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Abstract
MPs are widely found in various environments. PS is the second most common microplastic in sediments, freshwater, soil, 
and coastal ecosystems. S. cerevisiae was studied as a biocoagulant due to its advantages such as ease of use, non-toxicity, 
large-scale cultivability and low cost. The aim of this study was to evaluate the efficiency of S. cerevisiae in removing PS 
from aqueous solutions. BBD was used to determine the optimal removal conditions. The MPs were washed, dried, crushed, 
sieved, and kept in a closed container to avoid exposure to light and moisture. PS removal was measured under various 
parameters such as the dose of S. cerevisiae (100–300 mg/L), the concentration of PS (200–900 mg/L), and the pH (4–10). 
The suspension of PS and S. cerevisiae was stirred and subjected to variable speeds to disperse yeast cells and contact with 
PS particles. The formed clots were settled under static conditions, and the suspended MPs in the aqueous solution were 
measured by filtering through Whatman filter paper and recording its weight after drying. The maximum PS removal effi-
ciency was 98.81% under optimized conditions, i.e., the PS concentration of 550 mg/L, the yeast dose of 200 mg/L, and the 
pH of 7. With regard to the mentioned results, it can be said that S. cerevisiae can be used as a natural and environmentally 
friendly biocoagulant to remove PS.
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Abbreviations
MPs	� MPs
PS	� Polystyrene
S. cerevisiae	� Saccharomyces cerevisiae
BBD	� Box–Behnken design
FT-IR	� Fourier-transform infrared spectroscopy

EDX	� Energy-dispersive X-ray
FESEM	� Field emission scanning electron 

microscopy
ANOVA	� Analysis of variance

Introduction

Plastics used throughout life are made of organic and inor-
ganic raw materials such as silicon, nitrogen, hydrogen, car-
bon, oxygen and chloride. Raw materials for making plas-
tic are extracted from natural gas, coal and oil (Shah et al. 
2008). According to the reports, the global production of 
plastic follows an increasing trend, so that their amount is 
expected to reach 445.25 million tons in 2025 from 1.5 mil-
lion tons in 1950 (Rout et al. 2022). Plastics provide dura-
ble, lightweight, cheap and strong products, which is why 
around 300 million tons of plastic products are produced 
worldwide. Due to low recycling, 90% of plastics are dis-
carded in aquatic environment (Du et al. 2022). Plastics in 
the environment can break down into smaller particles due 
to a process called photodegradation, which is caused by 
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exposure to sunlight. This process can cause the plastic to 
become brittle and crack, leading to the formation of micro-
plastics. Temperature can also play a role in the breakdown 
of plastics, as higher temperatures can accelerate the rate 
of degradation. Additionally, other factors such as wind, 
water, and mechanical stress can also contribute to the frag-
mentation of plastics into microplastic particles (Bonyadi 
et al. 2022a, b, c). Microplastic particles were first detected 
in the Sargasso Sea, an area in the North Atlantic Ocean. 
The term “microplastic” was first published in the scientific 
literature by Bayo et al. (2020) (Bayo et al. 2020). As an 
emerging pollutant, MPs may be more harmful than large 
plastic (Zhou et al. 2021). These emerging pollutants absorb 
other pollutants such as pharmaceuticals and personal care 
products (Esmaili et al. 2023), nanoparticles (Bonyadi et al. 
2022a, b, c; Bonyadi et al. 2023), pesticides and herbicides 
(Pirsaheb et al. 2013), and heavy metals (Davodi et al. 2019). 
MPs enter the environment in two primary and secondary 
forms, which enter the environment directly from raw mate-
rials, and secondary, which are caused by the decomposition 
of large plastics by environmental factors such as sunlight, 
wind, and water (Napper et al. 2015). Due to their small size 
and sharp ends, MPs cause damage and inflammation in the 
organs of marine organisms. Also, due to their similarity to 
natural prey, MPs are ingested by organisms and cause mal-
nutrition and reproductive disorders. In a study, it was dem-
onstrated that MP can be transported through the gut into 
the circulatory system of aquatic species (Sun et al. 2019). 
These emerging pollutants accumulate in the body of marine 
organisms and enter the human body through the food chain 
(Okoye et al. 2022). MPs in various types, including poly-
styrene, polyethylene, polyvinyl chloride, polypropylene, 
and others, are released into seawater, fresh water, coastal 
waters, sediments, soil, foods, and even the human body [7, 
8]. Polystyrene is the second most common microplastic in 
sediments, freshwater, soil, and coastal ecosystems, widely 
used in containers, protective packaging, lids, and bottles 
(Sun et al. 2019; Yilimulati et al. 2021). The mitigation of 
environmental pollution through the removal of organic 
pollutants from wastewater has emerged as a promising 
approach. Over the past few years, several studies have been 
conducted to explore the degradation of various pollutants 
through different techniques (Toolabi et al. 2017, 2018). So 
far, the removal of MPs has been done by different tech-
niques such as membrane ultrafiltration (Gonzalez-Camejo 
et al. 2023), membrane bioreactor (Bayo et al. 2020), filtra-
tion (Bitter et al. 2022), rapid sand filtration (Bitter et al. 
2022), sedimentation and disinfection. Among these, meth-
ods based on coagulation and flocculation mechanisms are 
more common due to the formation of large flocs of MPs 
that are removed from water by sedimentation. In a study, it 
has been proven that the coagulation process was effective in 

removing polyethylene MPs (Bayarkhuu et al. 2022). Using 
chemical coagulants to remove these pollutants causes envi-
ronmental and health problems. The problems caused by 
the use of chemical coagulants in water treatment include 
the production of large amounts of sludge, the indestruct-
ibility of chemical compounds, having residues in water, 
biological accumulation in the body of organisms, and 
negative effects on human health such as the occurrence of 
Alzheimer’s disease and dementia (Mazloomi et al. 2018). 
Therefore, these problems have caused the use of biologi-
cal coagulants to be considered as a suitable alternative to 
chemical coagulants. Microorganisms can remove emerging 
pollutants from aqueous solutions through mechanisms such 
as biological decomposition, biosorption, and biocoagula-
tion. Biological decomposition breaks down pollutants into 
simpler compounds, while biosorption involves adsorbing 
pollutants onto the surface of microorganisms (Nasoudari 
et al. 2021) The advantage of using biocoagulants includes 
positive features such as compatibility with the environment, 
cost-effectiveness, and biodegradability (Amran et al. 2021; 
Bonyadi et al. 2022a, b, c). Yeast, belonging to the family 
of unicellular fungi, is widely present in nature (Yang et al. 
2014). S. cerevisiae, which is known as baker’s yeast, in the 
processes of removing pollutants from the environment due 
to its advantages such as ease of use, non-toxicity, ability 
to be cultivated on a large scale and low cost (Hadiani et al. 
2018). Skaf et al. (2020) investigated the removal of micro-
plastic particles from simulated drinking water through alum 
(Skaf et al. 2020). Zhang et al. (2020) showed that enzymes 
extracted from Aspergillus fungus minimize polyethylene 
microplastic particles through biodegradation (Zhang et al. 
2020). Sánchez (2020) investigated the potential of fungi to 
degrade petroleum polymers. According to its results, fungi 
can use MPs as a source of carbon and energy. Also, due to 
having an enzyme system with the ability to detoxify pollut-
ants and the ability of their cells to penetrate three-dimen-
sional layers, it can be said that fungal species have a high 
potential in reducing microplastic pollution (Sánchez 2020). 
Cunha et al. (2020) used microalgae based on biopolymers 
to remove nano and MPs (Cunha et al. 2020). S. cerevisiae 
is an effective tool for removing pollutants and microplastics 
from the environment due to its ability to adhere to micro-
plastic particles and remove them through a process called 
biocoagulation. This yeast has been used in various biotech-
nological applications (Ramavandi et al. 2019; Sadeghi et al. 
2019; Mazloomi et al. 2021), making it a promising and 
environmentally friendly solution for pollutant removal.

Therefore, the removal of polystyrene MPs by S. cer-
evisiae from aqueous solutions is important. Further, the 
characteristics of S. cerevisiae and polystyrene were inves-
tigated by FESEM, EDX and FTIR tests.
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Materials and methods

Chemicals and reagents

Commercial grade plastic materials were prepared from 
Pishgaman Plastic Company. S. cerevisiae (ATCC 9763) 
was obtained from Iran Science and Technology Research 
Organization. The chemicals were obtained from Merck, 
Germany.

Preparation of PS MPs

First, the plastic granules were washed with concentrated 
hydrochloric acid. Then, they were dried in the oven at a 
temperature of 60 °C for 24 h. Then, the plastic granules 
were crushed into small particles and sieved in sizes less 
than 100 µm. The MPs were kept in a closed glass con-
tainer in a dark environment to avoid exposure to light and 
moisture.

Design of experiments

In this study, the main parameters, such as pH (4–10), S. cer-
evisiae dose (100–300 mg/L), and initial PS concentration 
(200–900 mg/L), were tested (Table 1). The size of micro-
plastic in all samples was less than 100 µm. All experiments 
were done in a 300-ml flux containing 200 ml of reaction 
mixture.

All tests were done at room temperature. At first, based 
on the parameters defined in Table 1, 200 ml of reaction 
mixture containing the different amounts of PS and S. cer-
evisiae was prepared. Then, the prepared suspension was 
subjected to variable speed of 400 rpm for 1 min, to disperse 
yeast cells and contact with PS particles. Subsequently, in 
order to promote the formation of sizable clots, the suspen-
sion was agitated at 100 rpm for a duration of 15 min. Upon 
completion of this stage, the mixture was transferred to an 
Imhof funnel and allowed to settle undisturbed for a period 
of 30 min, facilitating the formation of clots. The superna-
tant was filtered using Whatman paper to measure the sus-
pended MPs in the aqueous solution, and then filter paper. It 
was dried in an oven at 60 °C for 24 h and the weight of the 

paper was recorded (Zhou et al. 2021). PS removal efficiency 
was calculated by the following formula:

where M1 and M2 are PS weight before and after the removal 
process, respectively.

Modeling PS removal

This study was designed applying the response level method, 
BBD, to optimize the removal efficiency of microplastic by 
S. cerevisiae. The quadratic model, suggested by BBD, was 
expressed as the following formula:

In this formula, Y, βi, βij, βii, β0, and xj or xi, respectively, 
express predicted response, regression coefficients for linear 
impacts, interaction coefficients, quadratic coefficients, the 
constant coefficients, and coded values of factors (Anbarani 
et al. 2023).

Results and discussion

Characterization

FT‑IR

Figure 1a illustrates the FT-IR spectra for PS before removal 
process. The peak at 807.87 cm−1 was associated with the 
presence of a benzene ring in PS, which disappeared after 
coagulation (Zhou et al. 2021). The peak at 1656.29 cm−1 
indicated the presence of C=O in PS (Yao et al. 2023). The 
band appeared at 2926.04 cm−1 is related to C–H asymmet-
ric stretching (Lin et al. 2020). The peak at 3377.56 cm−1 
was attributed to the O–H stretching vibration (Du et al. 
2022). The peak at 1402.20 cm−1 introduces the PS carbon 
chain. The peak appeared at 1241.07 cm−1, which corre-
sponds to the ester groups in PS (Sun et al. 2021).

Figure 1b represents the FT-IR spectra after the removal 
process. The C=O peak for the flocs shifted from 1656.29 to 
1657.08 cm−1 (Lu et al. 2021). After the elimination process, 
the O–H peak changed to 3404.22 cm−1 (Chen et al. 2016). 
The peak at 1152.62 cm−1 indicates ether and ester groups. 
In fact, O–H and ester provide an active site for the attach-
ment of coagulant particles (Wang et al. 2023; Onukwuli 
et al. 2021). A new peak appeared at 1601.48 cm−1, which 
confirms the presence of (C=O–) group. Based on previous 
studies, (O–H) and (C=O–) groups offer evidence of micro-
plastic removal by yeasts (Zhang et al. 2020). The change 
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Table 1   Range and levels of main factors applied for the PS removal

Factor Variable level

Code − 1 0 + 1

PS Conc. (mg/L) A 200 550 900
S. cerevisiae (mg/L) B 100 200 300
pH C 4 7 10
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in the peak from 1402.20 to 1402.06 cm−1 was caused by 
a decrease in carbon content in the  sludge. The peak at 
2923.21  cm−1 represents the C-H group, which did not 
change significantly compared to before removal.

FESEM

The microscopic morphology of S. cerevisiae and PS after 
elimination is represented in Fig. 2. According to Fig. 2, 
PS particles are accumulated on the surface of S. cerevisiae 
fact, the pores of S. cerevisiae are a suitable space for keep-
ing PS particles (Machado et al. 2008). Hydrophobins are 
proteins produced by yeasts. Negatively charged MPs can 
bind to the hydrophobin surface. As a result, large spherical 
clots are produced. Therefore, it can be said that the surface 
charge neutralization process has occurred. Usually, due to 
being hydrophobic, yeasts have unique properties such as 
high adhesion, firm structure, and suitable surface activity 
that enable attachment to plastic surfaces. The effect of yeast 
on plastic includes changes in molecular weight, elasticity, 
crystallinity and fragmentation of functional groups on the 
plastic surface (Sánchez 2020). This evidence proves that S. 
cerevisiae acts as a coagulant.

EDX

The technique of energy-dispersive X-ray spectroscopic 
patterns (EDX) was used to analyze the elements of PS 
particles. Figure 3a–b shows the EDX of PS particles 
before and after removal process. In this analysis, the 
percentages of carbon, nitrogen, oxygen and phosphorus 

elements are mentioned. As shown in Fig. 3a, the per-
centage of carbon in PS particles before the coagula-
tion process was 88.09%, and other elements accounted 
for small percentages. It can also be seen carefully in 
Fig. 3b that the percentage of carbon in the mixture of 
PS and S. cerevisiae has decreased and other elements 

Fig. 1   FTIR spectra of a before 
and b after PS removal

Fig. 2   FESEM images of the floc. PS and S. cerevisiae 
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have increased. So that the amounts of carbon, oxygen, 
nitrogen and phosphorus in the studied samples were 
45.88%, 37.83%, 14.95%, and 1.34%, respectively. The 
high content of carbon and oxygen facilitates the forma-
tion of hydrogen bonds with the coagulant and improves 
the ability of PS to bridge between clots or absorb them 
(Yao et al. 2023).

Response model

In this test, the effect of S. cerevisiae on PS removal from 
aqueous media was investigated. Table  2 indicates PS 
removal by S. cerevisiae.

Fig. 3   EDX spectrum of PS a before and b after PS removal

Table 2   BBD matrix for PS 
removal by oak seed

Run no Coded variable Removal (%) Run no Coded variable Removal (%)

A B C A B C

1 200 200 4 73.5 10 550 200 7 98.81
2 200 200 10 88.25 11 550 200 7 87.81
3 200 100 7 59.75 12 550 300 4 65.81
4 200 300 7 51.25 13 550 100 4 50.45
5 550 100 10 51.6 14 900 200 4 75.38
6 550 300 10 84.4 15 900 300 7 63.66
7 550 200 7 88.45 16 900 200 10 71.5
8 550 200 7 90.63 17 900 100 7 27.77
9 550 200 7 92.9

Table 3   Statistical adequacy 
evaluation of models

Source Sequential p value Lack of Fit p value Adjusted R2 Predicted R2

Linear 0.4919 0.0030 − 0.0293 − 0.4204
2FI 0.6889 0.0019 − 0.1627 − 1.3611
Quadratic < 0.0001 0.4385 0.9444 0.8014
Cubic 0.4385 0.9473
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Based on Table 2, the lowest and highest PS removal effi-
ciency was 27.77% and 98.81%, respectively. The experi-
mental findings for 2FI, linear, cubic and quadratic models 
were statistically estimated to determine the best model. 
Table 3 exhibits the decision of the statistical adequacy of 
the models.

Table 4 demonstrates the quadratic model coefficients of 
PS elimination by S. cerevisiae particles. Table 4 shows the 
fit of the quadratic model (QM) to the experimental data.

From Table 4, the QM of PS removal pursuant to the 
coded factors is presented in Eq. (3):

(3)

Removal % = 91.72−4.32A + 9.44B + 3.83C
+ 11.10AB−4.66AC 4.36BC
−13.51A2−27.60B2−1.05C2

Accordingly, each model consists of two variable and 
fixed components. With regard to the various laboratory 
parameters, the elimination rate was predicted to be 91.72%. 
The coded factors of A, B, and C had the coefficients of 
− 4.31, + 9.44, and + 3.83, respectively. The dose of S. cer-
evisiae (code B) had the greatest effect on the removal effi-
ciency with a coefficient of 9.44. AB had the highest interac-
tion effect with a coefficient of 11.1 and B2 had the highest 
square effect with a coefficient of 27.6. Table 5 demonstrates 
the analysis of variance (ANOVA) for the QM of PS elimi-
nation by S. cerevisiae particles.

The values of R2, predicted R2, adjusted R2, and adequacy 
precision were determined 0.97, 0.80, 0.94 and 18.87, 
respectively. Based on Table 5, the p value for all the coded 
factors, including S. cerevisiae dose, PS concentration, 
and pH, was obtained to be less than 0.05. Therefore, all 

Table 4   Coefficients of 
estimation for the QM of PS 
removal by saccharomyces 
cerevisiae 

Factor Coefficient estimate df Standard error 95% CI low 95% CI high VIF

Intercept 91.72 1 2.04 86.9 96.54
A-Conc − 4.31 1 1.61 − 8.11 − 0.4954 1
B-Dose 9.44 1 1.61 5.63 13.25 1
C-pH 3.83 1 1.61 0.0167 7.64 1
AB 11.1 1 2.28 5.71 16.49 1
AC − 4.66 1 2.28 − 10.05 0.73 1
BC 4.36 1 2.28 − 1.03 9.75 1
A2 − 13.51 1 2.22 − 18.76 − 8.26 1.01
B2 − 27.6 1 2.22 − 32.85 − 22.35 1.01
C2 − 1.05 1 2.22 − 6.3 4.2 1.01

Table 5   ANOVA for the QM of PS elimination by S.cerevisiae 

Model Sum of 
squares

df Mean square F-value p value

5834.72 9 648.30 31.22 < 0.0001
A-Conc 148.26 1 148.26 7.14 0.0319
B-Dose 713.48 1 713.48 34.36 0.0006
C-pH 117.12 1 117.12 5.64 0.0492
AB 492.62 1 492.62 23.72 0.0018
AC 86.77 1 86.77 4.18 0.0802
BC 76.04 1 76.04 3.66 0.0972
A2 768.51 1 768.51 37.01 0.0005
B2 3207.99 1 3207.99 154.50 < 0.0001
C2 4.66 1 4.66 0.2246 0.6500
Residual 145.35 7 20.76
Lack of Fit 66.52 3 22.17 1.13 0.4385
Pure Error 78.83 4 19.71
Cor Total 5980.07 16
R2 0.97 Predicted R2 0.80
Adjusted R2 0.94 Adeq Preci-

sion
18.87

Fig. 4   Distribution of experimental versus predicted removal for PS 
by S. cerevisiae 
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three variables are significant. In this model, the difference 
between R2 and predicted R2 was less than 0.2. Therefore, 
this model is correct. Figure 4 illustrates actual versus pre-
dicted removal, showing the adequacy of the model to pro-
vide a good prediction for PS removal.

The effect of main parameters on removal efficiency

Figure 5 indicates the impact of important parameters, con-
taining S. cerevisiae dose, PS concentration, and pH and 
on the removal rate. It is necessary to note that to express 
the effect of one parameter on a response; other factors are 
fixed at the zero level. For example, when the pH variable 
increases from level 1 to + 1, other variables such as S. cer-
evisiae dose and PS concentration are constant at zero level.

Adsorbent dose effect

Determining the appropriate dose for S. cerevisiae is impor-
tant. According to Fig. 5a, the highest PS removal efficiency 
(98.81%) was discovered at the dose of 200 mg/L S. cer-
evisiae (p value < 0.05). Generally, with the increase in S. 
cerevisiae dosage, the removal rate of PS enhances. The 
reason for the low removal efficiency can be explained as 
small, fragile and unstable flocs are formed in low dosages 
of yeast. Therefore, the removal of microplates is reduced 
due to the suspension of flocs and their weak sedimentation. 
By increasing the dose of S. cerevisiae, yeast cells linked to 
MPs stick together and form larger flocs, which leads to their 
rapid sedimentation and high efficiency (Ma et al. 2019). 
Due to its hydrophobin properties, S. cerevisiae can adhere 
to hydrophobin substrates through cell penetration into the 
layers of MPs (Sánchez 2020). Frantz et al. (2020) per-
formed coagulation and flocculation using shrimp waste, and 
the results showed that the percentage of turbidity removal at 
a dose of 200 mg/L of coagulant was approximately 100%, 
but at coagulant doses higher than 200 mg/L, the removal 
decreased (Frantz et al. 2020). Machado et al. (2008) inves-
tigated the removal of heavy metals by S. cerevisiae. The 
results showed that at the dose of 0.25 g/L, sedimentation 
was weak, but at the dose of 0.5 g/L, complete sedimenta-
tion occurred. This evidence is consistent with the concept 
of “critical cell density” proposed by Miki et al. 1982 (Miki 
et al. 1982). “Critical cell density” means that the presence 
of a low dose of S.cerevisiae cells limits the possibility of 
attachment and the rate of coagulation is practically zero 
(Machado et al. 2008). In a study, yeast enzymes could 
shorten the length of microplastic polyethylene chains and 
eliminate or reduce MPs (Restrepo-Flórez et al. 2014). In 
another study, fungi can remove polyurethane and polyeth-
ylene better than bacteria (Muhonja et al. 2018; Sánchez 
2020).

Effect of initial PS concentration

PS concentration was one of the important factors in PS 
removal. Figure 5a indicated that the PS removal efficiency 
was increased by 8.12% from 200 to 500 mg PS concentra-
tion and then decreased by 16.73% from 500 to 900 mg/L 
concentration (p value < 0.05). Considering that PS particles 
are mostly negatively charged. Therefore, at high concentra-
tions of PS, repulsive forces prevail between particles, which 
lead to their floating in aqueous solutions. At low concentra-
tions of PS, van der Waals forces between PS particles are 
dominant due to the bonding with a balanced ratio of yeasts, 
which results in the production of large and strong flocs. 
Yao et al. (2023) investigated the microplastic characteristics 
of PS in the coagulation process. The results showed that 
when the PS concentration increased from 0.25 to 1 g/L, 

Fig. 5   Response surface plot about the effects of dose vs. concentra-
tion (a) and pH versus concentration (b)
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the removal efficiency was high. While the concentration of 
PS increased from 1 to 5 g/L, the percentage of PS removal 
decreased (Yao et al. 2023).

pH effect

The solution pH can affect the process of removing MPs 
by affecting the balance of negative and positive charges 
in PS particles and yeast cells, respectively (Zhang et al. 
2021). Figure 5b shows the removal efficiency of PS MPs 
at different pH. From Fig. 5b, PS removal enhances with 
increasing pH (p value < 0.05). According to the findings, 
maximum and minimum removal of PS occurred at pH 10 
and 4, respectively. The reason can be interpreted as that in 
alkaline pH, there is more negative charge on the surface 
of PS. As a result, it increases the probability of yeast cells 
with positive surface charge to bind to PS particles and also 
increases coagulation (Sillanpää et al. 2018). On the other 
hand, the size of the flocs in alkaline pH is larger than in 
acidic pH, provides optimal conditions for flocs deposition 
and thus increases the PS removal efficiency (Zhou et al. 
2021).

Optimum operational conditions

In this study, we utilized BBD to analyze the results and 
determine the optimal conditions for dye removal. Based 
on the quadratic model, we found that the highest removal 
rate (97.4%) was achieved at a pH of 10, a yeast dose of 
219.96 mg/L, and PS level of 462.97 mg/L.

Conclusion

In this study, the use of S. cerevisiae yeast as a natural coag-
ulant to remove polystyrene MPs was evaluated. To achieve 
the optimal conditions of PS removal using Box–Behnken 
model, the effect of different parameters such as yeast dose, 
PS concentration, and pH was investigated. In this study, 
FT-IR, FESEM and EDX analyses were performed. FT-IR 
was performed to determine the functional groups active in 
the process. FESEM also investigated the effect of surface 
morphology, which showed the accumulation of S. cerevi-
siae yeast on the surface of PS particles. EDX analysis was 
also performed to determine the percentage and name of the 
elements in polystyrene before and after the coagulation pro-
cess. According to the findings, the relationship between the 
removal efficiency with yeast dose and pH was direct, while 
it was inverse with PS concentration. Moreover, alkaline 
conditions were favorable for PS removal. The maximum 
PS removal efficiency was 98.81% under optimized condi-
tions, i.e., the PS concentration of 550 mg/L, the yeast dose 
of 200 mg/L, and the pH of 7. With regard to the mentioned 

results, it can be said that S. cerevisiae can be used as a natu-
ral and environmentally friendly coagulant to remove PS.
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