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Abstract
A variety of industries employ synthetic azo dyes. However, the biosphere is being damaged by the unused/leftover azo 
dyes, which pose a danger to all living things. Therefore, treating them to shield the environment from the potential harm 
of azo dyes is crucial. Bio-sorption is a cheap and effective mode for eliminating toxic dyes in the environment. The current 
work focused on synthesizing magnesium oxide (MgO) nanoparticles using an aqueous leaf extract of neem (Azadirachta 
indica). The XRD and SEM analyses of MgO nanoparticles indicated the crystalline nature of MgO nanoparticles with a 
cubic structure, and the size was around 90–100 nm. FTIR analysis showed the presence of a stretching frequency peak at 
550 cm−1, confirming the Mg–O bond. The surface analysis revealed the cluster form of the synthesized nanoparticles. The 
UV–visible absorption peak for MgO nanoparticles was found at 294 nm and band gap of 4.52 eV. In order to eliminate 
the Reactive Red 195 dye, MgO nanoparticles were used. At pH 4, 40 °C, 0.02% dye concentration, and 0.003 g/L catalyst 
amount, the highest degree of decolorization (91%) was seen. Decreased total organic carbon (TOC) and the chemical oxygen 
demand (COD) percent were 84.33% and 81.3%, respectively. The proposed mechanism of target dye degradation was also 
investigated. MgO NPs were found to be effective in their catalytic behavior toward the degradation of Reactive Red 195 
dye up to five cycles with almost no change in their catalytic activity.
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Introduction

Water is a primary and highly essential component of the 
ecosystem. Industrial and house wastewaters contain toxic 
and deadly chemicals threatening human well-being and 
the environment (Zhao et al. 2019). Numerous stages of the 
textile sector, like primary processing, use extensive water 
(Kiran et al. 2017). Because of the color, high chemical 
contents, biological oxygen needs, inorganic compounds, 
suspended particulate salts, total dissolved solids, and haz-
ardous substances, wastewater from the textile sector is par-
ticularly problematic (Gulzar et al. 2017; Kiran et al. 2017). 
In addition, topical pollutants, known as azo dyes (such as 
Reactive Red 195 dye), concern water supplies because they 
build up in water so that light cannot reach the underground 
water surface, hindering plant growth. Azo dyes are used to 
dye cellulosic, wool, and silk materials (Leyla et al. 2012). 
The dyed wastewater is discarded into water streams without 
proper treatment, contributing to environmental pollution. 

 *	 Shumaila Kiran 
	 shumaila.asimch@gmail.com

 *	 Hasan B. Albargi 
	 hbalbargi@nu.edu.sa

1	 Department of Applied Chemistry, Government College 
University, Faisalabad 38000, Pakistan

2	 Department of Physics, Faculty of Science and Arts, Najran 
University, 11001 Najran, Saudi Arabia

3	 Promising Centre for Sensors and Electronic Devices 
(PCSED), Advanced Materials and Nano-Research Centre, 
Najran University, 11001 Najran, Saudi Arabia

4	 Department of Zoology, The Islamia University 
of Bahawalpur, Bahawalpur, Pakistan

5	 Department of Textile Engineering, National Textile 
University, Faisalabad 37610, Pakistan

6	 Department of Materials, National Textile University, 
Faisalabad 37610, Pakistan

7	 Department of Electrical Engineering, College 
of Engineering, Najran University, 11001 Najran, 
Saudi Arabia

http://crossmark.crossref.org/dialog/?doi=10.1007/s13201-023-02000-6&domain=pdf
http://orcid.org/0000-0002-5229-6216


	 Applied Water Science (2023) 13:193

1 3

193  Page 2 of 16

In addition, azo dyes reduce the water oxygen concentration 
causing marine life and plant mortality (Rafique et al. 2022).

It is pretty concerning because the azo dyes will eventu-
ally be released into water bodies, where they would dam-
age the land, aquatic ecosystem, and subsurface water. Once 
these azo dyes enter the environment, their toxicity cannot 
be controlled effectively. Artificial colors pose serious 
health risks and significantly contribute to environmental 
degradation. Several organic dyes cannot break down eas-
ily because of their intricate aromatic nature (Bhatti et al. 
2008). Because they contain hazardous, non-degradable 
pollutants absorbed by surface water, sediment, and soil, 
textile effluents are regarded as the primary industrial con-
cerns (Yaseen and Scholz 2019). In Pakistan, wastewater 
from the textile industry is typically used as irrigation for 
growing crops. Researchers looking to make it easier for 
their recycling in the irrigation process or reuse inside the 
textile plant have focused increasingly on the treatment of 
these effluents due to the continued water shortage problem 
(Bhuiyan et al. 2016). Hence, it is essential that the fre-
quently used azo dyes for various textile operations should 
be treated before their final disposal into the water system. 
Researchers have developed multiple techniques to remove 
such pollutants from water. Filtration (Khandaker et al. 
2020), electroplating (Chen et al. 2020), membrane filtration 
(Hube et al. 2020), ion exchange process (Yan et al. 2020), 
adsorption (Zhou et al. 2019; Pang et al. 2023), and the use 
of nanoparticles (NPs) (Vaiano et al. 2018) are some of the 
different approaches that can be used to treat wastewater. 
The choice of an effective procedure for waste eradication 
is made more difficult by dyes' non-biodegradable constitu-
tion and resilience against oxidizing chemicals (Mahmoodi 
2013a). Among these wastewater treatment techniques, the 
utilization of NPs is quite intriguing and may be a unique 
technique with several potentials for treating wastewater 
(Naseer et al. 2016). This is due to these NPs remarkable 
electric, mechanical, visual, and physicochemical features 
(Nezhadheydari et al. 2019).

The design of novel catalysts at the nanoscale has become 
a thriving area of study and invention (Erumpukuthicka et al. 
2011). Metal or metal oxide NPs are gaining distinction 
due to distinct properties like porosity, smaller size, adsor-
bents, reducing agents, higher surface area, etc. (Kargozar 
and Mozafari 2018; Tyagi et al. 2018; Li et al. 2023). They 
exhibit unique physicochemical characteristics due to their 
strong reactivity, crystal form, substantial surface area, and 
nano-size effect. Therefore, NPs can combine with envi-
ronmental pollutants and heavy metals and convert them 
into the simplest products (Yu et al. 2019). NPs can be 
synthesized by three methods, e.g., chemical, physical, and 
bio-based synthesis (Kumar et al. 2013; Kiran et al. 2018). 
Despite their popularity, their benefits are limited by their 
heavy price and the frequent presence of toxic ingredients 

(such as solvent, reducing agent, and other chemicals) that 
might pose serious dangers to health and the environment. 
On the other hand, biological methods are nontoxic, highly 
efficient, simple to use, and most significantly, environ-
mentally beneficial (Kumar et al. 2013; Bauzar et al. 2016; 
Zhang et al. 2020). Recently, several research groups have 
successfully synthesized NPs via extracts obtained from 
single-celled creatures, such as microorganisms as well 
as from the extracts of plant materials (Duran et al. 2011; 
Gholizadeh et al. 2018; Rezazadeh et al. 2020). The bio-
molecules in the plants give the emerging nanostructures 
new characteristics and wonderful qualities (Makarov et al. 
2014). The production of numerous metals, and their oxides, 
nitrides, etc., is a biologically sustainable process. There 
is a dire need for such procedures using medically secure, 
environmentally harmless ingredients and available options 
to reduce or eliminate the costlier ways and the environmen-
tally damaging means in the synthetic sector (Ikram et al. 
2015, 2020; Nabi et al. 2022; Sepahvand et al. 2020).

Magnesium oxide (MgO) is a significant metal oxide 
because of its exceptional and distinctive electrical, heat-
ing, visual, mechanical, and chemical features (Fakhri and 
Adami 2014). MgO, a cheap metal oxide employed as a 
skilled accelerator in various organic conversions, has been 
used in commercial nanotechnology applications (Baharfar 
and Shariat 2014; Safaei et al. 2015). MgO nanoparticles 
(MgO NPs) possess an increased effective surface area, crys-
talline morphological characteristics, and highly activated 
sites. As a result, MgO NPs are utilized in various fields, 
like in catalysis, food goods, paints, superconductors, anti-
bacterial agents, photonics, sensor systems, and adsorbent 
materials (Abdukhaleq et al. 2020; Fouda et al. 2021; Saied 
et al. 2021; Sofi et al. 2021). Now, greener technologies that 
synthesize nanoparticles from natural origins like plants or 
plant extracts have been found as worthwhile substitutes 
for chemical processes. The addition of phytochemicals 
increases the antimicrobial property of MgO nanoparticles 
made from plant leaves extract (Bauzar et al. 2016; Aqeel 
et al. 2020). However, considering their diminutive stature 
and great sensitivity, NPs can penetrate consumable items 
via incorrect dumping in soil and water, which might harm 
one's health. In some previous studies, the cytotoxicity of 
MgO NPs has been established. For example, researchers 
found that the toxicity of MgO NPs caused cellular death 
in zebrafish embryos (Shah et al. 2015). Though MgO NPs 
toxicological consequences have been documented, their 
adverse effects have not yet been shown to be fatal; there-
fore, they are currently frequently used in various fields (Di 
et al. 2012).

Azadirachta indica (Neem) belongs to Meliaceae fam-
ily and tropical and subtropical contexts, including Paki-
stan, Nepal, Bangladesh, Sri Lanka, and India (Asefi et al. 
2010; Anumol et al. 2011). The phytochemicals present in 



Applied Water Science (2023) 13:193	

1 3

Page 3 of 16  193

Neem are nimbin, catechins, salannin, azadirachtin, cyclic 
trisulfide, cyclic tetrasulfide, and flavanones (Revathi and 
Thambidurai 2018; Venkataravansppa et al. 2018). Neem 
contains flavonoids, which are significant phytonutrients. 
Flavonoids are essential for anchoring nanoparticles and 
function as encapsulating and reducing agents (Verma et al. 
2016; Roy et al. 2017). Using bio-based synthesized MgO 
NPs to clean contaminants from polluted water is efficient 
(Sathish et al. 2022). With the least amount of energy and 
basic materials wasted, the invention of greener synthetic 
processes utilizing sustainable and environment-friendly 
materials, chemicals, and nontoxic agents is strongly advised 
(Patil et al. 2022; Sun et al. 2023).

Neem leaves are enriched with polyphenols (flavonoids), 
which act as reducing and capping agents. Hence using the 
neem leaves plant extract, there is no need to use chemical 
reducing agents, so it minimizes the number of chemicals 
for synthesizing MgO nanoparticles, making this approach 
sustainable and inexpensive. In this direction, we planned 
to work on synthesizing MgO NPs utilizing the neem leaf 
extract, followed by their characterization. MgO nanopar-
ticles were then employed to remediate Reactive Red 195 
(RR-195) dye. Reactive Red 195 dye was used as a model 
azo dye to optimize the reaction conditions at the laboratory 
level, so these optimal conditions can be effectively applied 
at the industrial level to remediate polluted water effectively. 
The optimal conditions were then applied to textile efflu-
ent to check the effectiveness of the studied method at the 
industrial level.

Materials and methods

The Reactive Red 195 dye (structural shown in Fig. 1) was 
purchased from Chaudhary Dyes and Chemicals in Faisal-
abad, Pakistan (Table 1).

The complete experimental layout is given in Fig. 2.

Sample collection and preparation

Neem (Azadirachta indica) leaves were gathered from the 
Punjab Forest Department in Faisalabad, Pakistan. Initially, 
the leaves were carefully washed with tap water and then 

distilled water to remove dirt and other things stuck to the 
leaves' surface. Next, the leaves were air-dried. Leaf extract 
was prepared by steaming about 30 g of fine leaves pow-
der in 300 mL of distilled water at 50 °C for 25 min. A 
yellow-colored solution was formed. The extract was stored 
for seven days in the fridge after being filtered by Whatman 
filter paper no. 1 (Nguyen et al. 2021).

Preparation of magnesium oxide nanoparticles

In a reaction vessel, leaf extract (5 mL) and distilled water 
(20 mL) were mixed and heated to 60 °C. Five grams of 
Mg(NO3)2 was introduced into it, and the reaction solution 
was heated at 70 °C with constant stirring. The formation of 
MgO NPs could be visualized by transforming the solution's 
color from yellow to brown. The synthesized MgO NPs were 

Fig. 1   Structure of C.I. Reactive Red 195 dye (C.I. 93,050–79-4)

Table 1   Characteristics of Reactive Red 195 dye (target dye)

Color index 
(C.I) name

M (g/mol) λmax Solubility Chemical 
structure

Reactive Red 
195

1168 540 nm Soluble in 
water

See Fig. 1

Fig. 2   Experimental layout
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centrifuged at 10,000 rpm for 10 min to remove impurities, 
and then, the pellet was re-dispersed in distilled water. Then, 
ethanol was used to clean the MgO NPs of contaminants 
before they were processed for a day at 45–50 °C (Kiran 
et al. 2018). The extract solution is supplemented with poly-
phenols, which help to stabilize metal salt nanoparticles as a 
stabilizing agent and also help to reduce them into nanopar-
ticles (Elumalai et al. 2015; Moavi et al. 2021). The whole 
procedure is picturized in Fig. 3. The possible interactions 
that occur during the manufacture of MgO nanoparticles 
between the bio-organic molecules and magnesium salt are 
given in Fig. 4.

Characterization of magnesium oxide nanoparticles 
(MgO NPs)

The prepared MgO NPs were identified by UV–visible and 
FTIR spectral analyses, SEM and XRD.

Application of MgO nanoparticles to clean 
up the Reactive Red 195 dye

Scanning of λmax

For scanning of λmax, absorbance values were measured. 
For this purpose, a series of dilutions of dye solution was 

prepared, and with the help of a UV–visible spectrophotom-
eter, absorbance was calculated.

Experimental procedure

MgO NPs (1 mg) were introduced to the reactive dye solu-
tion (10 ppm) in the reaction container. The pH was kept 
constant until 4 by adding 1 M NaOH/ 1 M HCl. After it, 
for 90 min, the reaction container was held on a hot plate at 
50 °C with a magnetic stirrer. A little aliquot was removed 
from the reaction's solution to check its absorbance after 
every 15 min using a UV–visible spectrophotometer (Kiran 
et al. 2018).

Optimization of experimental factors

Various reaction parameters such as dose of dye 
(0.01–0.05%), the amount of MgO NPs (1–5 mg), pH (4–9), 
and temperature (30–70 °C) parameters were optimized sim-
ilarly as mentioned above. The other variables were held 
fixed, while one changed at a time.

Fig. 3   Multiple phases in the 
preparation of MgO NPs by 
neem leaves extract: (a) extract 
preparation and (b) synthesis of 
MgO NPs
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Chemical analysis

Every experiment was run three times for the confirma-
tion of the results. The absorbance was observed at λmax 
(540  nm) using a UV–visible spectrophotometer. The 
effective percent decolorization of all parameters was 
estimated by measuring the solution absorbance. The 
equation given below was applied to get the percentage 
of decolorization:

Here I is the initial absorbance at zero time, and F is the 
final absorbance of the dye solution.

Treatment of textile ındustrial effluent

In this part, the conditions were optimized using Reactive 
Red 195 dye as a model dye and applied on textile efflu-
ent to check the effectiveness of MgO nanoparticles at the 

(1)Decolorization (%) =
[

(I − F)∕I
]

× 100

industrial level. The same method was adopted outlined 
above for Reactive Red 195 dye. The decolorization effi-
ciency is calculated using Eq. 1..

Mineralization study and kinetics study

Samples of dye (both treated and untreated) were assessed 
by estimating various parameters like COD and TOC val-
ues (Moorthy et al. 2015). The kinetics of the reaction was 
studied to find the order of the reaction.

Catalyst reusability

In this study's optimal conditions, the catalyst's reusabil-
ity was investigated. The reaction specimens were spun at 
2000–4000 rpm for 15 min or as soon as the catalyst accu-
mulated near the tube's bottom. Three acetone washes were 
performed on the deposited catalyst to eliminate all organic 
residues before it was employed in another catalyzed reac-
tion. After every round of the reaction, the catalyst was 

Fig. 4   Interactions that occur 
during the manufacture of 
MgO nanoparticles between 
the bio-organic molecules and 
magnesium salt
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separated and reused using the same procedure, and catalyst 
efficiency toward target dye decolorization was calculated.

Degradation study and statistical analysis

The degradation of the target dye was evaluated in several 
phases, with rupturing of old bonds and the creation of fresh, 
simple compounds (Suresh et al. 2014; Kiran et al. 2018). 
The results were computed by finding the standard error of 
means (Greenberg 1985).

Results and discussion

Characterization of MgO nanoparticles

Analysis using UV–visible spectroscopy

Figure 5a depicts the UV–Vis absorption spectrum for MgO 
nanoparticles from 200 to 800 nm. MgO nanoparticles made 
in a biogenic way showed a characteristic absorption peak at 
294 nm. Tauc's equation was employed to find the band gap 
of magnesium oxide.

where n is a constant equal to ½ for the direct band gap, 
h is Planck's factor, A is a fixed value, Eg is the bandgap 
energy, and α is the absorption coefficient. Using extrapola-
tion from the line, the band gap of the MgO nanoparticles 
is determined from Fig. 5b. The symbol A represents the 
optical absorption factor, while v stands for frequency. It 
was discovered that the bandgap was about 4.52 eV after 
extrapolating the graph.

(2)(�h�) = A(h� − Eg)n

FTIR analysis

MgO nanoparticles were also characterized by FTIR analy-
sis. Three characteristics were observed. One peak was at 
3455 cm−1 for the –OH group; one peak at a stretching fre-
quency of 1375 cm−1 for the C = O group demonstrates an 
aromatic ring's presence, and one peak at 550 cm−1 is char-
acteristic of the Mg–O bond (Fig. 6).

SEM and XRD analyses of MgO nanoparticles

SEM and XRD analyses were conducted to examine the 
MgO NPs' shape and diameter. This gives information about 
the nanoparticles' shape and size. The illustration beneath 
shows purified MgO nanoparticles as delicate, tiny, unified 
groupings with a spherical shell shape. MgO NPs were iden-
tified in an aggregate form (Fig. 7). An X-ray diffraction 
study was conducted to determine whether the MgO nano-
particles were crystallized or amorphous. It took the use 
of a sample material of MgO nanoparticles. XRD revealed 
our MgO NPs to be semicrystalline (Fig. 8). The results 
show that the MgO nanoparticles are in cubic phases with a 

Fig. 5   UV–visible absorption spectrum: (a) band gap and (b) of magnesium oxide nanoparticles

Fig. 6   FTIR spectrum of magnesium oxide nanoparticles
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Fig. 7   SEM photograph of 
MgO nanoparticles

Fig. 8   XRD image of MgO NPs
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mean crystallite diameter of almost 90–100 nm and do not 
contain any impurity phases (Kandiban et al. 2015; Aravind 
et al. 2016).

Determination of λmax for Reactive Red 195 dye

The absorbance value was scanned from 360 to 640 nm, 
with a pause of 20 nm wavelength to determine the wave-
length of the highest absorption value. Figure 9 indicates 
that the λmax is 540 nm.

Optimization of experimental conditions for decolorization 
of Reactive Red 195 dye

Effect of dye dose  The concentration of a dye is a signifi-
cant factor in its treatment using an appropriate catalyst. The 
influence of several initial dye concentrations on catalytic 
degradation is evaluated from 0.01 to 0.05%. The decol-
orization increased as the starting amount of dye rose from 
13.4% to 68.5% in 75 min. The maximum decolorization has 
occurred at a concentration of 0.02% (Fig. 10a). Up until a 
certain level, a rise in the amount of dye causes a rise in dye 
absorption on the catalyst's surface, and the reaction may be 
retarded with a further rise in dye level (Ghaffar et al. 2021). 
It results from the competition between dye particles for 
binding on the catalyst's outermost layer, thereby decreasing 
the number of active locations readily accessible for the cat-
alytic reagent (Raza et al. 2020). By increasing dye concen-
tration, the dye particles start acting as an inhibitor, which 
reduces catalytic activity (Kiran et  al. 2018). When more 
dye particles are present, self-association and clumping can 

result, which prevents dye particles from reaching the avail-
able catalytic region and lowers the reaction rates (Venka-
taravanappa et al. 2018; et al. 2018; David et al. 2020; Gola 
et al. 2021; Elashery et al. 2023).

Effect of  catalyst dose  The amount of the catalyst and 
aggregation of catalyst particles in high amounts also influ-
ence the decolorization of dye. Digestion of dye increases 
with increasing catalytic concentration, which is a feature 
of heterogeneous catalysis. Simply raising the catalyst con-
centration results in more active areas of the catalyst. A 
sequence of experiments was conducted using MgO NPs 
of various concentrations (0.001, 0.002, 0.003, 0.004, and 
0.005 g) to find the most appropriate catalytic dosage. It has 
been observed that the percentage decline has elevated from 
4.2% to 62.4%. Above the 0.003 g amount of MgO NPs, the 
rate of dye decolorization has not significantly increased. 
Therefore, 0.003  g/L of MgO NPs has been considered 
a suitable dose for decolorizing Reactive Red 195 dye 
(Fig. 10b). However, increased catalyst levels may result in 
turbidity look in its solution (Mahmoodi 2013b; Elashery 
et al. 2023). The rising decolorization value with increased 
catalyst quantity leads to accelerated growth throughout the 
energetic surface region. Over a certain amount of catalyst, 
the reaction rate decreases as the catalyst's binding sites, 
which were previously responsible for increasing the reac-
tion rate, become fewer in number (Mhmoodi et al. 2014; 
Tahir et al. 2023). Additionally, the response products are 
likely to degrade the catalytic effectiveness at its increased 
level, which will slow the reaction rate (Kamranifar et  al. 
2018; Prabhu et al. 2023). Furthermore, the reaction prod-
ucts may interfere with the catalyst's efficacy in its larger 
amount, which could cause the process to slow down or 
cease (Rafique et  al. 2018; Mahmoodi et  al. 2019; Foster 
et al. 2019; Kiran et al. 2022; Rasool et al. 2023).

Effect of  pH  There were tests done at varying pH levels 
from 4 to 9. The highest dye removal (75.5%) value was 
observed at pH 4 using MgO nanoparticles as a catalyst, as 
shown in Fig. 10c. The rate of dye decolorization decreased 
when pH rose from 5 to 9. As a result, pH 4 was the ideal 
value for the decolorization of the dye in the investigation. 
The dye solution's pH has a significant influence on the effi-
cacy of dye removal. Even a tiny pH shift can considerably 
affect the reaction's rate. Because of this, pH optimization is 
a crucial factor (Rafique et al. 2018). The MgO NPs surface 
can be protonated or deprotonated under the acidic or alka-
line medium (Rafique et al. 2021; Wang et al. 2021, 2022). 
Beyond a certain pH, a catalytic agent may accomplish no 
discernible decolorization (Khalid et al. 2013). The findings 
of the experiment agreed with the literature (Sattar et  al. 
2010; Ahuja et al. 2016; Lourens et al. 2023).

Fig. 9   Determination of λmax by maximum absorbance for Reactive 
Red 195 dye
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Effect of  temperature  The temperature effect on the 
decolorization of Reactive Red 195 dye was calculated at 
30–70  °C. The experiments were left to run for 90  min. 
The maximum decolorization (91.2%) was seen at 40  °C 
(Fig. 10d). Reactive Red 195 dye's decolorization effective-
ness in this treatment method was gradually decreased as 
the temperature rose (Kiran et al. 2020). At higher tempera-
tures, the adsorption capacity is reduced, and this was likely 
as a result of the procedure of sintering and temperature 
increase, which results in the reduction in surface area of 
the catalyst for alteration in the catalyst's three-dimensional 
shape, which may hinder the active binding of substrate, 
resulting in decreasing the reaction rate (Kiran et al. 2018; 
Khalil et al. 2021). It could be because the sintering process 
with increased temperature leads to a reduction in the cata-
lytic surface, which lowers the catalyst's ability to adsorb 
substances (Lafta 2015; Mohammad et  al. 2016). The 
attachment of dye particles to the catalytic surface is typi-
cally retarded by a higher temperature because this could 
change the three-dimensional orientation of nanoparticles 
(da Silva et al. 2019; Jaina et al. 2023).

Application of optimized conditions for treatment of textile 
effluent

The experiments were conducted at the optimized experi-
mental conditions (pH 4, MgO NPs dose 3 mg; temperature 
40 °C, time 50 min) of catalytic treatment using Mg-NPs as 
a catalyst to determine the decolorization potential of tex-
tile industrial effluent. The textile effluent was decolorized 
(85.1%) by Mg-NPs as a catalyst (Fig. 11) but showed less 
decolorization (%) potential as was observed for Reactive 
Red 195 dye (91%) by the same treatment. Rezaee et al. 
(2008) employed the photo-Fenton method to decolorize tex-
tile wastewater containing various reactive dyes and reported 
that the effluent could be decolored up to 80%. According to 
Rocher et al. (2008), the dye decolorization process relies 
mainly on the dye's characteristics and the adsorbent. As a 
result, MgO NPs exposure with higher decolorization per-
centages may result in the adsorption of tiny dye molecules 
on their surface (Jindarom et al. 2007; Fouda et al. 2021; 
Aziz et al. 2023). According to Nga et al. (2013), the electro-
static interaction among the negatively charged particles of 
the dyes and the positive charges of the sites for adsorption 
on the outer layer of NPs is the cause of the elimination of 
dye color caused by NP treatment.

Fig. 10   Effect of (a) dye concentration, (b) MgO nanoparticles con-
centration, (c) pH (d) temperature on decolorization (%) of Reactive 
Red 195 dye using MgO nanoparticles

▸
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Measurement of quality assurance parameters

The effectiveness of quality standards like COD and TOC 
was investigated by MgO nanoparticles. It was shown that 
the elimination (percent) of the two water quality meas-
ures increased as the response time increased during the 
evaluation of TOC & COD of the treated Reactive Red 195 
dye sample. The COD and TOC (in percent) decline was 
reported to be 84.33 and 81.3, respectively (Fig. 12). There-
fore, it could be inferred that MgO NPs ensure dye break-
down by lowering COD and TOC of the solution in addition 
to removing color. The fact that both values have decreased 
by a certain percentage shows that our dye molecule was 
decolored and destroyed. The literature also supports these 
findings (Mahmoodi et al. 2018; Sela et al. 2020).

Kinetics study

Different methods can study dye degradation. One of the 
important ways to describe the degradation of Reactive Red 
195 dye against catalyst dosage (MgO NPs) is received by 
applying kinetic interpretation to determine the order of dye 
degradation reaction. For this purpose, a linear data fitting 
model (LDFM) was applied to the Reactive Red 195 dye 
decolorization spectrometric data against the catalyst for 
the execution of results that make the reaction order clear 
(Mahmoodi et al. 2007; Mahmoodi et al. 2010; Mahmoodi 
et al. 2015).

Figure 13a shows that the graph is plotted between dye 
conc. on the y-axis and time on the x-axis. Figure 13a shows 
different dye concentrations at different intervals of time. 
The straight line represents the linear fitting of experi-
mental dye degradation data for kinetic interpretation. It 
was observed from the graph plot that data rarely follow a 
straight line. This pattern shows that dye degradation does 
not follow zero-order reaction kinetics Chandekar et al. 
2023).

Figure 13b graph is plotted between time on the x-axis 
and ln[dye] along the y-axis to determine the order for the 
dye degradation by using active catalytic grains following 
the linear data fitting model. Similarly, Fig. 13c represents 
the graph between time and 1/ln[dye] to check dye degra-
dation order against the catalyst used for the reaction. The 
R2 values for zero, first, and second order were found to be 
0.8458, 0.9857, and 0.9556, respectively, as shown in the 
graph. The highest R2 values obtained in Fig. 11b represent 
that dye decolorization reaction using active catalyst follows 
first-order reaction kinetics.

Dye degradation study

Azo dye is a big class of dyes, and Reactive Red 195 belongs 
to it. In the degradation of dye firstly, the azo bond breaks 
down as displayed in the figure given below (Fig. 14). Then, 
desulfonation and deamination took place. CO2, SO2, NO3

−1, 
NH4

+, etc., are end products (David et al. 2020; Gola et al. 
2021). The adsorption method and accelerated dye degrada-
tion are the basic probable methods for encapsulated nano-
particles. Electron transport might be used to explain the 
decolorization reactions. The potential of the substances to 
provide electrons and the dye molecule's aptitude to receive 
them are strongly related to the catalytic activity of the 
encapsulated MgO NPs. The dye is firstly affixed to the 
encapsulated MgO NPs' face. Following sorption, the cap-
ping reagent made of polyphenolic substances functions as 
a potent nucleophilic substance, while the dye component 
functions as an electrophilic reagent (Yu et al. 2022). The 
MgO NPs in a solution serve as a conduit, transporting the 
electrons needed for the dye molecules to be destroyed from 

Fig. 11   Effect of catalytic treatment of MgO nanoparticles on decol-
orization of textile Industrial effluent at optimized conditions

Fig. 12   Effect of catalytic period of interaction on water quality fac-
tors
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the capping reagent to the dye molecule (Venkataravanappa 
et al. 2018; Kale et al. 2018; Raza et al. 2020).

Catalyst reusability

After every reaction round, the catalyst was separated and 
reused using the same procedure. 91–87% of the reac-
tion's efficiency was produced without problems (Table 2). 
According to the outcome, the catalyst's effectiveness was 
not significantly impacted by reuse. Recyclability is essen-
tial when assessing catalytic effectiveness (Kalaiarasan 
et al. 2021). The MgO catalyst can be seen to exhibit 90% 
degradation in each of the five phases, demonstrating the 
chemically stable nature of the synthesized catalyst in an 
aqueous solution (Vishakar et al. 2021; Chandekar et al. 
2023). As evidence of the chemically stable nature of MgO 
NPs (prepared via a biogenic way using water as a solvent), 
our investigation's catalyst reusability for 4 cycles stayed 
at 87%.

Practical/Future implications of the study

The entire research was conducted in a laboratory, where 
Azadirachta indica leaf extract was used to create MgO 
nanoparticles, which were then used to accelerate the 
breakdown of the Reactive Red 195 dye. This laboratory 
work can be applied on a large scale for the wastewater 
treatment of industrial dyes. With the uses of this study 
work, we can eliminate not merely green waste but effluent 
that may be processed as well inexpensively and water that 
could be employed for various uses without having to go 
through costly treatment methods.

Conclusion

Green synthesis of nanoparticles is being made possible by 
the rapid rise in awareness of less hazardous, sustainable, 
and environmentally friendly approaches. Because plant 
extracts are rich in reducing and capping agents, the num-
ber of chemicals needed to make metal oxide nanoparticles 
was minimized. Neem (Azadirachta indica) leaves aqueous 
extract synthesized MgO NPs. The produced nanoparticles 
have a cubic structure, are crystalline, and have a size of 

Fig. 13   Absorbance data fitting of Reactive Red 195 dye reduction carried out by MgO NPs catalyst to the (a) zero-, (b) first-, and (c) second-
order reaction kinetics
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about 60 nm. The Mg-O bond's existence was verified by 
FTIR analysis. The generated nanoparticles' cluster shape 
is shown via surface examination. Additionally, synthetic 
MgO NPs were utilized to confiscate the renowned Reac-
tive Red 195 dye used in many textile processes. Param-
eters were optimized by examining the effects of tempera-
ture, pH, dye concentration, and NP content. The highest 
decolorization was at 0.02% concentration, pH 4, 40 °C 

temperature, and 0.003 g/L catalyst dosage. TOC and COD 
levels have been found to have decreased by 84.33% and 
81.3%, respectively. The degradation of our dye was 87% 
when the catalyst was recycled up to four times. The tar-
get dye's decomposition process led to the production of 
less toxic and simpler related chemicals. MgO NPs are a 
promising catalyst due to their wide application, ease of 
handling, workability, and better yields. In light of this, 
it can be inferred that MgO nanoparticles made using a 
greener process could be utilized as a magnetic catalyst 
to break down other dyes. The toxic effects of synthetic 
dyes in wastewater can be reduced by using these MgO 
nanoparticles to remove other synthetic dyes.

Fig. 14   Proposed degradation 
pathway of RR-195 dye

Table 2   Investigation of the recyclability of the catalyst

Recycle time 1 2 3 4

Yield (%) 91% 90% 88% 87%
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