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Abstract
In this study, the data at Idenak hydrometric station were used to predict the inflow to Maroun Dam reservoir. For this 
purpose, different models such as artificial intelligence, Holt-Winters and hybrid models were used. Partial mutual 
information algorithm was used to determine the input parameters affecting modeling the monthly inflow by artificial 
intelligence models. According to the Hempel and Akaike information criterion, we introduced the monthly inflow 
with a 3-month lag, and the temperature with a 1-month lag, with respect to the lowest values of Akaike and the highest 
values of Hempel as input parameters of artificial intelligence models. The results showed the weak performance of the 
Holt-Winters model compared to other models and confirmed the superiority of the Holt-adaptive network-based fuzzy 
inference system (ANFIS) hybrid model with the root-mean-square error of 54 and the coefficient of determination (R2) 
of 0.83 in the testing process compared to other mentioned models. In addition, the above hybrid models performed better 
than other models in the test process.
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Introduction

Modeling hydrological factors, such as runoff, has a great 
effect on reducing droughts and managing water resources 
(Nourani et al. 2011). Several models have been developed 
to simulate complex hydrological processes. Intelligent 
models such as ANFIS and neural network have shown an 
almost acceptable ability to model and forecast nonlinear 
hydrological time series (Nourani et al. 2009). Rainfall-
runoff models have been used since the late nineteenth cen-
tury; besides, there are currently several hydrological mod-
els to simulate the rainfall-runoff process (Wu and Chau 
2011). Rainfall-runoff models include conceptual, physical, 

empirical, and artificial intelligence models (Jothiprakash 
and Magar 2009). Many studies have been conducted on 
the effect of the runoff on rivers and the resulting problems 
(Zhou et al. 2015; Liu et al. 2014). Approximately 40% of 
the natural hazards are related to floods, in addition 20–300 
million people are affected by the problems caused by floods 
yearly (Dewan 2013). The flood in Pakistan caused many 
deaths and financial losses to the agriculture and infrastruc-
ture in 2010 (Ghumman et al. 2011).

Data driven models (DDMs) are among the modern 
methods to model hydrological parameters and the widely 
used methods by researchers (Kisi et al. 2019). The DDMs 
are used to model hydrological processes such as linear 
and multilinear regression (LMR), due to the high accu-
racy (Abdulelah Al-Sudani et al. 2019). The artificial neural 
network (ANN) and autoregressive integrated moving aver-
age (ARIMA), monthly flow modeling using ANFIS and 
ANN–ARIMA using snow telemetry data were performed 
in Elephant Butte reservoir in Mexico city (Zamani Sabzi 
et al.2017). Linear time series models are widely used to 
model hydrological time series (Mohammadi et al. 2006). 
Also, nonlinear time series approaches can be used for 
hydrological modeling (Xie et al. 2016).
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The study of Altunkaynak (2007) showed that ANN 
can well model the relationship between water and rain-
fall levels. The study of Nayak et al. (2005) showed that 
ANFIS performed better than ANN and ARIMA in esti-
mating the discharge of the Bantarani river in Odisha, 
India. ANFIS was used by Nourani and Komasi (2013) to 
simulate the rainfall-runoff process of Eel river in Cali-
fornia. One of the most important factors affecting water 
resources planning and management of the basin, is the 
response of the basin to rainfall-runoff versus infiltration 
and evaporation (Uhlenbrook et al. 2004). The innovation 
of this study is using PMI algorithm to introduce effective 
input parameters in forecasting and modeling the monthly 
flow of the Maroon basin with artificial intelligence mod-
els (ANFIS–support vector machines–and artificial neural 
network). This algorithm has been rarely used by previous 
researchers for this purpose. In addition, another innova-
tion of this research is using different Holt-Winters hybrid 
models and the comparison of their performances with 
monthly classical artificial intelligence models. Therefore, 
the objective of this study is to compare the performance 
of classical artificial intelligence models with Holt-Winters 
hybrid models to predict monthly inflow.

Materials and methods

Study area

Maroun basin with an area of about 3824 km2 is located in 
the geographical coordinates of 49°50ʹ to 51°10ʹ east lon-
gitude, 30°30ʹ to 31°20ʹ north latitude and the heights of 
Behbahan city of Khuzestan province of Iran. Maroun basin 
is surrounded by the basins of the Zohreh and Karoun riv-
ers in Khuzestan and Kohgiluyeh and Boyer Ahmad prov-
inces. The climate of Maroun basin is affected by the low 
latitude, changes in altitude in different areas (from zero to 
over 3600 m above sea level) and finally the proximity to the 
Persian Gulf in its southern parts. The mean annual rainfall 
in the Maroun basin varies from about 150 mm in the low 
coastal plains to about 900 mm in the northern highlands, 
and the regime of such rainfall is Mediterranean. The maxi-
mum rainfall occurs between December and March. The dry 
season of the basin is long, and in lower areas lasts from 
May to late October. Most of the catchment area of Maroun 
river is made up of mountainous area. The northern and 
eastern parts are higher than the other parts.

Support vector machine

If the data is discrete, support vector machine (SVM) trains 
linear machines to produce an optimum level that separates 
the data without error and with the maximum distance 

between the plane and the nearest training points (support 
vectors). If we define the training points as [Xi, Vi] and the 
input vector Xi € Rn and the class value yi ϵ {− 1, 1}, i = 1, 
…, N in case of linearly separable data, the decision rules 
based on Eq. (1) are defined in such a way that they separate 
the binary decision classes by an optimal plane:

where Y is the output of the equation, yi is the class value 
of the training sample Xi and represents the internal 
multiplication.

The vector x = (X1, X2,..., Xn) represents an input data and 
the vectors i = 1, …, N, Xi are support vectors. In Eq. (1), the 
parameters ai and b determine the super-plane. If the data 
are not linearly separable, Eq. (1) is transformed to Eq. (2).

The function K (X, Xi) is a kernel function that generates 
internal multiplications to create machines with different 
types of nonlinear decision levels in the data space (Vapnik 
2000).

Adaptive network fuzzy inference system

Adaptive network fuzzy inference system (ANFIS) uses 
available input–output data pairs during training. Then, 
IF–THEN fuzzy rules are obtained to connect these parts to 
each other. ANFIS training means determining the param-
eters belonging to two parts, introduction and consequence, 
using the optimization algorithm (Jang 1993).

If the output of each layer of neurophasic network 
is shown as Q1,i which is the output of the i group in the 
1st layer, then the performance of different layers can be 
expressed as follows:

Layer 1: Each node in this layer is equivalent to a fuzzy 
set (Eq. 3):

Layer 2: Each node of this layer is shown by II in which 
the input signals are multiplied by each other and produce 
output (Eq. 4):

Layer 3: Each node in this layer is represented by N, 
which calculates the ratio of the activity degree of rule 

(1)y = sign

(
N∑

i=1

yiai(X.X) + b

)

(2)y = sign

(
N∑

i=1

yiaiK(X.X) + b

)

(3)Q1
i
= �Ai(x)

(4)Wi = �Ai(x) × �Bi(y), i = 1, 2



Applied Water Science (2023) 13:141	

1 3

Page 3 of 8  141

provision to the sum of the activity degrees of all rules 
(Eq. 5):

Layer 4: The output of each node in this layer is calcu-
lated by Eq. (6):

where Wi is the output of Layer 3 and (pi, qi, ri) is the set 
of adaptive parameters of this layer. These parameters are 
called result parameters.
Layer 5: Each node in this layer, which is shown as Σ, 
calculates the final output value by Eq. (7) (Jang 1993):

Holt‑Winters model

To predict the time series possessing seasonal or cyclical 
changes in addition to the trend, Holt-Winters model is used, 
which has been used in the studies on changes and the pre-
diction of some meteorological elements in the country. To 
use this model, it is necessary to estimate three components 
of level or average (x), trend (T) and seasonal component (S). 
The three factors are calculated by the following equations.

where Ft: smoothed surface at time t,
Ft−1: smoothed surface at time t − 1,
Yt − 1: actual data value at time t − 1,
Tt: estimated trend,
St: estimated seasonal value,α: smoothing constant for the 

data,β: smoothing constant for trend estimation,
У: smoothing constant for estimating seasonal changes 

and k periods in each year. Holt-Winters exponential smooth-
ing coefficients are always between zero and one (Ord et al. 
1997; Hyndman et al. 2002).

(5)Wi =
Wi

W1 +W2

, i = 1, 2

(6)Q4
i
= Wifi = Wi

(
pix + qiy + ri

)

(7)Q5
i
=
�

i

Wifi =

∑
i Wifi

∑
i Wi

(8)Ft = �
(
Ft−1 − Tt−1

)
+ (1 − �)

Yt−1

St−k

(9)St = YSt−k + (1 − Y)
Yt

Ft

(10)Tt = �Tt−1 + (1 − �)
(
Ft − Ft−1

)

PMI‑based input selection (PMIS) algorithm

PMI-based input selection (PMIS) algorithm introduced in 
this article was first developed by Sharma (2000) to iden-
tify input variables affecting hydrological models. PMI algo-
rithm performs each iteration by finding the Cs that maxi-
mize the PMI value with respect to the output variable (with 
respect to the inputs that are pre-selected) and an input (C) 
and output (Y). The statistical concept that PMI estimates 
for Cs is based on a confidence interval determined by the 
distribution formed by a self-starting loop. If the input is 
significant, Cs is added to S and the selection continues until 
no significant input remains, then subsequently the algo-
rithm stops. Given a random output variable Y, there is some 
uncertainty about an observation y that is a member of Y, 
which can be defined according to the Shannon entropy H, 
(Shannon 1948). However, assuming a random input vari-
able X on which Y depends, cross-observation (x, y) reduces 
such uncertainty, since possessing x allows the value of y to 
be inferred, and vice versa. According to the definition of 
mutual information I (X; Y), the reduction in uncertainty of 
variable Y is due to the observation of X (Cover and Thomas 
1991). This problem is displayed as a common part between 
two circles. This common part is where the reduced uncer-
tainty around X and Y is specified through the conditional 
entropy H(X|Y) and H(Y|X), respectively. The mutual infor-
mation (MI) can be obtained directly from the following 
Eq. 11:

p(y) and p(x) are the marginal probability density functions 
(pdfs) of X and Y, respectively, and p (x, y) is the joint prob-
ability density function. In any case, practically, the correct 
form of probability density functions in Eq. (11) is unknown. 
Hence, probability density estimation is used instead. By 
replacing the probability density estimates with the numeri-
cal approximation of the integral in Eq. (12), there will be:

where f represents the estimated density based on a sample 
of n observations (x, y). It should be noted that different 
bases are used for the logarithm, but usually 2 or e is used. 
If the base of the logarithm is not mentioned, the natural 
logarithm will be considered. Assuming Eq. (6), the accurate 
and effective estimation of MI depends to some extent on the 
method used to estimate the marginal and joint probability 
density functions. In general, there are three criteria for stop-
ping PMI algorithm, (1) tabulated critical values, (2) AIC 
and (3) Hempel, as explained below. Tables of critical values 

(11)I(X;Y) = ∬ p(x,y)log
p(x,y)

p(x)p(y)
dxdy

(12)I (X;Y) ≈
1

n

n∑

i=1

log

[
f (xi, yi)

f (xi)f (yi)

]
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of the correlation coefficient (R) are available, based on an 
analytical formula for the error distribution of an estimate 
for an assumed sample size. In the case of the linear R, the 
distribution of the sample estimate follows a t distribution. 
The tables of critical values of R based on the t distribution 
are simply constructed (David 1966) which provide a critical 
value for R for a given sample size and a given confidence 
interval. However, unlike the linear R, an equivalent analyti-
cal definition for I cannot be deduced according to Eq. (6) 
(Goebel et al. 2005). Hence, researchers should use self-
starting to calculate f (

⌢

I ) (Granger et  al. 2004; Sharma 
2000). A study by Granger et al. (2004) investigated the 
distribution of the information estimator based on p Ŝ for a 
number of time series models. Finally, a practical alternative 
to the self-starting system was proposed. Monte Carlo simu-
lation was used to practically determine the distribution of 
MI estimator, which was used in the first step to develop a 
stopping criterion based on approximate critical values. In 
each simulation, MI will be calculated for a series of data 
compared to Gaussian-white noise data (with sample size n, 
between 50 and 5000 values), which is used to obtain data 
with critical values that can be used for the independent test 
based on MI. For each sample size, first a series �y ~ N(0,1) 
is constructed and then the marginal probability density 
functions f �y are calculated. A total of one hundred thou-
sand independent iterations of the series �x ~ N(0,1) were 
made, independent of �y ~ N(0,1). For each sample of �x , the 
marginal probability density functions f�y and f�x�y were esti-
mated and subsequently Î(𝜀x𝜀y) was evaluated. The critical 
values of Î(𝜀x𝜀y) are listed in Table 1 at different confidence 
intervals. Two alternative stopping rules were formulated by 
which, in each iteration, I'CsYs was compared with the cor-
responding critical values of Ib (95) and Ib (99) used instead 
of direct calculations of the self-starting system to determine 
which variable should be selected or when the algorithm 
should be stopped. Computational elimination of the self-
starting system loop makes the selection of input variables 
much faster.

AIC (Akaike 1974), as a measure of the relationship 
between the accuracy of the regression filter and the size of 
the input set S, is adopted to formulate this stopping criterion. 
The criteria such as AIC are usually used as the basis for evalu-
ation in model selection. AIC Eq. (13) is as follows:

(13)AIC = n loge

(
1

n

n∑

i=1

u2
i

)

+ 2p

where n is the number of observations, ui is the n residuals 
and p is the number of model parameters. For linear regres-
sion, the number of parameters is equal to K + 1, where K is 
equal to the number of variables. To select effective input 
variables using AIC, variables that have the minimum AIC 
value are selected. The outlier selection method is a power-
ful statistical method to determine whether a given x value 
significantly deviates from other values in a set of x val-
ues. This test evaluates the deviation of a single observation 
from the mean of all observations. An observation value 
with a Z-score higher than 3 based on the 3σ rule for normal 
distribution is usually considered as outlier (outlier has a 
value higher than 3 times the standard deviation plus the 
mean of the data set). For the formulation of a stopping rule 
based on the identification of outliers for PMIS algorithm, 
the basic assumption is that the data set has a proportion of 
additional and irrelevant variables and important variables. 
However, the potential masking of outliers is important and 
should be considered, assuming that the data set has more 
than one dependent variable. For this reason, a modified Z 
value, which uses Hempel's distance, was used instead of 
increasing the efficiency of the method (Davies and Gather 
1993). Hempel's distance is based on the median of the set 
of inputs. The failure point of test is n/2 and it is known as 
one of the most powerful tests to identify outlier (Davies and 
Gather 1993; Pearson 2002). The test starts by calculating 
the absolute deviation from the PMI mean for all inputs as 
the following equation:

where dj represents the absolute deviation, and I(50)
CjY .S

 repre-
sents the median PMI for the set of C inputs. Therefore, 
Hempel’s distance can be determined as follows (15):

where Zj represents Hempel’s distance (modified Z-score) 
for the input set Cj and d(50)

j
 represents the median absolute 

deviation (MAD), dj. A coefficient of 1.4826 modifies the 
distance so that the Z > 3 rule can be applied, as applied to 
the conventional Z-test (Pearson 2002). Given this stopping 
criterion, the PMI algorithm based on input selection no 
longer contains a self-starting loop, and PMI is not com-
pared with any critical value of I. Instead, the value of Zs is 
determined to select Cs, and if Zs > 3, the input is selected 
and added to S, otherwise, the operation of the input variable 
selection algorithm is stopped. This study has two separate 
parts, which are described below. First, the input parameters 
for modeling and predicting the effective flow rate of 
Maroun river were selected based on PMI algorithm and 

(14)dj =
||
|
ICjY .S

− I
(50)

CjY .S

||
|

(15)Zj =
dj

1.4826d
(50)

j

Table 1   Optimum values of 
Holt-Winters model coefficients 
for the monthly flow at Idenak 
hydrometric station

Station Alpha Beta Gamma

Idenak 0.38 0.02 0.23
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introduced as the input to ANFIS–ANN–SVM. Second, for 
the construction of hybrid models, after confirming the accu-
racy of the fitting of the above model, the residuals from the 
fitting of the univariate Holt-Winters model were introduced 
as the input to ANFIS–ANN–SVM for modeling and pre-
dicting the monthly inflow to Maroun dam reservoir.

Discussion and results

In this study, to model and predict the monthly flow rate 
of Maroun river through the proposed models, the data are 
divided into two series of training and test data. In addition, 
the monthly data of 2002–2012 was used in the test phase 
and the monthly data of 2013–2021 was used in the training 
phase.

Figure 1 shows the histogram of residuals, variance of 
residuals and residuals on probability paper. The histogram 
of the residuals of the fitted Holt-Winters model shows the 
monthly flow rate at Idenak hydrometric station by Minitab. 
As it is shown, the error distribution of the residuals result-
ing from the fitting of the above model is normal along a 
straight line. The probability curve of the data confirms the 
normality of the residuals of the model, the variance of the 

residuals is stationary. Also, in the curve of the residuals 
versus time around the zero horizontal level, the rectangular 
distribution confirms no trend and the stationarity of the 
residuals resulting from the fitting is obvious. One of the 
important points in this study for the Holt-Winter models 
is the estimation of coefficients of the model. Given that 
no rule or algorithm was embedded by Minitab to estimate 
the coefficients of Holt-Winters model, trial and error was 
used to estimate these coefficients. On the other hand, it 
was found that by reducing the beta coefficient, the predic-
tive power of the model increased to some extent. But the 
accuracy of the fit of the model is reduced. This is opposite 
in the case of gamma and alpha coefficients, i.e. by increas-
ing the values of the alpha and gamma coefficients, the 
predictive power and accuracy of the Holt-Winters model 
increase to some extent (Table 1). To select the effective 
input parameters for modeling and predicting the monthly 
flow rate of Maroun through the above artificial intelligence 
models (ANN, ANFIS and SVM), PMI algorithm was used. 
According to Hempel and AIC, the monthly flow rate with a 
3-month lag, and both parameters precipitation and tempera-
ture with a 1-month lag, with the lowest values of AIC and 
the highest values of Hempel, were introduced as the input 
to all artificial intelligence models (Table 2). To determine 

Fig. 1   Histogram of the residuals of Holt-Winters fitted to the monthly flow rate at Idenak hydrometric station

Table 2   Effective input 
variables in modeling and 
forecasting the monthly flow 
based on the results of the PMI 
algorithm

Iteration Variable I(x; y) MC-I*(95) MC-I*(99) AIC (k) AIC (p) Hempel

1 Log Q (t-3) 0.0554575 0.0683791 0.0468845 −3.48431 7.519 2.63321
2 Log T (t−1) 0.053388 0.0683791 0.0768845 5.4374 12.261 1.47619
3 Log p (t−1) 0.04732 0.06381 0.07677 4.3214 9.312 1.8312
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the neurons of all three layers in the neural network and the 
hybrid model (Holt-Winters-ANN), because no algorithm is 
considered to determine the optimum number of neurons in 
the neural networks, the trial and error was used. Among dif-
ferent active functions in the neural network, the hyperbolic 
tangent function was selected as the optimum active func-
tion for neural networks while sigmoid function was selected 
as the optimum function for Holt-Winters hybrid model. 
Therefore, the function with the error backpropagation 
with an optimum neural structure for the (5–2–3) ANN and 
the (6–2–3) Holt-Winters hybrid model was selected. The 
number and type of membership functions in ANFIS and 
Holt-Winters-ANFIS hybrid model were selected by trial 
and error. Since the number of membership functions has a 
negative impact on the efficiency of the model, the principle 
of using the lower membership function was used for fitting 
both ANFIS and Holt-Winters-ANFIS hybrid models. Also, 
input Gaussian and output Triangular membership function 
was used as the optimum function in ANFIS and in Holt-
Winters-ANFIS hybrid models. The input Triangular and 
output Triangular membership function was determined 
for Holt-Winters-ANFIS hybrid models. In this study, RBF 
kernel function was used to model the monthly flow rate for 
both SVM and the Holt-Winters-SVM hybrid model. One of 
the principles of using the kernel function is to find the opti-
mum values of the parameters C, E and Γ for SVM and for 
the Holt-Winters-Support Vector Machine (HSVM) hybrid 

model. For this purpose, the network search method was 
used. Also the optimal values of the mentioned parameters 
were determined, (C = 2.4, E = 0.0018, Γ = 3.8) For SVM 
and (C = 2.9, E = 0.0016, Γ = 4.1) for Holt-SVM hybrid 
models. In the testing (94 root mean square error of 94 and 
coefficient of explanation of 0.76) and train stage (root mean 
square error of 102 and coefficient of explanation of 0.71), 
the Holt Winters models have the weakest performance. 
Also among the three mentioned artificial intelligence mod-
els, the support vector machine model performs better than 
the other two models in both testing (with root mean square 
error of 78 and coefficient of explanation of 0.83) and train-
ing stages. With root mean square error of 86 and coefficient 
of explanation of 0.85. Table 3 shows the evaluation criteria 
of the performance of pre-institutional models for predicting 
the monthly flow rate at Idenak hydrometric station. Figure 2 
shows the distribution of observed monthly flow rate and 
monthly flow rate predicted by the proposed models.

Conclusion

The evaluation criteria of the performance of the models 
in Table 3, such as the root mean square error and R2 show 
the poor performance of the seasonal model of the Holt-
Winters time series with root mean square error of 102 and 
coefficient of explanation of 0.63 in train stage and with root 

Table 3   Evaluation criteria 
of the performance of pre-
institutional models for 
predicting the monthly flow rate 
at Idenak hydrometric station

Holt-Winters ANFIS SVM ANN Holt-ANN Holt-SVM Holt-ANFIS

R2 Train 0.63 0.85 0.83 0.81 0.84 0.86 0.89
Test 0.58 0.83 0.78 0.76 0.80 0.79 0.83

RMSE Train 102 86 85 82 79 75 68
Test 94 78 80 73 69 67 54

Fig. 2   Distribution of observed and predicted monthly flow by the proposed models
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mean square error of 94 and coefficient of explanation of 
0.58 in test stage. While all the artificial intelligence models 
performed much better at both stages than the Holt-Winters 
model, among the artificial intelligence models, ANN with 
optimal neural structure (3–5–2) showed some weak perfor-
mance for modeling the monthly flow at Idenak station with 
root mean square error of 82 and coefficient of explanation 
of 0.81, in train stage and with root mean square error of 73 
and coefficient of explanation of 0.76 in test stage In general, 
the performance of the hybrid models is better than all the 
artificial intelligence models despite the application of the 
PMI algorithm for improving the performance of the afore-
mentioned models in simulating and predicting river flow. In 
addition, increasing or decreasing the number of neurons do 
not improve the performance of the neural artificial model 
and the hybrid Holt-Winters-neural artificial model with 
optimal neural structure (2–4–2) in predicting river flow. 
Also increasing or decreasing the number of the membership 
function do not improve the performance of ANFIS models 
and Holt-Winters ANFIS hybrid model in predicting river 
flow discharge. Among the various hybrid models used in 
this study, the Holt-ANFIS hybrid model showed a good 
ability to simulate peak flow rate with root mean square error 
of 68 and coefficient of explanation of 0.89 in train stage and 
with root mean square error of 54 and coefficient of expla-
nation of 0.83 in test stage. In this research, since the three 
artificial intelligence models, compared to the Holt-Winters 
model and the aforementioned hybrid models, have many 
input parameters for modeling and forecasting the river flow, 
it seems that using hybrid models is a suitable solution to 
prevent wasting time by using less input parameters.
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