 2015, when many studies employed accessible
regression models to implement and interpret with commer-
cial-available statistical software. Nonetheless, this output
relies on assumptions of linear or exponential relationships
between the future number of failures and some explana-
tory variables, such as pipe age (Karimian et al. 2021). This
assumption has been challenged by several authors (Le Gat
2014), who have shown that pipe age is not a relevant predic-
tor for some pipe materials, such as cement and plastic pipes
(Robles-Velasco et al. 2020), while others have acknowl-
edged the role of age in affecting the structural condition of
the pipes (Kabir et al. 2015a), but within specific contexts
and limitations.

An alternative approach to interpreting the model results
involves assessing pipes estimated remaining service life
from an economic standpoint. This can be achieved by
comparing the equivalent annual cost of installing a new
pipe with the annual cost of maintaining the existing pipe
in service (Snider and McBean 2021). Additionally, dete-
rioration curves are employed to estimate the service life,
considering the concept of life cycle cost (Francisque et al.
2017). However, this output's selection criteria and analysis
often need to be clarified or available in some studies (Zan-
genehmadar and Moselhi 2016). Previously, this output was
commonly associated with a linear or exponential vulner-
ability increase or failure risk (Fahmy and Moselhi 2009).
Nevertheless, recent advancements have shifted away from
linearization by adopting alternative algorithms (Snider and
McBean 2021).

Outputs, such as those based on survival probability
and mean time to first/subsequent failure, are also relevant
because they account for the effect of left-truncated break
records (Xu and Sinha 2021). Some of these studies empha-
size the number of previous failures as a key explanatory
variable, showing how the selection of the modelling method
influences the type of output and the explanatory variables
used in the model.

Another approach to analysing the utilized outputs
involves examining the relationships between the model
types and their associated outcomes, as depicted in Fig. 7
for the most frequently used results. Notably, models based
on supervised learning predominantly select the “Likelihood
of Failure” as their output, neglecting the use of “Number

of Breaks/Failures.” This choice is logical, given that these
algorithms' learning process involves computing probabili-
ties for predefined categories (Jo 2021), making them ideally
suited for determining likelihoods.

On the other hand, models based on regression analysis
are primarily associated with the “Number of Breaks/Fail-
ures” output, as these statistical techniques aim to predict
variable values based on system variables, with the number
of failures being of particular interest for projection. Proba-
bilistic models, however, do not yield a “Failure rate” output,
as their focus is not on projecting future failures but on iden-
tifying failure rates concerning a risk element.

Conclusions and future research directions

This article delves into the essential field of Asset Manage-
ment concerning Water Infrastructure. Managing assets is
vital in addressing water infrastructure challenges, encom-
passing economic, health, social, and environmental aspects.
Effective Infrastructure Asset Management ensures water
infrastructure's long-term maintenance and adaptability,
mitigating ageing effects and potential obsolescence.
Various models are utilized to predict WSDN pipe
failures. These models encompass a range of approaches,
including statistical models and machine learning tech-
niques. They use historical data from Water Utilities and
related explanatory variables to estimate the likelihood of
future pipe failures. Some standard models used for this
purpose include survival analysis models, regression mod-
els, neural networks, decision trees, and support vector
machines, among others. These models play a critical role
in enhancing the understanding of pipe failure dynamics and
assisting Water Utilities in making informed decisions for
effective asset management and infrastructure maintenance.

What criteria influence the decision to incorporate
explanatory variables into the processes?

Incorporating explanatory variables in DWPF modelling
processes significantly impacts these procedures. Explana-
tory variables provide the information that models utilize
to formulate their predictions. By considering the influ-
ence of variables on predictive model accuracy and reli-
ability, the model's robustness increases, resulting in more
precise predictions. It is crucial to ensure that these data
accurately represent the behaviour of the analysed system's
inventories, including failure data, within a suitable time-
frame that aligns with the models' algorithmic require-
ments and the needs defined by the service and stakehold-
ers, subject to the existence of such data inventories.
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Fig. 7 Number of selected
outputs concerning the utilized
model types: a graph relating
the four most frequent output

types

Model Type

Stochastic Modelling and Survival Analysis

The appropriate selection of explanatory variables is
essential for reducing potential interferences in under-
standing causal relationships and their impact on the
results obtained. The use of machine learning models,
which is increasingly prevalent, can complicate interpret-
ability due to their inherent nature, making it challenging
to analyse the influence of each variable on the outcome.
Consequently, this hinders identifying possible improve-
ment actions in the planning and operation/maintenance
stages of Water Utilities. In complex systems like those
analysed, some variables may be interrelated. For instance,
some models employ the variable “time between failures”
instead of “age,” a technically suitable decision as it
assigns more significance to data related to failure events
in an unbalanced context. Furthermore, if the variables
used in the models are overestimated, the quantification
of uncertainty will also be affected.

Identifying the most relevant variables is critical for
constructing parsimonious models and preventing overfit-
ting, reducing computational requirements and complexi-
ties in model implementation. This consideration gains
particular significance when considering the resource limi-
tations in the context of current and future optimization
efforts. The generalizability of the models for application
in various scenarios and systems also relies on the choice
of explanatory variables. An appropriate selection of these
variables will positively influence the models' capacity to
be trained and implemented on diverse datasets within the
same system or for a new group with updated time ranges
for the Water Utilities' inventories.

What potential future research directions exist
considering DWPF modelling and explanatory
variables?

Further research is required to gain a deeper understanding
of the sensitivity levels of variables in the most representa-
tive models and how environmental conditions impact vari-
able selection, enhancing our comprehension of the com-
plex interaction between these variables. Addressing this
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issue necessitates executing large, controlled trials with test
networks to provide more information and enhance future
model accuracy.

To the best of our knowledge, no existing research has
focused on exploring techniques to ensure the necessary rep-
resentativeness of a selected test network. Understanding the
complexity of selecting the most appropriate network for
testing is crucial to improve the study of variables in pipe
failure models. Assessing the impact of these variables on
large distribution networks incurs high computational costs.
However, by ensuring a suitable selection of a test network,
these computational expenses can be significantly reduced,
streamlining the optimization processes in the models.

A future approach involves identifying how the network's
complexity interacts with variables and assessing whether
a model suits specific network or sub-network typologies.
A study's potential source of bias is the researcher's influ-
ence on the network selection, whether a section, such as a
hydraulic sector, or an entire distribution network. Despite
this limitation, a methodology is yet to be identified and
applied to define test networks in a controlled environment
to establish the proper conditions for evaluating model per-
formance and variables.

The evidence from this study suggests that further work
with a broader range of networks exhibiting more signifi-
cant variability and physical location could provide deeper
insights into identifying patterns or dynamics of variables
and network behaviour under defined patterns of operation
and maintenance. Additional research is required to examine
the long-term efficacy and safety of pipe installation, opera-
tion, and maintenance procedures, as they profoundly impact
the probability of failure.

An arguable weakness of the current research lies in the
inability to directly apply specific models designed for one
network to another without modifying the studied vari-
ables and parameters affecting each stage of the modelling
process, as the methods may not be readily transferable or
comparable. A standardized performance metric is crucial
to interpret model results confidently. Addressing this issue
requires creating and validating a methodology that allows
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the evaluation of model performance, not only between dif-
ferent models for the same network but also between mod-
els used in different networks. This standardization require-
ment is vital when specifying the measurement conditions of
explanatory variables, considering both their spatiotemporal
variability and the range of data collection.

What limitations can be identified in the current
analysed studies?

Several limitations are identified in the reviewed studies.
One area for improvement is the focus on specific datasets
or water supply systems, which restricts the generalizability
of their findings to broader applications. Comparing results
between different systems becomes challenging due to vari-
ations in data quality and time availability. Therefore, under-
standing how the heterogeneity of local conditions, such as
material distribution, times between failures, lengths, and
other essential variables, impacts the results and model fit-
ting processes requires careful consideration.

The prevailing focus of existing studies has been on
applying failure prediction models rather than conducting
a comprehensive examination and understanding of the
explanatory variables associated with failure processes.
Most of the analysed studies do not provide a criterion to
identify the most significant variables. The recent utiliza-
tion of machine learning techniques has further complicated
the determination of explanatory variable importance in the
modelling process. Consequently, limitations in model appli-
cability often arise due to the necessity for in-depth analysis
of the variables integrated within the models.

While the current literature on DWPF primarily addresses
the availability of data provided by Water Utility operators,
it is crucial to emphasize the active involvement of service
operators throughout the entire process, extending well
beyond the mere provision of data for pre-processing pur-
poses by researchers. The practical knowledge of operators
enables modellers to comprehend the impact of variables on
the models and facilitates the functional definition of hyper-
parameters governing the behaviour of machine learning-
based models.

Ensuring adequate systems, services, and support for
managing historical data, which forms the basis of the mod-
els, should be a top priority for researchers. Relying solely
on blind data management at a statistical level, without con-
sidering the substantial variability inherent in local distribu-
tion networks, raises concerns about the viability of such
research strategies. Expertise in modelling processes cannot
replace enhancing the quality of underlying data collection
processes in system administrations.

The generalizability of model outputs faces limita-
tions that could compromise their validity. Replicating
these outputs becomes challenging due to various factors,

primarily when models heavily depend on Water Utility
data, potentially overlooking valuable historical infor-
mation. A more comprehensive approach would involve
examining a large, carefully selected sample of data
directly from the Water Ultilities database, thereby reveal-
ing how variables interact before comparing the perfor-
mance of statistical or machine-learning-based failure
models.

Limited research addresses the types or groupings of
characteristics significantly influencing model outcomes.
Many studies solely focus on identifying the best model
without thoroughly analysing local conditions and their
relationship to the importance of variables or even iden-
tifying critical variables. A detailed investigation of how
specific variables influence the system, or its components
is necessary to determine the best model comprehensively.
Therefore, exploring these variables' contextual relevance
and contribution is vital to gain a deeper understanding of
their impact on the system.

One aspect that has yet to be analysed in the various
studies is the impact of introducing a new dataset, such
as a new inventory period, into the model. Examining the
results of incorporating a new dataset can help prevent
overfitting, where models perform well with training data
but poorly with unseen data. Additionally, bias in data col-
lection may affect the model's ability to generalize to new
scenarios. Considering these limitations can enhance the
validity and applicability of future research in water pipe
failure modelling and their explanatory variables.

Another crucial area for improvement is the necessity
to analyse the entire universe of data a system could pro-
vide. Some studies only examine a sample that may or may
not be statistically representative; however, no criteria are
presented to demonstrate how this sample represents the
system. By not analysing the entire system, the obtained
results do not consider the system's overall impact on the
model, introducing a methodological limitation. This
exclusion of external behavioural factors inherent in
the overall system dynamics oversimplifies the analysis,
affecting the robustness of the model's results.

This study has yet to explore the time constraints of
each investigation. The time horizon column of Table 7
in Appendix 1 is particularly valuable as it indicates that
most of the analysed studies “predict” failures but do not
specify the specific time frames of these predictions. It
does not even highlight cases where the models' limita-
tions prevent defining how many years or periods ahead
the results are applicable. Making predictions for extended
periods requires a sufficiently representative inventory
database with a time frame like the one being predicted.
Notably, in some cases, the considered base data's time
for the study's execution needs to be mentioned. The age
and quality of system failure inventories constrain the
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development of solutions in this area. Regardless, when
creating and implementing models that involve predic-
tions, it is essential to consider the time constraints to ana-
lyse the model's implementation and the results obtained
thoroughly.

What are limitations of this study?

The findings of this study offer valuable insights for
researchers and water supply network planners to iden-
tify relevant variables for their pipeline failure prediction
models. Yet, the scope of this document is limited to the
identification of variables. It serves as a guide for the selec-
tion process, encompassing data acquisition, management,
treatment, and interpretation. The unique conditions of each
network and service demand a thorough examination.

The quality of the data used stands as a crucial criterion
in variable selection. It has been established that the use of
incomplete or low-quality data negatively impacts the pre-
dictive capabilities of the model (Fan et al. 2021). Determin-
ing data quality depends on the nature of the data and local
conditions. For example, a distribution system characterized
by significant pressure fluctuations, in combination with pip-
ing materials sensitive to such changes and transient events,
necessitates representative temporal and spatial pressure
data to incorporate pressure behaviour as an explanatory
variable for failure processes.

@ Springer

Among the most significant limitations of this study, it
was not feasible to analyse the data sample sizes, which
could affect the generalizability of the conclusions to a
broader population. Conducting such an analysis could
suggest sample size parameters based on the type of model
and variables considered. From a research perspective, we
needed access to the base data of each study, preventing
us from verifying the accuracy and reliability of both the
base data and the results. Not knowing the characteristics
of the networks being analysed further contributed to this
limitation.

The examination of variable effects on the modelling
processes was limited, as it relied solely on published stud-
ies, which impacted the comprehensiveness of the analysis.
Additionally, not all variables could be thoroughly analysed
due to space constraints, leading to selecting the most rep-
resentative ones for detailed examination. The conclusions
of the studies might have been influenced by external factors
or unaccounted variables that were not considered in the
analysis. The analysis of explanatory variables may have
been more intricate, but the studies may have yet to reflect
this complexity in their findings fully.

Appendix 1

See Tables 7, 8 and 9.
Factor ID descriptions are as follows:
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