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Abstract
The effective regulation and storage of water resources by reservoirs in arid and semi-arid areas is important for alleviating 
water resource shortages. In this paper, multiple irrigation reservoirs and pumping stations are evaluated, according to their 
special hydraulic connections and used to establish the water resources optimal allocation model of the parallel ‘reservoir and 
pumping station’ irrigation system. The mathematical model takes the maximum total income of the whole irrigation area 
as the objective function, the water supply and spill of the reservoir and the water replenishment of the pumping station as 
the decision variables, and the system water supply, agricultural water rights, reservoir operation criteria as the constraints. 
A new multilevel decomposition aggregation dynamic programming (MDADP) algorithm is proposed to solve the complex 
nonlinear model and is compared with the real-coded genetic algorithm, particle swarm optimization, cat swarm optimiza-
tion and whale optimization algorithm. From the analysis of optimality and the applicability of the algorithm, MDADP 
was found to be more suitable than the above heuristic models for solving problems in the field of the optimal allocation of 
water resources.

Keywords Multi-reservoir · Multi-pumping stations · Joint operation · Agricultural water rights · Decomposition-
aggregation method · Dynamic programming · High dimensional model

Introduction

As global warming and the increase of human activities, the 
amount of available water resources in the world is decreas-
ing sharply, while the distribution of water resources was 
becoming increasingly uneven (Ashofteh et al. 2012; Had-
deland et al. 2014). Agriculture accounts for approximately 
70% of the world’s fresh water resources uses (Li et al. 

2018), and the serious shortage of water for irrigation was 
of great concern.

Common water resource projects include reservoirs, 
ponds, pumping stations and wells. The joint operation of 
these projects can effectively ensure irrigation in dry years. 
Therefore, a lot of research focused on the joint regulation 
of multi-reservoirs (Ashrafi and Dariane 2017; Wan et al. 
2017; Louati et al. 2011) and surface water and ground-
water (Wan et al. 2018; Alizadeh et al. 2017; Ketabchi and 
Ataie-Ashtiani 2015). In addition, considering river agricul-
tural water rights, pumping stations can also replenish water 
resources outside of the local region to supplement irrigation 
reservoirs or irrigated areas, but the joint investigation of 
multiple reservoirs and multiple pumping stations was rare.

Many kinds of constraints, such as the water balance 
equation, hydraulic linkage and dispatching criterion, should 
be considered in the joint dispatching model of multi-water 
source engineering. Therefore, due to these coupling con-
straints and the size of the system, the galway coupling 
model was usually applied, which presents a nonlinear 
coupling problem (Pérez-Díaz et al. 2010; Mo et al. 2013; 
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Afshar 2013). To solve this problem, many methods, includ-
ing linear programming (LP) (Reis et al. 2006; Azamathulla 
et al. 2008), nonlinear programming (NLP) (Martin 1983; 
Lund and Ferreira 1996; Barros et al. 2003), dynamic pro-
gramming (DP) (Kumar and Baliarsingh 2003; Goor et al. 
2011; Li et al. 2011) and progressive optimization methods 
(POA) (Cheng et al. 2012), have been proposed and dis-
cussed in past decades. In addition to the above classical 
methods of function optimization, various heuristic models 
were also proposed, such as the genetic algorithm (Cinar 
et al. 2010; Hincal et al. 2011), ant colony algorithm (Jalali 
et al. 2007; Deep et al. 2009), simulated annealing algo-
rithm (Georgiou et al. 2006), and particle swarm optimiza-
tion algorithm (Lu et al. 2010; Wang et al. 2010). These 
function optimization methods and intelligent optimization 
algorithms were widely used in the water resources optimal 
scheduling field. However, due to the existence of complex 
constraints in the system, the complexity of the mathemati-
cal model required has increased. There are drawbacks when 
applying the above methods/algorithms to solve the problem. 
For example, although LP can solve high-dimensional prob-
lems in theory, it needs long operation time; NLP cannot 
deal with non-convexity problems and the convergence is 
poor (Afshar 2013); DP was easily affected by ‘Curse of 
dimensionality’ (Cheng et al. 2012). It was difficult to obtain 
an initial feasible solution for a complex system, which leads 
to the local optimal solution of the POA, and the common 
heuristic methods have difficulty dealing with the equality 
constraint and the judgment constraint (Cheng et al. 2013), 
there was no strict mathematical proof of the optimal solu-
tion (Samanipour and Jelovica 2020).

The decomposition-aggregation method, also known as the 
two-level algorithm, has been widely used to solve complex 
large-scale system problems. Through decomposition, the 
large-scale system was divided into a series of subsystems, 
which can be solved by the traditional function optimization 
method, and then a series of subsystems are aggregated by con-
structing regression equations, from which the global optimal 
solution of the large-scale system is obtained. On this basis, 
Gong and Cheng (2018) and Gong et al. (2019) took the coor-
dination variable in the process of decomposition-aggregation 
as the decision variable, and aggregated a series of subsystems 
into a dynamic programming model of large-scale systems 
according to the recursive principle of DP, thus proposing a 
large-scale system decomposition aggregation dynamic pro-
gramming (DADP) method.

In this research, an irrigation system composed of many 
irrigation reservoirs and pumping stations was studied, from 
which an optimal allocation model of water resources for a 
‘reservoir and pumping station’ irrigation system was pro-
posed. The model established in this paper has the following 
characteristics: firstly, when the total amount of agricultural 
water rights was determined, the allocation of water rights in 

sub-irrigation areas was taken as a decision-making variable. 
Then, the optimal allocation model of parallel ‘reservoir and 
pumping station’ irrigation systems can be decomposed into 
N ‘single reservoir and single pumping station’ irrigation 
system. Secondly, the irrigation water quantity of each sub-
irrigation area for two kinds of dry crops that are rotated 
was taken as the decision variable in the water-deficient 
irrigation area, then the optimal water allocation model of 
a ‘single reservoir and single pumping station’ irrigation 
system can be decomposed into two optimal water alloca-
tion models of a single crop irrigation system. Therefore, 
based on the DADP algorithm, a multilevel decomposition 
aggregation dynamic programming (MDADP) algorithm 
was proposed to solve the model of a parallel ‘reservoir and 
pumping station’ irrigation system. In addition, two classic 
heuristic [real-coded genetic algorithm (RGA) and parti-
cle swarm optimization (PSO)] and two new heuristic [cat 
swarm algorithm (CSO) and whale optimization algorithm 
(WOA)] models were used and compared with the proposed 
MDADP algorithm, and the optimality and the applicability 
of these algorithms were verified with an example.

Model and method

Model construction

The water resource shortage area north of the Huai River in 
Jiangsu Province, China, were used as the study area; this 
irrigation area is usually planted with wheat and corn. The 
two dry crops undergo rotation cultivation (the growth stages 
do not overlap). The entire growth period of wheat is usually 
from October to May, while the entire growth period of corn 
is usually from June to September. Therefore, the combined 
total duration of the growth period for the two dry crops is 
consistent with the whole hydrological year of the irrigation 
reservoir (i.e., from October to September). Therefore, in 
the process of mathematical model optimization, the growth 
stage of the dry crops was taken as the optimal operation 
stage of the irrigation reservoir and pumping station. The 
parallel ‘reservoir and pumping station’ system is shown 
in Fig. 1.

where: i is the number of the reservoir or pumping station; 
N is the total number of reservoirs or pumping stations; j is the 
crop type (j = 1,2); k is the crop growth stage; Xi,j,k is the actual 
water supply of i reservoir to the k growth stage of j crops, 
MCM; Yi,j,k is the water replenishment of i pumping station 
at the k growth stage of j crops, MCM; LSi,j,k is the inflow of 
i reservoir at the k growth stage of crop j, MCM; PSi,j,k is the 
water spill of i reservoir at the k growth stage of crop j, MCM; 
EFi,j,k is the evaporation capacity of i reservoir at the k growth 
stage of crop j, MCM. (Note: MCM is million cubic meters).
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Objective function

The water supply strategy of irrigation reservoirs is usually 
optimized as an effective method to ensure the efficient utiliza-
tion of limited water resources. There is a complex relationship 
between the reservoir water supply and crop yield. On one 
hand, it shows the impact of full and insufficient irrigation 
on the maximum and actual yield of final crops; on the other 
hand, it shows the effect of water stress caused by water deficit 
at a certain growth stage on crop transpiration and actual yield. 
The relationship between water and yield proposed by Jensen 
(1968) and Doorenbos and Kassam (1979) is whidely used 
to represent this relationship. Based on the water production 
function given by Jensen, the objective function of maximiz-
ing the total agricultural income in the whole irrigation area 
was established in the current study. Simultaneously, to facili-
tate the joint operation calculation of the parallel ‘reservoir 
and pumping station’ irrigation system, the ratio of the actual 
evapotranspiration generation and the potential evapotranspira-
tion generation in the model was converted into the ratio of the 
reservoir water supply and the crop water demand (Wardlaw 
and Barnes 1999).

For irrigated areas where two major crops are rotated, the 
objective function can be expressed as:

where: G is the total income of the whole irrigation area,  104 
rmb; Mj is the total number of j crop growth stages; (Ym)i,j 
is the maximum yield of j crops when the reservoir is fully 

(1)maxG =

N�
i=1

2�
j=1

⎧
⎪⎨⎪⎩

Mj�
k=1

�
Xi,j,k

YSi,j,k

�hi.j,k

⋅ (Ym)i,j ⋅ Ai,j ⋅ Pi,j

⎫⎪⎬⎪⎭

supplied with water, kg/hm2; hi,j,k is the sensitivity index of 
the k growth stage yield of the j crop irrigated by i reservoir 
under water shortage; YSi,j,k is the maximum water demand 
of the k growth stage of the j crop irrigated by reservoir 
i, MCM; Ai,j is the planting area of the j crop irrigated by 
reservoir i,  hm2; Pi,j is the unit price of the j crop irrigated 
by reservoir i, kg/rmb. (Note: rmb is the legal currency of 
China).

Constraints

(1) System water supply constraints:
1) Total water supply constraints of the system:

2) “Single reservoir-single station” irrigation system 
annual total water supply constraints:

3) Water supply constraints during the whole growth 
period of a single crop:

where: SKi is the total annual water supply of i reservoir, 
MCM; BZi is the total water replenishment of i pumping 
station, that is, the maximum agricultural water right that the 
pumping station can draw in a year, MCM; SW is the total 

(2)
N∑
i=1

(
SKi + BZi

)
≤ SW

(3)
2∑
j=1

Mj∑
k=1

Xi,j,k ≤ SKi + BZi(i = 1, 2, ...,N)

(4)
Mj∑
k=1

Xi,j,k ≤ IWi,j(i = 1, 2, ...,N;j = 1, 2)

Y1,j,k

LS1,j,k PS1,j,k

EF1,j,k
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Fig. 1  Schematic diagram of irrigation system
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water supply of the system, MCM; IWi,j is the total irriga-
tion water of the whole growth period of j crop irrigated by 
i reservoir, MCM.

(2) Pumping station constraints:
1) Total water replenishment of pumping stations:

2) Allowable water replenishment of each pump station:

3) Capacity constraint of pumping station:

where, SQ is the total amount of water replenishment by the 
pumping station (water right); Qi is the design flow of the 
i pump station,  m3/s; Ni,j,k is the maximum operating time 
of the i pump station in the k growth stage of the j crop, h.

(3) Constraints of reservoir operation criteria:

Among these, Vi,j,k was determined by the water balance 
equation:

where, Vi,j,k is i reservoir water storage at the end of the 
k growth stage, which should be the corresponding time 
between the maximum and minimum water storage.

1) If Vi,j,k ≤ Vmin

i,j,k
 , then the reservoir needed to replenish 

water through the pumping station, and replenish water to 
the lower limit of the reservoir water storage, The water 
replenishment of the pumping station is shown in formula 
(10).

The water spill of the reservoir is shown in formula (11).

2) If Vi,j,k ≥ Vmax

i,j,k
 , then the pumping station did not need 

to replenish water, and the water spill of the reservoir is 
shown in formula (12).

3) If Vmin

i,j,k
≤ Vi,j,k ≤ Vmax

i,j,k
 , the reservoir did not need to 

replenish water or spill water.

(5)
N∑
i=1

BZi ≤ SQ

(6)
2∑
j

Mj∑
k

Yi,j,k ≤ BZi

(7)Yi,j,k ≤ Qi ⋅ Ni,j,k × 10−4

(8)Vmin

i,j,k
≤ Vi,j,k ≤ Vmax

i,j,k

(9)Vi,j,k = Vi,j,k−1 + LSi,j,k + Yi,j,k − Xi,j,k − EFi,j,k − PSi,j,k

(10)Yi,j,k = Vmin

i,j,k
− Vi,j,k

(11)PSi,j,k = 0

(12)PSi,j,k = Vi,j,k − Vmax

i,j,k

(4) Crop water demand constraints:

where: YSmin

i,j,k
 is the minimum water demand of the j crop in 

the k growth stage irrigated by the i reservoir, MCM.
(5) Initial and boundary conditions:

where: V0 is the initial storage capacity of the reservoir; Vend 
is the ending storage capacity after reservoir regulation and 
storage.

Model solution

Multilevel decomposition aggregation dynamic 
programming (MDADP)

The optimal allocation model of water resources for a 
parallel ‘reservoir and pumping station’ irrigation system 
established in this study has the following characteristics. 
Firstly, to distribute the total amount of water raised by the 
pumping station (the total water right) to each sub-irrigation 
area, the water resources optimal allocation model of paral-
lel ‘reservoir and pumping station’ irrigation system can be 
decomposed into N ‘single reservoir and single pumping 
station’ irrigation system; Secondly, the optimal water allo-
cation model of a ‘single reservoir and single pumping sta-
tion’ irrigation system can be decomposed into two optimal 
water allocation models for dry crop irrigation.

Considering that the optimal allocation model of water 
resources for the parallel ‘reservoir and pumping station’ 
irrigation system is a stage divisible high dimensional 
dynamic programming model, the conventional function 
optimization method is subject to problems such as ‘Curse 
of dimensionality’ (Cheng et al. 2012), which is difficult to 
solve. Therefore, the use of DADP to solve the high dynamic 
programming model is proposed. As shown in Fig. 2, DADP 
combines the decomposition-aggregation (DA) and DP 
(Bellman and Dreyfus 1964) approaches: first, the large-
scale system model is decomposed into a series of subsys-
tem optimization models, which are solved by DP, then, 
the coordination variables of each subsystem are taken as 
decision variables. According to the recursive principle of 
DP, a series of subsystem models can be aggregated into a 
large-scale system DP model, and the global optimal solu-
tion can be obtained by examining the optimal solution of 
each subsystem from the optimal solution of the DP model 
of a large-scale system.

Obviously, the DADP algorithm only needs one decom-
position and aggregation operation to solve the conventional 

(13)Yi,j,k = PSi,j,k = 0

(14)YSmin

i,j,k
≤ Xi,j,k ≤ YSi,j,k

(15)V0=Vend
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large-scale system mathematical model. However, the paral-
lel ‘reservoir and pumping station’ irrigation system built 
in the current study has multi-level decomposition, so a 
MDADP was proposed based on the DADP algorithm, the 
algorithm flow of which is shown in Fig. 3. The MDADP 
solution steps are as follows:

Step1: first-level decomposition of large systems. By 
determining the total amount of agricultural water rights 
in the transit river, and discretizing the allowable alloca-
tion of water rights in each sub-irrigation area, the first level 
decomposition can decompose the water resources optimal 

allocation model of the parallel ‘reservoir and pumping 
station’ irrigation system into N “single reservoir and sin-
gle pumping station” irrigation systems (level I subsystem 
model); the model is as follows:

Objective function:

(16)

maxFi =

2�
j=1

⎧
⎪⎨⎪⎩

Mj�
k=1

�
Xi,j,k

YSi,j,k

�hi.j,k

⋅ (Ym)i,j ⋅ Ai,j ⋅ Pi,j

⎫
⎪⎬⎪⎭
(i = 1, 2, ...,N)

Fig. 2  a Is the schematic diagram of DP; b is the schematic diagram of DADP
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where: Fi is the annual output value of the irrigation area 
where i reservoir is located.

Constraints:

Step2: second-level decomposition of large systems. In 
the current study, the effects of water stress on the final 
yield of dry crops was studied, and the water competition of 
two types of dry crops under the condition of limited water 
resources was also considered. The optimal water allocation 
model of any ‘single reservoir and single pumping station’ 
irrigation system was decomposed into two optimal water 
allocation models of a single dry crop (level II subsystem 
model), which were as follows:

Objective function:

where: Fi,j is the output value of j crop irrigated by i 
reservoir.

(17)
2∑
j=1

Mj∑
k=1

Xi,j,k ≤ SKi + BZi(i = 1, 2, ...,N)

(18)

max fi,j =

Mj∏
k=1

(
Xi,j,k

YSi,j,k

)hi.j,k

⋅ (Ym)i,j ⋅ Ai,j ⋅ Pi,j(i = 1, 2, ...,N;j = 1, 2)

Constraints:

In addition, the level II subsystem model must satisfy 
the constraints of the dispatching criterion, pumping sta-
tion capacity, crop water demand and reservoir boundary 
conditions.

Step3: Level II subsystem solution. The decomposed 
subsystems belonged to a one-dimensional DP model, 
which could be solved by the classical DP method. The 
state variables λi,j,k are the total water supply of the res-
ervoir to a single crop during the whole growth period, 
and were discrete in a fixed step d in [0, IWi,j]. For each 
state variable λi,j,k, the decision variable Xi,j,k was discre-
tized in its feasible region [0, λi,j,k] by the step length d. 
The optimal water supply process of a reservoir to each 
growth stage of dry crops in the subsystem can was 
obtained by using the sequential recursion and the state 
transfer equationλi,j,k-1 = λi,j,k − Xi,j,k (i = 1, 2, …, N; j = 1, 
2; k = 1, 2, …, Mj) and the value of the objective function 
Fi,j, according to the optimal water supply process of the 
reservoir, the optimal spill water process of the reservoir 
PSi,j,k (i = 1, 2, …, N; j = 1, 2; k = 1, 2, …, Mj) and the opti-
mal water replenishment process of the pumping station 
Yi,j,k (i = 1, 2, …, N; j = 1, 2; k = 1, 2, …, Mj).

(19)
Mj∑
k=1

Xi,j,k ≤ IWi,j(i = 1, 2, ...,N;j = 1, 2)

Fig. 3  MDADP algorithm flowchart
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Step4: Level II subsystem aggregation. A series of cor-
responding relationships of IWi,j ~ fi, j (IWi,j) (i = 1, 2, …, N; 
j = 1, 2) could be obtained by solving the subsystems of level 
II, according to the recursive principle of DP, then N level 
II aggregation models were obtained by aggregating the two 
level II subsystems which that belonged to the same subarea.

Objective function:

Constraints:

Step5: Level I subsystem aggregation. The water rights 
BZi(i = 1, 2, …, N) of each sub-irrigation area were discretized, 
and the discrete values were substituted into the level II aggre-
gation model, then a series of corresponding relationships of 
BZi ~ Fi (BZi) (i = 1, 2, …, N) could be obtained. Similarly, 
according to the recursive principle of DP, N level II aggrega-
tion models could be re-aggregated into level I aggregation 
models, resulting in the level I aggregation model becoming a 
large-scale system model.

Objective function:

Constraints:

By using the classical DP method to solve the level I aggre-
gation model, the optimal annual output value G* of the whole 
irrigation area and the optimal allocation water right BZi

*(i = 1, 
2, …, N) of each sub-irrigation area could be obtained accord-
ing to the results of BZi

*(i = 1, 2, …, N). From the reexam-
ination of the level II aggregation model, the optimal total 
irrigation water for different dry crops could be obtained by 
IWi,j

*(i = 1, 2, …, N; j = 1, 2); Finally, according to the optimal 
total irrigation water quantity of dryland crops, the optimal 
water supply process Xi,j,k

*(i = 1, 2, …, N; j = 1, 2; k = 1, 2, 
…, Mj) and water spill process PSi,j,k

*(i = 1, 2, …, N; j = 1, 2; 
k = 1, 2, …, Mj) of the reservoirs in the whole growth period of 
the different dryland crops could be obtained, along with the 
optimal replenishment water process of the pumping station 
Yi,j,k

*( i = 1, 2, …, N; j = 1, 2; k = 1, 2, …, Mj).

Real‑coded genetic algorithm (RGA)

Wright (1991) proposed a RGA, which is a real-to-individual 
coding method that can achieve better optimization results 
than binary-coded genetic algorithms.

(20)maxFi = fi,1(IWi,1) + fi,2(IWi,2)(i = 1, 2, ...,N)

(21)IWi,1 + IWi,2 ≤ SKi + BZi(i = 1, 2, ...,N)

(22)maxG = F1(BZ1) + F2(BZ2) + ⋅ ⋅ ⋅ + FN(BZN)

(23)BZ1 + BZ2 + ⋅ ⋅ ⋅ + BZN ≤ SQ

For a given optimization problem with m variables, the n 
initial solution sets 

(
x1
i
, x2

i
, ..., xm

i

)
 are usually generated in a 

random manner when the RGA is used to solve the problem, 
where the process of population iteration, selection, crosso-
ver and mutation are adopted to ensure the evolution of the 
population. In this study, a roulette wheel was used for the 
selection operation, and random single-point method was 
used for cross operation. First, a sequence number t smaller 
than m was randomly generated, and then the sequence num-
bers corresponding to a pair of genes t to m were exchanged 
with each other to complete the crossover operation. For 
example: a pair of genomes X1 =

(
x1
1
, ..., xt

1
, ..., xm

1

)
 and 

X2 =
(
x1
2
, ..., xt

2
, ..., xm

2

)
 will become X1� =

(
x1
1
, ..., xt

2
, ..., xm

2

)
 

and X2� =
(
x1
2
, ..., xt

1
, ..., xm

1

)
 through the cross operation; The 

mutation operation was completed by random single point 
mutation.

Considering that the mathematical model established 
in this study contains many constraints, in the process of 
solving RGA, the penalty term was constructed to deal with 
many these constraints, as follows:

where, P1, P2, P3, and P4 are the penalty functions of the 
upper and lower limits of reservoir capacity, the water right 
constraints of sub-regions and the agricultural total water 
right constraints of the whole irrigation area respectively, 
and μ1, μ2, μ3, and μ4 are the penalty factors respectively, in 
the actual solution process, the penalty factors are all taken 
as − 10,000,000.

By integrating the objective function of the model with 
the penalty term, the fitness function of the RGA was con-
structed as follows:

where: W is the fitness function value.

(24)p1(x) =

{
𝜇1 if Vi,j,k > Vmax

i,j,k

0 otherwise

(25)p2(x) =

{
𝜇2 if Vi,j,k > Vmin

i,j,k

0 otherwise

(26)p3(x) =

⎧
⎪⎨⎪⎩

𝜇3 if
2∑
j=1

Mj∑
k=1

Yj,k > BZi

0 otherwise

(27)p4(x) =

⎧
⎪⎨⎪⎩

𝜇4 if
N∑
i=1

BZi > SQ

0 otherwise

(28)W = G + P1 + P2 + P3 + P4
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Particle swarm optimization (PSO)

J. Kennedy first proposed the PSO algorithm, which origi-
nated from bird predation behavior research. The algorithm 
abstracts each bird as a particle, and the location of the food 
is the optimal solution of the problem. The distance between 
the bird and the food is the objective function of the cur-
rent particle. Each particle s has its own position vector θs 
(containing components X, Y, PS, etc.) and velocity vector 
υs, which are updated according to Eqs. (29) and (30) dur-
ing each iteration, until the iteration termination condition 
is met. Similarly, in the process of solving PSO, the penalty 
term shown in the constructive formulae (24)–(27) is needed 
to deal with the constraint.

where: ω is the inertia factor, is a non-negative number, usu-
ally the size of ω, and the global and local search ability of 
the algorithm; c1 and c2 as acceleration factors.

Cat swarm algorithm (CSO)

Chu and Tsai (2007) proposed a CSO by observing the daily 
behavior of cats. Each cat of the algorithm corresponds to 
a set of solutions to the optimization problem, and the cat 
attributes consist of speed, fitness, and tracking or searching 
mode flag values (usually 0 or 1). Each cat is in its initial 
position, and the cat’s signature values are used to determine 
whether the cat is in tracking or searching mode. If, in track-
ing mode, the position of the cat is changed by changing the 
speed of each dimension of the cat according to Eqs. (31) 
and (32); if in search mode, n cats first copy their position 
and then perform mutation operations, making each cat 
occupy a new position; the fitness is then calculated again 
from the 2n cat position to select the cat with the highest 
fitness to replace the current cat, completing the position 
update. Finally, the cat is placed in a new position and the 
optimal cat is retained until the termination condition is 
satisfied. Similarly, in the process of solving CSO, the pen-
alty term shown in the constructive formula (24) ~ (27) are 
needed to deal with the constraint.

where: vd
k
(t + 1) is the d-th dimensional velocity vector of 

the k-th cat after updating; l is the dimension of the solu-
tion; Xd

best
(t) is the d-th dimension component of the current 

(29)
�s(k) = ��s(k − 1) + c1r1(ps(k − 1)

− �s(k − 1)) + c2r2(g(k − 1) − �s(k − 1))

(30)�s(k) = �s(k − 1) + �s(k)

(31)
vd
k
(t + 1) = vd

k
(t) + c ⋅ rand ⋅

(
Xd
best

(t) − Xd
k
(t)
)

d = 1, 2, ..., l

(32)Xd
k
(t + 1) = Xd

k
(t) + vd

k
(t + 1)

optimal solution; Xd
k
(t) is the d-th dimension component of 

the current position of the k-th cat; c is a constant and a 
random number of [0,1].

Whale optimization algorithm (WOA)

The WOA is a kind of heuristic optimization algorithm 
that simulates the hunting behavior of the humpback whale 
(Mirjalili and Lewis 2016). The algorithm mainly includes 
three important stages: encircling prey, catching prey with 
a bubble net, and searching for prey. In the algorithm, each 
humpback whale represents a set of solution sets, and the 
global optimal solution is obtained by continuously updating 
the whale’s position in the solution space.

(1) Stalking prey. The WOA algorithm first assumes the 
target prey or an approximate optimal solution, i. e. the opti-
mal whale position is defined, and then the other whales 
update their positions to the optimal whale according to the 
formulae (33)–(36).

where: D is the position of the current individual and the 
optimal solution; t is the number of iterations; A and C are 
the vector coefficients; X*(t) is the position vector of the 
current optimal solution. In the iterative process, a drops 
linearly from 2 to 0, and r1 and r2 are [0,1] random numbers.

(2) Bubble net predation. As the whales feed in the bub-
ble net, they move along a spiral path. Therefore, the posi-
tion update between the whale and prey is expressed by a 
logarithmic spiral equation, as shown in Eqs. (37) and (38).

where: b is the helix shape parameter and l is the random 
number of the uniform distribution in the range [-1, 1]. Usu-
ally in WOA, the probability p is used to choose between 
bubble net predator and stalking predator.

(3) Search for prey. To ensure that the whale is fully 
searched in solution space, when |A|≥ 1, the searching indi-
vidual moves toward the whale in a random position, as 
shown in Eqs. (39) and (40).

(33)D = |C ⋅ X∗(t) − X(t)|

(34)X(t + 1) = X∗(t) − A ⋅ D

(35)A = 2a ⋅ r1 − a

(36)C = 2 ⋅ r2

(37)D� = |X∗(t) − X(t)|

(38)X(t + 1) = D ⋅ ebl ⋅ cos (2�l) + X∗(t)
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Similarly, the WOA needs to construct the penalty term 
shown in Eqs. (24) to (27) to deal with the constraint.

Case analysis

Study area

Xinyi City is located at the northern edge of Jiangsu Prov-
ince, China. Its geographical position is 117° 59ʹ–119° 39ʹE 
and 34° 06ʹ–34°26ʹN. It belongs to an arid and water defi-
cient area in Huaibei, Jiangsu Province. The location of the 
research area is shown in Fig. 4. There are two irrigation 
areas in the Yibei district and the Gao'a district. The irriga-
tion area is limited by the natural conditions in the hilly and 
mountainous areas. The crops are mainly dry crops, usu-
ally wheat and corn varieties. The wheat planting area in 
the Gao'a irrigation area is 1.54 ×  103  hm2, while the corn 
planting area is 1.63 ×  103  hm2. The wheat planting area in 
the Yibei irrigation area is 1.26 ×  103  hm2, while the corn 
planting area is 1.47 ×  103  hm2.

The distribution of rainfall in the study area is uneven, the 
rainfall in the flood season accounts for 68% of the annual 

(39)D
��

= ||C ⋅ Xrand(t) − X(t)||

(40)X(t + 1) = Xrand(t) − A ⋅ D

rainfall. The average annual evaporation is 968.0 mm, and 
the irrigation water use coefficient is 0.65. The main irriga-
tion water source of the Gaotang (GT) Reservoir is 15 MCM 
and the lower limit of reservoir capacity is 3 MCM in the 
Gao'a irrigation area. The main irrigation water source of 
the Shadun (SD) Reservoir is 7 MCM and the lower limit of 
the reservoir capacity is 3 MCM in the Yibei irrigation area.

The two main dry crops (wheat and corn) planted in 
the study area, which was affected by topographic factors, 
underwent crop rotation. Considering that the growing cycle 
of wheat is usually from October to May while that of corn 
is usually from June to September, the total duration of the 
growth period of the two crops is basically consistent with 
that of the whole hydrological year (from October to Sep-
tember of the following year). Therefore, in this study the 
regulation and storage periods of the GT reservoir and SD 
reservoir were divided according to the growth stages of the 
crops. The inflow, rainfall, measured evaporation of E601 
and crop water demand of the reservoir are shown in Fig. 5. 
The crop parameters for the irrigation areas are shown in 
Tables 1 and 2.

Because of the high topography of the study area, the 
water demand of the irrigation area cannot be met only by 
gravity diversion and reservoir impoundment. Therefore, 
through the transformation, upgrading, and modernization 
of the irrigation district, new water source projects (such as 
pump stations) are used to ensure the irrigation needs of the 
district are met in drought years. The existing Shengli (SL) 

Fig. 4  Location of study area
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and Haohu (HH) pumping stations, which are designed to 
operate at  1m3/s for 20 h/day, provide supplementary irri-
gation to the GT and SD reservoirs by drawing water from 
Shu River. According to Xinyi’s water resources planning 
data, the total amount of river agricultural water rights in a 
typical year is 12 MCM.

The evaporation loss water volume of the two irrigation 
reservoirs was determined according to the evaporation 
depth and the average water area of the reservoir in this 
period. The evaporation depth was determined by the meas-
ured evaporation data of the E601 evaporator and corrected 
by the conversion coefficient wi,j. while the water area was 
determined according to the reservoir area storage capacity 
relationship function provided by the reservoir management 
personnel.

where: EFi,j,k is the evaporation capacity of reservoir i at 
the k growth stage of crop j, MCM; Ei,j,k is the evapora-
tion capacity of the evaporator, mm; wi,j,k is the conversion 
coefficient of the water surface evaporation of i reservoir 

(41)EFi,j,k = 0.1 × wi,j,k × Ei,j,k ×
(
�Vi,j,k + �

)

at the k growth stage of j crops; α and β are the coefficients 
(GT Reservoir: α = 1.963 ×  10–3, β = 2.013; SD Reservoir: 
α = 2.117 ×  10–3, β = 1.863).

Evaluation indicators

The reliability of water supply guarantee rate of reservoir and 
vulnerability index of water shortage index (Chanda et al. 
2014) are used to further evaluate the water supply guaran-
tee ability of irrigation system after optimized solution of five 
algorithms. The water supply guarantee rate represents the 
satisfaction degree of irrigation system water demand, and is 
expressed as the ratio of actual water supply to water demand, 
and calculated according to Formula (42); the water shortage 
index represents the severity of water shortage in irrigation 
system, and is calculated according to Formula (43).

(42)Rel =

N∑
i=1

2∑
j=1

Mj∑
k=1

Xi,j,k

N∑
i=1

2∑
j=1

Mj∑
k=1

YSi,j,k

(43)Vul = max

{
1 −

Xi,j,k

YSi,j,k

}

1 2 3 4 5 6 7 8 9 10
0

70

140

210

280

350(a)

V
ol

um
es

 (1
04 m

3 )

Period

 50% Rainfall
 50% Inflow

0

40

80

120

160

200

 50% Evaporation
 50% Demand

Ev
ap

or
at

io
n

D
em

an
d 

(m
m

)

1 2 3 4 5 6 7 8 9 10
0

70

140

210

280

350  50% Rainfall
 50% Inflow

(b)

V
ol

um
es

 (1
04 m

3 )

Period

0

40

80

120

160

200

 50% Evaporation
 50% Demand

Ev
ap

or
at

io
n

D
em

an
d 

(m
m

)

Fig. 5  Inflow, rainfall, evaporation and demand

Table 1  Wheat test parameters Growth period Seeding Returning green Jointing Heading Filling Mature

Optimize period 1 2 3 4 5 6
Date 1/10–31/10 1/11–10/1 11/1–20/2 21/2–10/3 11/3–30/4 1/5–31/5
Sensitive index 0.2675 0.0613 0.3765 0.5951 0.5951 0.2981

Table 2  Corn test parameters

Growth period Seeding Jointing Heading/filling Mature

Optimize period 7 8 9 10
Date 1/6–30/6 1/7–20/7 21/7–31/8 1/9–30/9
Sensitive index 0.257 0.2022 0.3237 0.2189
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Results and analysis

Algorithm optimality

In order to compare the performance of the MDADP, RGA, 
PSO, CSO and WOA algorithms, their optimality was com-
pared from four aspects: the optimality of the objective func-
tion, the stability of the algorithm, the convergence of the 
algorithm, and the solving speed of the algorithm.

To compare the optimality of the objective function, the 
sensitivity analysis of the parameters of the five algorithms 

was needed first. As shown in Table 3, the optimal value 
of the objective function for the MDADP was 6.76E + 07 
rmb, with no parameters to be calibrated. For the RGA, 
the optimal value of the objective function was 6.68E + 07 
rmb, with a population size of 100 and a crossover rate 
of 0.6 for pm, while the variation rate pe was 0.2. For 
PSO, the optimal value of the objective function was 
(6.67E + 07) rmb, at which time the population size was 
60, the inertia weight ω was 0.7, and the acceleration fac-
tor (c1 = c2) was 1.2. For the CSO, the optimal value of 
the objective function is 6.67E + 07 rmb, when the popu-
lation size was 80, MR is 0.4, CDC and SRD were both 

Table 3  Sensitivity analysis of MDADP, RGA, PSO, CSO and WOA

MDADP

Objective function

6.76E+07

RGA 

Population size Objective function Crossover pm Objective function Mutation pe Objective function

20 6.42E+07 0.3 6.32E+07 0.1 6.23E+07
40 6.35E+07 0.4 6.21E+07 0.2 6.68E+07
60 6.24E+07 0.5 6.33E+07 0.3 6.49E+07
80 6.55E+07 0.6 6.68E+07 0.4 6.38E+07
100 6.68E+07 0.7 6.54E+07 0.5 6.11E+07

PSO

Population size Objective function Inertia weight ω Objective function Acceleration factor 
(c1 = c2)

Objective function

20 6.11E+07 0.3 6.26E+07 1.0 6.54E+07
40 6.41E+07 0.4 6.31E+07 1.1 6.38E+07
60 6.67E+07 0.5 6.26E+07 1.2 6.67E+07
80 6.23E+07 0.6 6.52E+07 1.3 6.51E+07
100 6.44E+07 0.7 6.67E+07 1.4 6.48E+07

CSO

Population size Objective function MR Objective function CDC/SRD Objective function

20 6.35E+07 0.1 6.01E+07 0.2 6.53E+07
40 6.27E+07 0.2 6.18E+07 0.3 6.67E+07
60 6.51E+07 0.3 6.43E+07 0.4 6.66E+07
80 6.67E+07 0.4 6.67E+07 0.5 6.48E+07
100 6.62E+07 0.5 6.57E+07 0.6 6.53E+07

WOA

Population size Objective function Contraction factor a Objective function Spiral shape param-
eter b

Objective function

20 6.43E+07 1 6.49E+07 1 6.70E+07
40 6.56E+07 2 6.70E+07 2 6.63E+07
60 6.33E+07 3 6.52E+07 3 6.65E+07
80 6.62E+07 4 6.37E+07 4 6.48E+07
100 6.70E+07 5 6.25E+07 5 6.37E+07
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0.3. For the WOA, when the population size was 100, the 
optimal value of the objective function is 6.70E + 07 rmb, 
the initial value of convergence factor a was 2, and the 
shape parameter b was 1. Although the objective func-
tion values of the above algorithms are close, the MDADP 
was still slightly better than the other heuristic algorithm. 
At the same time, the MDADP did not need calibration 
parameters in the solution process, while the other four 
intelligent algorithms all had 2–3 parameters needing sen-
sitivity analysis. The essence of the MDADP algorithm is 
that many dynamic programs are nested in each other and 
the result is not affected by the additional parameters, so 
it has better operability.

According to the parameters measured in Table 3, the 
five algorithms were run 10 times to verify the stability 
of each algorithm. As shown in Table 4 and over 10 runs, 
the MDADP achieved an optimal value for the objective 
function, and still outperformed the RGA, PSO, CSO, and 

WOA for the optimal solution, the worst solution, the mean, 
and the standard deviation. Therefore, the results show that 
the proposed MDADP has better stability than the other 
algorithm.

Figure  6a shows the convergence trends of the five 
algorithms. It is known that the running of the MDADP 
algorithm is independent of the number of iterations of the 
algorithm, and the optimal objective function value can 
be obtained in one run. Therefore, the MDADP converged 
much faster than the RGA, PSO, CSO, and WOA. Figure 6b 
shows the run time of the five algorithms. Although running 
time of the RGA, PSO, CSO and WOA algorithms increased 
as the number of iterations increased, they still saved com-
pared with the MDADP. Therefore, the MDADP algorithm 
has the disadvantages of requiring large storage and a long 
computation time.

In general, although the running of the MDADP algo-
rithm takes longer, it is more outstanding in the optimization 

Table 4  Results of ten runs of 
five algorithms

Run MDADP RGA PSO CSO WOA

1 6.76E+07 6.42E+07 6.11E+07 6.35E+07 6.43E+07
2 6.76E+07 6.35E+07 6.41E+07 6.27E+07 6.56E+07
3 6.76E+07 6.24E+07 6.37E+07 6.51E+07 6.33E+07
4 6.76E+07 6.55E+07 6.23E+07 6.67E+07 6.62E+07
5 6.76E+07 6.68E+07 6.44E+07 6.62E+07 6.70E+07
6 6.76E+07 6.32E+07 6.26E+07 6.01E+07 6.49E+07
7 6.76E+07 6.21E+07 6.31E+07 6.18E+07 6.50E+07
8 6.76E+07 6.33E+07 6.26E+07 6.43E+07 6.52E+07
9 6.76E+07 6.58E+07 6.52E+07 6.62E+07 6.37E+07
10 6.76E+07 6.54E+07 6.67E+07 6.57E+07 6.25E+07
Best 6.76E+07 6.68E+07 6.67E+07 6.67E+07 6.70E+07
Worst 6.76E+07 6.21E+07 6.11E+07 6.01E+07 6.25E+07
Average 6.76E+07 6.42E+07 6.36E+07 6.43E+07 6.48E+07
Standard deviation 0 1.50E+06 1.52E+06 2.06E+06 1.29E+06
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Fig. 6  a Is the convergence trend of the five algorithms; b is the running solution time of the five algorithms



Applied Water Science (2023) 13:199 

1 3

Page 13 of 16 199

of the objective function, the stability of the algorithm and 
the convergence of the algorithm compared with RGA, PSO, 
CSO and WOA algorithms, resulting in better algorithm 
optimality.

Algorithm applicability

The applicability of the MDADP, RGA, PSO, CSO and 
WOA algorithms was compared and analyzed. The operation 
process and results of the parallel ‘reservoir and pumping 
station’ irrigation system are considered here.

Figure 7a and b show the water supply process of the SD 
and GT reservoirs after the optimization solution. It was 
obvious that the water supply trends of the two reservoirs 
obtained by the five algorithms were basically similar; there 
were only subtle differences in how much water was sup-
plied at each stage. Table 5 shows that the MDADP algo-
rithm obtained the largest total water supply and the small-
est water shortage. Compared with the RGA, PSO, CSO, 
and WOA algorithms, the MDADP algorithm increased the 
water supply by 0.3%, 0.9%, 2.5% and 1.0%, respectively, 
and reduced the water shortage by 2.8%, 7.3%, 18.4% and 
8.4%, respectively, while the total income of irrigation area 
increased by 1.2%, 1.3%, 1.3% and 0.9%, respectively.

Figure 7c and d show the changes in the storage capacity 
of the two reservoirs. The capacity curves obtained by the 
MDADP were lower than those by the RGA, PSO, CSO and 
WOA, especially for the SD Reservoir. It was also evident 
that at the end of the storage period of the SD reservoir, the 
MDADP guaranteed Vend = V0, while the other four heuristic 
algorithms were all Vend > V0. The re-analysis of Fig. 7e and 
f shows that the main reasons leading to the termination of 
the reservoir was that the agricultural water rights allocated 
to the SD Reservoir by the RGA, PSO, CSO, and WOA are 
too much. However, the total water supply of the final irriga-
tion system was less than that of the MDADP, indicating that 
the excess water rights allocated by the RGA, PSO, CSO, 
and WOA algorithms were stored in the reservoir, resulting 
in Vend > V0. It also meant that heuristic irrigation systems 
did not work as well as reservoirs and pumping stations, and 
scarce water was not used effectively.

In contrast, usually the initial set of solutions of a heu-
ristic algorithms was randomly generated in the feasible 
region, whereas for a linear constraint containing d decision 
variables, such as x1 + x2 + ... + xd ≤ B(B ∈ R) , if the intel-
ligent algorithm wants to deal with this constraint, it needs 
to construct a penalty function to ensure that the sum of the 
d decision variables was less than or equal to B. Obviously, 
satisfying the condition that the sum of d random numbers 
is equal to B is the strict, therefore, most of the solutions in 
the initial solution set ultimately satisfied the condition that 
the sum of d random numbers was less than B. The above 
was also the key reason for Vend > V0 after solving by the 

RGA, PSO, CSO and WOA algorithms. The MDADP algo-
rithm guaranteed Vend = V0, mainly because the essence of 
this algorithm was the multiple nested solution process of 
the DP algorithm, and according to the state transition equa-
tion of DP, the sum of d random numbers was guaranteed 
to be equal to B.

Table 6 shows the water supply guarantee rate and water 
shortage index of two reservoirs obtained by the five algo-
rithms. It was clear that the irrigation system should be as 
large as possible in terms of the guaranteed water supply 
and the water shortage index should be as small as pos-
sible. Compared with the RGA, PSO, CSO, and WOA, the 
MDADP improved the water supply guarantee rate by 0.2%, 
7.3%, 11.2% and 1.7%, respectively, and reduced the water 
shortage index by 3.9%, 19.4%, 2.0% and 26.0%, respec-
tively. For GT Reservoir, the water supply guarantee rate 
of the MDADP was increased by 2.0%, 14.1%, and 0.5% 
compared with RGA, PSO and WOA, respectively, while it 
decreased by 4.0% compared with the CSO. Compared with 
RGA and WOA, the water deficit index decreased by 11.2% 
and 26.7%, and increased by 30.3% compared with PSO and 
CSO. Therefore, the MDADP algorithm can be used to solve 
the model to obtain a higher water supply guarantee rate and 
a smaller water shortage index.

Overall, it was found that the proposed MDADP algo-
rithm was more reasonable than the RGA, PSO, CSO and 
WOA algorithms by analyzing the operation process and 
operation results of the parallel ‘reservoir and pumping 
station’ irrigation system. It was more suitable for solving 
the optimal allocation model of water resources in the joint 
operation of reservoirs and pumping stations.

Conclusion

Research on the optimal operation of reservoir water 
resources is of great significance importance for the compre-
hensive development and management of water resources. 
By focusing on several irrigation reservoirs and pumping 
stations, defining the hydraulic connection between reser-
voirs and pumping stations, and accounting for the restric-
tion of river agricultural water rights, a parallel ‘reservoir 
and pumping station’ irrigation system model for the optimal 
allocation of water resources was established, and a new 
MDADP algorithm was proposed and compared with the 
RGA, PSO, CSO and WOA heuristic algorithms.

The optimality analysis showed that the MDADP per-
formed better than the RGA, PSO, CSO and WOA in the 
optimality, stability and convergence of the objective 
function, moreover, the MDADP algorithm did not need 
the calibration parameter, and the operability of the algo-
rithm was also good. However, the MDADP algorithm 
also had the disadvantages of requiring large storage and 
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a long computation time, and needs additional methods 
to improve its performance. The applicability analysis 
showed that the MDADP algorithm was more effective 
than the above heuristic algorithms in improving the 
efficiency of water resources in terms of the scheduling 
process and the scheduling results of irrigation systems, 
increasing the total revenue of the whole irrigation area. 

Therefore, the MDADP algorithm is a practical optimiza-
tion algorithm to solve the complex water source engi-
neering joint dispatching problem, and popularization and 
application values.
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Fig. 7  a Is the water supply process of SD reservoir; b is the water 
supply process of GT reservoir; c is the storage capacity curve of SD 
reservoir; d is the storage capacity curve of GT reservoir; e is the 

water replenishment process of HH pumping station; f is the water 
replenishment process of SL pumping station
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