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Abstract
This study predicted the daily evapotranspiration of eggplant (Solanum melongena L.) under full and deficit irrigation in 
the Bafra district of Samsun province, Turkey, using machine learning methods. Artificial neural networks (ANNs), deep 
neural networks (DNN), M5 model tree (M5Tree), random forest (RF), support vector machine (SVM), k-nearest neighbor 
(kNN), and adaptive boosting were investigated as machine learning approaches. Determination of evapotranspiration in 
this study consists of three methods: (i) The reference evapotranspiration (ETo) was obtained from the Food and Agricul-
ture Organization-56 Penman–Monteith equation, (ii) the values of evapotranspiration (ETc) calculated by multiplying the 
reference evapotranspiration by the crop coefficient (Kc), and (iii) the values of evapotranspiration (ETa) measured using 
soil water balance between successive soil water measurements as the outputs. The model’s performance in ETo estimation 
was higher when minimum and maximum temperature (Tmax and Tmin), wind speed (u2), average relative humidity (RHavg), 
solar radiation (Rs), and days of the year were used as inputs. The best performance was obtained in the ANN model with a 
coefficient of determination (R2) value of 0.984, a mean absolute error (MAE) of 0.098 mm d−1, a root-mean-square error 
(RMSE) of 0.153 mm d−1, and Nash–Sutcliffe efficiency of 0.983. The model’s performance in ETc estimation was signifi-
cantly improved with the addition of leaf area index (LAI) and crop height (hc) to the climate parameters (MAE and RMSE 
values decreased by 22.6 and 23.2%, respectively). The accuracy of ETc estimation for some plant traits (hc and LAI) and 
average temperature (Tavg) was sufficient. The best statistical performance in estimating ETa was obtained by the RF model 
(Tavg, u2, RHavg, and Rs) using climate parameters. DNN proved to be the least successful model compared to the other six 
models in predicting ETo, ETc, and ETa.
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ETo	� Reference evapotranspiration
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MAD	� Management-allowed 
depletion

FC	� Field capacity
PWP	� Permanent wilting point
SWC	� Soil water content
VPD	� Vapor pressure deficit
R2	� Coefficient of determination
MAE	� Mean absolute error
RMSE	� Root-mean-square error
NSE	� Nash–Sutcliffe efficiency

Introduction

Evapotranspiration (ET) is the sum of water lost by transpi-
ration from leaf surface and evaporation from soil surface 
(Allen et al. 1998). ET is a key component of the regional 
water budget and plays an important role in controlling 
interactions between the atmosphere, soil, and vegetation 
(Liu et al. 2013). Therefore, the correct calculation of ET is 
an important issue for the successful management of water 
resources in irrigated agriculture. The accurate determina-
tion of ET helps to plan and manage the irrigation and drain-
age systems and increases the irrigation water efficiency 
(Elbeltagi et al. 2020).

Direct and indirect methods are used to determine crop 
evapotranspiration. Direct methods include lysimeter, 
experimental field plots, moisture reduction control, and 
measurement of runoff into and out of the basin. Indirect 
methods consist of the aerodynamic method, energy bal-
ance, and their combination. Direct methods are costly and 
time-consuming compared to indirect methods. The crop 
evapotranspiration (ETc) estimate is based on the correct 
calculation of the reference evapotranspiration (ETo). In this 
way, however, ETc and ETo can be estimated by multiply-
ing the crop coefficient (Kc) (Jensen 1968). Many methods 
have been developed to estimate the ETo based on avail-
able meteorological data (Hargreaves and Samani 1985; 
Monteith 1965; Allen et al. 1998; Odili et al. 2023). The 
equations for temperature-based regional evapotranspiration 
(Thornthwaite 1948; Blaney and Criddle 1950; Doorenbos 
and Pruitt 1977; Hargreaves and Samani 1985), radiation-
based (Makkink 1957; Turc 1961, Priestly and Taylor 1972), 
mass transfer-based (Monteith 1965; Penman 1948), and 
combination based (the Food and Agriculture Organiza-
tion (FAO) 56 Penman–Monteith, Allen et al. 1998) models 
were developed. The accuracy of FAO-56 Penman–Monteith 
method (FAO-56 PM), which incorporates thermodynamic 
and aerodynamic effects, is superior to other empirical mod-
els. FAO suggested that the (FAO-56 PM) be utilized as the 
standard method to assess ETo. Major difficulties of FAO-
56 PM method are the requirement of a large amount of 
meteorological data (Feng et al. 2017; Fan et al. 2018), the 

high cost of climate data measurement equipment, and the 
difficulties in measurement of the climate data required by 
the method at every station. However, the calculation of ET 
can be considered as a complex and nonlinear regression 
process as it depends on a large number of meteorological 
variables. It is very difficult to develop empirical models that 
will accurately represent all these complex processes. Some 
researchers have suggested that machine learning methods 
can be used to predict plant water consumption due to their 
ability to successfully process nonlinear data (Wang et al. 
2017; Mokari et al. 2022).

Machine learning techniques have been extensively pro-
posed recently in estimation of ETo, ETc, and ETa, including 
support vector machine (SVM) with the rapid development 
of machine learning algorithms. However, machine learning 
models have been used more frequently in estimation of ETo 
compared to the ETc and ETa predictions (Chen et al. 2020; 
Wu et al. 2021; Dong et al. 2022). Ferreira et al. (2019) used 
artificial neural network (ANN) and SVM methods to esti-
mate the ETo with limited meteorological data in Brazil. In 
the machine learning models, the meteorological data of the 
previous days were used along with data of the current day 
as input. The performance of ANN model with temperature 
and relative humidity data from the previous four days was 
better than the SVM. The performance of the ANN and M5 
tree models was compared in estimating the reference evapo-
transpiration in an arid region by Rahimikhoob (2014) who 
stated that both models were well suited to the study area, 
while ANN ETo predicted the ETo better than the M5 tree 
model. The comparison of CatBoost, RF, and SVM methods 
to estimate ETo in a humid environment showed that the 
CatBoost model had a much lower computational cost and 
outperformed the other two models when complete input 
data were available (Huang et al. 2019). The FAO-56 Kc 
approach has been used to estimate daily and monthly ETc 
with different machine learning models (Tang et al. 2018; 
Granata 2019; Yamaç and Todorovic 2020; Gong et al. 
2021). Abrishami et al. (2019) estimated the ETc of wheat 
and maize with the ANN model. Meteorological variables, 
leaf area index (LAI), and crop height were used as inputs 
to the models.

The researchers indicated that ANNs with two hidden 
layers are effective in estimating the ETc of wheat and maize. 
Han et al. (2021) compared the back-propagation neural net-
work with the multiple linear regression method to estimate 
ETc measured by eddy covariance. It is observed that the 
combination of the eddy covariance method and BP model 
achieved a higher coefficient of determination (0.87) and 
accuracy (91.44%). Chen et al. (2020) compared the per-
formance of SVM and RF with empirical methods using 
three deep learning methods, including deep neural network 
(DNN), transient convolutional neural network (TCN), and 
long short-memory neural network (LSTM). The TCN 
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and LSTM models outperformed when temperature-based 
features are available, and all the proposed deep learning 
and machine learning models outperformed the radiation 
or humidity-based empirical equations when radiation- or 
humidity-based features are available. Tang et al. (2018) 
compared genetic algorithm-optimized artificial neural net-
work (GANN) and SVM models to simulate the ETa in a 
rainfed cornfield using climate data, LAI, and crop height as 
the input parameters. In their study, the GANN models per-
formed slightly better than the SVM models. Granata et al. 
(2020) compared RF, kNN, additive regression of decision 
stump (ARDS), and multilayer perceptron (MLP) in estimat-
ing the ETa, and obtained the best performance with RF.

There are few studies on applying different machine 
learning models to predict ETo, ETc, and ETa of eggplant that 
is grown under drip irrigation in field conditions in a semi-
humid region. In this study, the prediction performances of 
seven different machine learning models include ANN, deep 
neural networks (DNN), M5 model tree (M5Tree), support 
vector regression (SVM), k nearest neighbors (kNN), ran-
dom forest (RF), and adaboost (AB) were used to estimate 
ETo, ETc, and ETa during the eggplant growing period. In 
addition, soil conditions such as volumetric soil moisture 
content (SWC), crop characteristics such as crop height 
(hc), LAI, canopy temperature (Tc), and climate parameters 
such as air temperature, relative humidity, wind speed, and 
solar radiation were used to estimate ETo, ETc, and ETa. 
The effects of different input variables consisting of different 
combinations on the performance of the models were also 
investigated. This study revealed that field measurements 
that require a long time, labor, and cost could be obtained 
using models with high predictive power in a short time and 
low cost. In addition, the effects of these three factors on 
crop evapotranspiration were evaluated by using combina-
tions of soil, crop, and climate variables, which are impor-
tant parameters in irrigation scheduling. This study covers 
a comprehensive understanding of ET, and it will provide 
a good source of information for engineers and scientists.

Materials and methods

Study area and soil measurements

The study was carried out in the experimental station of 
the Black Sea Agricultural Research Institute located in 
the Central Black Sea Region of Turkey during eggplant 
growing seasons in 2015, 2016, and 2017. The experimen-
tal station is present between 41° 36′ 8″ N and 35° 55′ 8″ 
E coordinates (elevation 17 m). The climate is semi-humid 
with average annual precipitation, temperature, and rela-
tive humidity of 715.5 mm, 14.46 °C, and 75.40%, respec-
tively (MGM, 2018). Cereals (rice, corn, and wheat) and 

vegetables (eggplant, red pepper, tomato, cabbage, and 
watermelon) are predominantly grown in the Bafra Plain of 
Samsun province in Turkey. Soils in the experimental field 
formed over alluvial deposits.

Three disturbed and undisturbed soil samples were taken 
from 0–30, 30–60, 60–90, and 90–120 cm depths. Bulk 
density, soil texture, field capacity, and wilting point mois-
ture content were determined using the methods explained 
in the literature (Blake and Hartge 1986; Bouyoucos 1951; 
Meyer and Gee 1999). Available phosphorus content was 
determined using the method described by Olsen (1954). 
Available micronutrients were determined using the method 
of Lindsay and Norvel (1978). Soil texture was clayey (36% 
silt and 45% clay) in 0–90 cm and clayey loam in 90–120 cm 
of soil profile (33% silt and 36% clay). Soil bulk density 
values varied between 1.26 and 1.35 g cm3. Field capac-
ity (0.33 kPa) moisture content varied between 0.277 and 
0.308 m3/m3, and moisture content at permanent wilting 
point (1500 kPa) varied between 0.163 and 0.197 m3/m3. 
Before the drip irrigation system was installed, the infil-
tration rate of the experimental area was determined as 
10 mm/h using a double-ring infiltrometer according to the 
methodology described by Reynolds et al. (2002).

Crop management

Aykara F1 eggplant (Solanum melongena L.) cultivar was 
used as the plant material. Eggplant seeds were sown in viols 
at the beginning of April in each study year. When the seed-
lings reached to 15–18 cm in height, they were transplanted 
to the field on May 15 in 2015 and 2017 and on May 22 in 
2016 depending on the rainfall schedule. According to labo-
ratory soil results, a total of 100 kg N/ha and 60 kg P2O5/ha 
were applied on soil before transplanting. All of P2O5 and 
half of N were applied at transplanting, and the remaining 
half of N was applied in the later stages of crop growth.

Irrigation treatments and experimental design

Experimental data were obtained during a 3-year field study 
to investigate the most suitable irrigation program for egg-
plant in semi-humid climatic conditions. Five different water 
management strategies were investigated in the study. The 
irrigation levels were full irrigation (I1), 75% of full irriga-
tion (I2), 50% of full irrigation (I3), 25% of full irrigation 
(I4), and rainfed-based irrigation (I5). The amount of water 
applied in the full irrigation treatment was calculated as the 
amount of water required to bring the current moisture in 
the root zone to the field capacity. The amount of irrigation 
water applied to other treatments was gradually reduced. 
However, the actual evapotranspiration values considered in 
this study were obtained from full irrigation treatment (I1) 
applied throughout the entire growing season.
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Soil water content (SWC) was determined with a neu-
tron meter (Model 503 DR, Campbell Pacific Nuclear, 
Martinez, CA), which was calibrated gravimetri-
cally in each layer (0–30, 30–60, 60–90, 90–120, and 
120–150 cm) before the season. The moisture content 
during the growing season was measured with the help of 
aluminum tubes placed 10 cm away from the crop rows, in 
the middle of each plot. In addition, the soil moisture con-
tent in the first 30 cm depth of the soil surface was deter-
mined by the gravimetric method (Köksal et al. 2011).

Total size of the experimental field was 990 m2. The 
layout of the experiment was randomized blocks with 
three replications, and the treatments were placed in 15 
plots. Each plot consisted of 10 rows with 7 m width and 
7.2 m length. The plantings of seedlings were carried 
out with 0.70 m interrow and 0.60 m intra row spacing. 
Middle 6 rows were used for measurements to avoid the 
side effects. In addition, eggplant seedlings were planted 
between the plots to prevent the advection effect. In the 
transmission unit of the drip irrigation system, the main 
line consisting of PE pipes was used as manifold and lat-
eral pipes. The diameter of the lateral pipes was 16 mm 
with 2 l h−1 in-line drippers spaced at 25 cm. One lat-
eral was placed in each crop row. Water application in 
each treatment was controlled by a valve on the manifold 
pipelines where water was supplied to the laterals, and 
each treatment had a different valve. In the control unit 
of the system, a fertilizer tank, sand-gravel filter, disc 
filter, manometer, water meter, valves, and fittings were 
used. The irrigation was carried out twice a week during 
the experiment.

Estimation of reference evapotranspiration (ETo)

The FAO-56 Penman–Monteith (FAO-56 PM) method 
was used to calculate the daily ETo. The FAO-56 PM 
method for the estimation of daily ETo is described by 
Eq. (1) (Allen et al. 1998; ASCE-EWRI 2005).

where ETo is the daily reference evapotranspiration (mm/d); 
G is soil heat flux density; Rn is the net radiation at the crop 
surface (MJ/m2 d); T is the mean daily air temperature at 
2 m height (°C); u2 is the wind speed at 2 m height (m/s); es 
is the saturated vapor pressure (kPa); ea is the actual vapor 
pressure (kPa); es–ea is the saturated vapor pressure deficit 
(kPa); Δ is the slope of vapor pressure curve (kPa/°C); and 
γ is the psychometric constant (kPa/°C).

(1)ETo =
0.408Δ

(
Rn − G

)
+ �

900

T+273
u2

(
ea − ed

)

Δ + �

(
1 + 0.34u2

)

Crop evapotranspiration (ETc) and crop coefficient 
(Kc)

The crop coefficient approach was used to calculate ETc. The 
ETc in the FAO-56 can be estimated by multiplying the ETo 
value by the single crop coefficient (Kc) (Eq. 2).

The Kc values of FAO-56 method were adapted consider-
ing the climate data. The Kcini

 was also determined according 
to FAO-56 (Allen et al. 1998). The Kcmid

 and Kcend
 values were 

adapted to the region using Eqs. 3 and 4.

where Kcmid_FAO56
 is mid-period Kc values in the FAO 56; 

Kcend_FAO56
 is the last period Kc values in the FAO-56; u2 is 

the wind speed measured at 2 m height (m/s); RHmin is the 
lowest mean relative humidity at the relevant period (%); 
and h is average crop height in the relevant period (m). The 
length of phenological stages was recorded regularly during 
the experiment. The initial stage in 2015 was 31 days, the 
development phase was 40 days, the mid-stage was 39 days, 
and the late phase was 40 days. Total growing season was 
146 days, which were consisting of 24, 39, 39, and 40 days 
of different periods in 2016. Total growing season in 2017 
was 140 days (30, 38, 40, and 28 days). The KcFAO - 56

 values 
calculated for each period considering relative humidity, 
wind speed, and crop height values were identified. The Kcini

 , 
Kcmid

 , and Kcend
 values in 2015 were 0.80, 1.07, and 0.88, 

respectively. Similarly, the values were 0.65, 1.08, and 0.85 
in 2016 and 0.75, 1.04, and 0.87 in 2017.

Actual evapotranspiration (ETa)

The ETa was determined using the direct measurement 
method. The soil water balance method based on the principles 
of conservation of mass was used as the direct measurement 
method. The water balance method assumes that the difference 
between the amount of water entering and leaving a certain 
soil volume in a certain period of time is equal to the change 
in the soil water volume in the same time interval. The soil 
water balance equation used to estimate the daily crop evapo-
transpiration that uses different components of the soil water 
balance is explained in Eq. (5) (Jensen et al. 1990; Allen et al. 
1998; Evett 2002).

(2)ETc = Kc × ETo

(3)
K
cmid

= Kcmid-FAO56
+
[
0.04

(
u2 − 2

)
− 0.004

(
RHmin − 45

)][h
3

]0.3

(4)
Kcend

= Kcend-FAO56
+
[
0.04

(
u2 − 2

)
− 0.004

(
RHmin − 45

)][h
3

]0.3

(5)P + I − D
r
− Ro − ET ±

(
Se − Sb

)
= 0
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where P is precipitation (mm); I is the irrigation water 
applied (mm); Dr is the drainage (mm); Ro is the runoff 
(mm); ET is actual evapotranspiration (mm); Se is soil 
moisture content at the end of the time interval between 
two irrigations (mm); and Sb is soil moisture content at the 
beginning of the time interval between two irrigations (mm). 
The actual evapotranspiration value obtained with Eq. (5) 
was expressed as ETa throughout the paper. The effective 
root depth of eggplant was considered as 60 cm in the cal-
culations. Drip irrigation method was used in the study. The 
deficient soil water in I1 treatment (full irrigation) was com-
pleted to the field capacity, and the irrigation water appli-
cation rate was lower than the infiltration rate. Therefore, 
runoff did not occur and water was not drained deeper than 
60 cm in irrigations. There was a 3-m-deep drainage system 
in the study area, and groundwater close to the crop root 
zone was not observed during the experiment.

Measurement of crop height (hc) and leaf area index 
(LAI)

The hc was measured at 15-day intervals during the eggplant 
growing season. The hc was measured 8 times in both the 
years 2015 and 2016 and five times in 2017. The distance 
from soil surface to the top of the crop was measured with a 
ruler in 3 plants marked on each plot, and the average of hc 
values was recorded as the crop height.

The LAI is directly measured in the field. The destructive 
harvesting method was carried out 4 times in 2015 (22 June, 
15 July, 12 August, and 10 September) and 2016 (26 July, 
09 and 31 August, and 08 September) and 7 times in 2017 
(18 July, 01 and 15 August, 08 and 26 September, 06 and 13 
October). Leaves were removed from the plant for each treat-
ment, placed on an A4 white plain paper, and transferred 
to the computer as a scanned image. The images were then 
digitized in the AutoCAD (Version 2016, Autodesk, San 
Rafael, CA, ABD), and the total leaf area of each treatment 
was determined. Crop area was calculated by the ratio of 
total leaf area to the canopy projection measured at 12:00 
during the day. The LAI is a dimensionless quantity that 
characterizes crop canopies (LAI = leaf area/crop area or 
LAI = leaf area/canopy projection area).

Calculation of growing degree days (GDD)

The growing degree day (GDD) is a weather-based indi-
cator to assess crop development. The GDD is defined as 
the mean daily temperature (average of daily maximum 
and minimum temperatures) above a certain base tempera-
ture accumulated on a daily basis over a period of time. 
The base temperature varies among crops, and the value 

is derived from the growth habits of each specific crop. In 
this study, the base temperature was considered as 10 °C 
for eggplant (Fereres et al. 2012). The GDD is calculated 
using Eq. (6):

where n is the number of days from seedling planting to 
harvest; Tbase is the base temperature for eggplant; Tmax is the 
daily maximum air temperature; Tmin is the daily minimum 
air temperature and; TGmax is the average air temperature at 
which the crop growth stops.

Canopy temperature measurements (Tc) and vapor 
pressure deficit (VPD)

Thermal images were captured using a thermal imager 
(Testo 875-2i, Testo, Germany) measuring in the spec-
trum range of 8–14 µm, with 32°*23°/0.1 m lens, 160*120 
pixel resolution detector, 3.3 mrad geometric resolution, 
and ≤ 0.08 °C thermal sensitivity. Canopy temperatures 
obtained with thermal images were measured once in two 
irrigations between 10:00 and 14:00 before the irrigation. 
The thermal camera was positioned in four directions, 
perpendicular and parallel to the crop row, covering the 
crop and the soil in view. The average temperature of 
the top leaves in the four directions was recorded as the 
canopy temperature of the eggplant. Average canopy tem-
perature was determined after masking all other elements, 
such as soil in the image. Since the temperature of crop 
surface was measured, the emissivity value of the instru-
ment was used as 0.9 (Jones et al. 2002). Wet and dry leaf 
surfaces were used as the reference surfaces (Leinonen 
and Jones 2004). Canopy and air temperature difference 
(Tc–Ta) was used as an input for the estimation of the ETa.

Vapor pressure deficit (VPD) is a climatic variable 
related to ambient temperature and relative humidity. The 
difference between the saturated water vapor pressure and 
the actual VPD at a given temperature is an important 
indicator of atmospheric water demand for plants (Raw-
son et al. 1977). Increasing the VPD increases atmos-
pheric demand for water. Although ET is expected to 
increase with the increase in atmospheric demand, plants 
can reduce ET by closing their stomata in response to 
increased VPD (Massmann et al. 2019). The changes in 
VPD directly or indirectly affect the plant water con-
sumption; therefore, the variable VPD was also used as 
an input to estimate the ETa.

(6)

For Tbase ≤
((

Tmax + Tmin
)

∕2
)

≤ TGmax ⇒ GDD

=
n
∑

i=1

[((

Tmax + Tmin
)

∕2
)

− Tbase
]
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Machine learning models used in estimation 
of evapotranspiration

ANN is a mathematical model that emulates the ability of 
human brain to learn from experience (Haykin 1998). The 
ANN method can learn and predict complex processes with 
high accuracy. There are several types of ANN techniques 
available to model various agricultural and environmental 
problems. In this study, a feedforward MLP with an input 
layer, a hidden layer, and an output layer was used to model 
evapotranspiration during the eggplant growing period. 
Hornik et al. (1989) suggested that a single hidden layer 
may be sufficient for accurate model prediction. In this study, 
the number of neurons in the hidden layer was determined 
by trial-and-error approach. The neural network was trained 
using the Levenberg–Marquardt training algorithm. Further-
more, tangent sigmoid (tansig) and linear (purelin) activa-
tion functions were used in the input and output layers.

Deep learning has been used recently for agricultural 
applications in a variety of fields (Manikumari et al. 2022; 
Khaki et al. 2020). Dechter (1986) pioneered the use of deep 
neural network (DNN), which is a machine learning com-
putation method and follows a similar technique as in ANN 
model. However, more hidden layers are used in the DNN 
model (Kamilaris and Prenafeta-Boldú 2018). In this study, 
three or four hidden layer DNN models with ReLu activation 
functions were created, and the traditional gradient-descent 
method was used to minimize the loss. Chen et al. (2020) 
provided comprehensive details on the DNN model and cal-
culation procedure.

The M5 model tree (M5Tree), introduced by Quinlan 
(1992), is a subset of machine learning techniques. Deci-
sion tree-based methods are among the most well-known 
machine learning methods. The M5Tree predicts target 
variables as output in a model with a tree structure based on 
input data. Detailed information on the M5Tree model can 
be obtained from Quinlan (1992).

Random forest (RF) is an ensemble learning algorithm 
that can be used to model complex processes (Breiman 
2001). In the RF, all trees are dependent on a set of ran-
dom variables, and many of the regression trees of forest 
are brought together to form a community. Before running 
the RF model, the number of trees to be created in the forest 
to run and the number of attributes to be used in each tree 
creation process must be set. The accuracy of the estimation 
model is primarily assessed by these two parameters (Zhang 
and Wang 2009).

Support vector machine (SVM), introduced by Vapnik 
(2013), is a supervised learning model used for classifica-
tion and regression operations. In SVM, linear or nonlinear 
models project the input vectors into a high-dimensional 
feature space by defining complex input–output relationships 
in a relatively simple way (Wu et al. 2008a). The nonlinear 

radial basis function (RBF) kernel function, which performs 
better than other kernel functions (Yamaç 2021), was used 
to estimate evapotranspiration in this study. The accuracy of 
the prediction model depends on the selection of the opti-
mal hyperparameters (C, γ) for the kernel operation. In this 
study, parameter C was determined through trial and error. 
The detailed information on the SVR model can be found 
in Vapnik (2013).

The k-Nearest neighbor (kNN) method is one of the most 
basic nonparametric machine learning methods for classi-
fication and regression problems (Cover and Hart 1967). 
Because the kNN algorithm is based on calculating the dis-
tances between two points within a data set, a method for 
calculating this distance is required. The Euclidean distance 
measure was used to calculate the distance between two 
points. The optimal choice of k depends on the data used in 
the model. For this reason, the optimum k value of different 
models created with different input parameters was different.

The adaptive boosting (AB) algorithm, proposed by Fre-
und and Schapire (1997), is one of the most widely used 
ensemble learning methods due to its simplicity, speed, and 
ease of implementation (Wu et al. 2008a, b). The AB algo-
rithm operates by fitting a primary prediction function to 
the sum of the original data, calculating a prediction error, 
and then applying a weighted vector to the data based on the 
prediction error. The detailed information on the AB model 
can be found in Freund and Schapire (1997).

In this study, ETo, ETc, and ETa parameters for eggplant 
grown in semi-humid climatic conditions were estimated by 
using seven different machine learning methods using differ-
ent input variables and combinations (climate, soil, and crop 
properties). The hyperparameter settings of the ANN, DNN, 
kNN, SVM, M5Tree, RF, AB methods, and the models with 
different input datasets (Model 1–15) are provided in Table 7 
in Appendix.

Selection of input parameters and data 
normalization

The success of machine learning models is directly related to 
factors variables such as input combination, model structure, 
basic parameters, and performance criteria. The first step in 
developing a prediction model is to identify the input vari-
ables. Many factors affect plant water consumption, includ-
ing climate, soil properties, and plant characteristics, and 
all these three factors were used in the study to create a 
simple and applicable approach for ETo, ETc, and ETa. The 
most important plant factors affecting ET are crop type, 
plant growth stage, LAI, and hc (Liu et al. 2020). Different 
combinations of input variables were used to achieve the 
best prediction. The input combinations used to estimate the 
ETo, ETc, and ETa parameters to evaluate the performance 
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of seven different machine learning models under different 
input parameters are presented in Table 1.

All input and output variables were normalized in the 
range of 0–1 to meet the requirements of the machine learn-
ing models before the training and testing phases using 
Eq. (7).

where Xnorm is the normalized value of a variable; Xa is the 
measured value of a variable and; Xmax and Xmin are the 
measured maximum and minimum values of a variable.

The data used in machine learning models were collected 
during eggplant growing seasons in 2015, 2016, and 2017. 
The data collected during the experiment were taken as a 
whole, randomly partitioned as 70% for training and 30% for 
testing using k-fold cross-validation. In k-fold cross-valida-
tion technique, original dataset was randomly divided into k 
equally sized subsets (k-folds). Of the k partitions, a single 
subset was designated as the validation data to evaluate the 
model performance, and the remaining k − 1 subsets were 
used as training data. This process was repeated k times, 
and the average cross-validation error was used as the per-
formance indicator. The k value was set to 10 in this study. 
The detailed information on this procedure can be obtained 
from Cemek et al. (2020).

(7)Xnorm =
Xa − Xmin

Xmax − Xmin

Evaluation of statistical model performance

A number of performance assessment methods are used to 
assess the precision of estimations and to compare the mod-
els. Statistical model performance criteria used in this study 
were coefficient of determination (R2), root-mean-square error 
(RMSE), mean absolute error (MAE), and Nash–Sutcliffe effi-
ciency (NSE) (Nash and Sutcliffe 1970). The equations of the 
model performance criteria were defined as presented in Eqs. 
(8) to (11) (Waller 2003).

where Z
i
 is the measured value; Z

i∗
 is the estimated value; 

Z
i
 is the average value measured; Z

i∗
 is the average value 

(8)R
2 =

∑n

i=1

��
Z
i∗
− Z

i∗

��
Z
i
− Z

i

��2

∑n

i=1

�
Z
i∗
− Z

i∗

�2 ∑n

i=1

�
Z
i
− Z

i

�2

(9)RMSE =

�
∑�

Z
i∗
− Z

i

�2

n

(10)MAE =
1

n

n∑

i=1

|
|Zi∗ − Z

i
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(11)NSE = 1 −

∑n

i=1

�
Z
i
− Z

i∗

�2

∑n

i=1

�
Z
i
− Z

i

�2

Table 1   Different input combinations used in the estimation of ETo, ETc, and ETa with different machine learning methods

Variables Models Input combinations Model abbreviation

ANN DNN M5Tree SVM kNN RF AB

ETo Model 1 Tmin, Tmax, Tavg, u2, RHavg, Rs, DOY ANN1 DNN1 M5Tree1 SVM1 KNN1 RF1 AB1
Model 2 Tmin, Tmax, Tavg, u2, RHavg, DOY ANN2 DNN2 M5Tree2 SVM2 KNN2 RF2 AB2
Model 3 Tavg, u2, RHavg, Rs, DOY ANN3 DNN3 M5Tree3 SVM3 KNN3 RF3 AB3
Model 4 Tavg, RHavg, DOY ANN4 DNN4 M5Tree4 SVM4 KNN4 RF4 AB4

ETc Model 5 hc, LAI, Tavg, u2, RHavg, Rs ANN5 DNN5 M5Tree5 SVM5 KNN5 RF5 AB5
Model 6 Tavg, u2, RHavg, Rs, CGDD ANN6 DNN6 M5Tree6 SVM6 KNN6 RF6 AB6
Model 7 Tavg, u2, RHavg, Rs ANN7 DNN7 M5Tree7 SVM7 KNN7 RF7 AB7
Model 8 hc, LAI, Tavg ANN8 DNN8 M5Tree8 SVM8 KNN8 RF8 AB8

ETa Dataset 1
Model 9 Tc–Ta, VPD, SWC ANN9 DNN9 M5Tree9 SVM9 KNN9 RF9 AB9
Model 10 Tc–Ta, SWC ANN10 DNN10 M5Tree10 SVM10 KNN10 RF10 AB10
Model 11 Tc–Ta, VPD ANN11 DNN11 M5Tree11 SVM11 KNN11 RF11 AB11
Model 12 VPD, SWC ANN12 DNN12 M5Tree12 SVM12 KNN12 RF12 AB12
Dataset 2
Model 13 hc, LAI, Tavg, u2, RHavg, Rs ANN13 DNN13 M5Tree13 SVM13 KNN13 RF13 AB13
Model 14 Tavg, u2, RHavg, Rs ANN14 DNN14 M5Tree14 SVM14 KNN14 RF14 AB14
Model 15 hc, LAI, Tavg ANN15 DNN15 M5Tree15 SVM15 KNN15 RF15 AB15
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estimated and; n is the number of data. In addition, Taylor 
diagrams were exploited to investigate the standard deviation 
(SD) and correlation coefficients (R) between the model-
estimated and measured values.

Results

Soil water content and evapotranspiration

The changes in precipitation, applied irrigation, and soil 
water content in 60 cm effective root zone for full irriga-
tion application (I1) during 2015, 2016, and 2017 growing 
seasons are presented in Fig. 1. Total amount of irrigation 
water applied to eggplants under full irrigation applica-
tion during the growing season in 2015 was measured as 
487 mm. Less irrigation water was applied (310 mm) in 

2016 since it was much rainier in that year compared to 
other two years. In 2017, a total of 416 mm of irrigation 
water was applied to the plant during the growing season. 
Because of the variation in the amount of precipitation 
each year, the total amount of irrigation water applied to 
the plant varied greatly in three growing seasons. Thus, the 
total amount of irrigation water applied to the parcels with 
full irrigation in 2016 was 36 and 25% less than in 2015 
and 2017, respectively. During the season, 83, 323, and 
157 mm of precipitation occurred in 2015, 2016, and 2017. 
In 2016, 42% of precipitation during the season occurred 
at the beginning of the trial and 40% occurred at the end 
of the season (Fig. 1). As a result, soil preparation and 
transplanting were delayed compared to other two seasons.

The diurnal variations of ETo, which is calculated with 
climatic parameters and reflects the climatic conditions of 
the trial years, during the growing season in 2015, 2016, 
and 2017, are presented in Fig. 2. The calculated daily 

Fig. 1   Variation of soil water content as a function of irrigation and rainfall at 60 cm effective rooting depth under full irrigation conditions. 
DAT Days after transplantation, MAD management allowed depletion, FC field capacity, PWP permanent wilting point
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ETo values varied between 1.91 and 5.29 mm d−1 in 2015, 
between 1.71 and 4.99 mm d−1 in 2016, and between 2.19 
and 5.6 mm d−1 in 2017. The seasonal total ETo values in 
2015, 2016, and 2017 were found as 560, 544, and 525 mm, 
respectively. The reason for the relatively lower ETo value in 
2017 compared to other years is due to the shorter vegetation 
period (the vegetation period was 150 days in 2015, 150 days 
in 2016 and 139 days in 2017).

The daily changes of ETc values calculated for the egg-
plant by the FAO-56 PM method during the growing season 
in 2015, 2016, and 2017 are shown in Fig. 3. The calculated 
daily ETc values varied between 1.43 and 6.14 mm d−1 in 
2015, between 1.36 and 5.49 mm d−1 in 2016, and between 
1.87 and 6.16 mm d−1 in 2017. Seasonal total ETc values for 
eggplant in 2015, 2016, and 2017 were determined as 564, 
491, and 544 mm, respectively.

The daily changes of ETa values determined according 
to the water budget method during the growing season in 
2015, 2016, and 2017 are shown in Fig. 4. The measured 
daily ETa values varied between 1.35 and 5.56 mm d−1 in 
2015, between 1.25 and 4.87 mm d−1 in 2016, and between 
1.93 and 6.47 mm d−1 in 2017. The seasonal total ETa values 
measured for eggplant in 2015, 2016, and 2017 were 563, 

487, and 558 mm, respectively. The variation in ETc between 
the three growing seasons may be due to variation in the 
amount and distribution of precipitation, which has different 
effects on soil wetting and consequent evaporation losses 
and water uptake by the plant (Dar et al. 2017). The three-
year average seasonal evapotranspiration amount (533 mm) 
calculated by the FAO-56 PM method was found to be very 
close to the three-year average seasonal evapotranspiration 
amount (536 mm) measured according to the water budget 
method.

When the scatter plot created using 3-year data was exam-
ined, a good agreement was observed between the ETc cal-
culated by the FAO-56 PM method and the ETa measured 
by the water budget, with a high coefficient of determination 
(R2 = 0.84) and the slope of the high linear regression curve 
(0.95) (Fig. 5).

Modeling database

The descriptive statistics for soil and climate parameters 
determined during the experiment, as well as data for 
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daily climate, crop and soil conditions used in modeling 
with machine learning are given in Table 2. Daily refer-
ence evapotranspiration (ETo) values for the training and 
test datasets ranged from 0.55 to 6.45 mm and 0.33 to 
6.52 mm, respectively. Values between May 1 and Novem-
ber 30 in all three years were used to model the daily ETo. 
Crop evapotranspiration values (ETc) calculated by the 
FAO-56 PM method ranged between 1.36 and 5.50 mm in 
the training data set and between 1.57 and 6.16 mm in the 
test data set (Table 2). The daily actual evapotranspiration 
(ETa) values measured by the water budget method, on the 
other hand, ranged between 1.26–5.50 and 1.56–6.47 mm 
in the training and test datasets, respectively (for scenario 
2). In the 1st scenario created for ETa, ETa values of full 

and deficit irrigation issues were used. Therefore, ETa 
values for scenario 1 varied between 0.99 and 5.61 mm 
d−1 in the training dataset and between 0.97 and 5.94 mm 
d−1 in the test dataset.

Estimation of ETo using different machine learning 
models

The ETo values estimated by seven different machine learn-
ing models were compared to the ETo values obtained by the 
empirically calculated using the FAO-56 PM method. The 
training and testing accuracies of the ANN, DNN, M5Tree, 
SVM, kNN, RF, and AB models with four different input 
combinations in ETo estimation are given in Table 3.

Table 3   Statistical results of four different input combinations and seven different machine learning models during the training and testing in 
estimation of ETo (bolded values are the models that presented the best results)

Input/model Training Testing

R2 MAE (mm d−1) RMSE (mm d−1) NSE R2 MAE (mm d−1) RMSE (mm d−1) NSE

Model 1: Tmin, Tmax, Tavg, u2, RHavg, Rs, DOY
 ANN1 0.987 0.081 0.141 0.987 0.984 0.098 0.153 0.983
 DNN1 0.953 0.232 0.300 0.942 0.931 0.264 0.350 0.911
 M5Tree1 0.976 0.130 0.194 0.976 0.975 0.127 0.189 0.974
 SVM1 0.973 0.114 0.207 0.972 0.973 0.103 0.195 0.972
 KNN1 0.975 0.143 0.199 0.975 0.933 0.223 0.309 0.931
 RF1 0.992 0.087 0.121 0.991 0.902 0.251 0.378 0.896
 AB1 0.980 0.161 0.190 0.977 0.906 0.264 0.373 0.899

Model 2: Tmin, Tmax, Tavg, u2, RHavg, DOY
 ANN2 0.918 0.265 0.357 0.918 0.858 0.316 0.443 0.858
 DNN2 0.879 0.333 0.434 0.879 0.809 0.384 0.514 0.808
 M5Tree2 0.885 0.308 0.423 0.885 0.840 0.358 0.473 0.838
 SVM2 0.857 0.340 0.483 0.850 0.816 0.364 0.516 0.807
 KNN2 0.951 0.197 0.277 0.951 0.827 0.381 0.492 0.825
 RF2 0.983 0.126 0.172 0.981 0.787 0.380 0.544 0.786
 AB2 0.949 0.255 0.300 0.942 0.781 0.406 0.554 0.777

Model 3: Tavg, u2, RHavg, Rs, DOY
 ANN3 0.973 0.146 0.206 0.973 0.959 0.176 0.241 0.958
 DNN3 0.960 0.198 0.265 0.955 0.921 0.261 0.352 0.910
 M5Tree3 0.965 0.171 0.234 0.965 0.932 0.216 0.309 0.931
 SVM3 0.942 0.214 0.310 0.938 0.908 0.235 0.364 0.904
 KNN3 0.969 0.160 0.222 0.968 0.924 0.233 0.325 0.923
 RF3 0.993 0.081 0.112 0.992 0.893 0.254 0.393 0.888
 AB3 0.975 0.175 0.207 0.973 0.900 0.271 0.385 0.893

Model 4: Tavg, RHavg, DOY
 ANN4 0.888 0.309 0.418 0.888 0.802 0.401 0.531 0.796
 DNN4 0.874 0.342 0.448 0.871 0.770 0.421 0.575 0.760
 M5Tree4 0.886 0.317 0.422 0.886 0.802 0.407 0.527 0.798
 SVM4 0.842 0.361 0.511 0.832 0.772 0.399 0.576 0.760
 KNN4 0.891 0.312 0.415 0.889 0.779 0.413 0.556 0.776
 RF4 0.981 0.136 0.180 0.979 0.723 0.442 0.620 0.721
 AB4 0.929 0.291 0.344 0.924 0.747 0.442 0.591 0.747
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The performance of machine learning models in training 
and testing phases was evaluated using R2, MAE, RMSE, 
and NSE values as the variability of performances among 
the models with different inputs and estimation models 
(Table 3). The ANN model outperformed the other mod-
els, while the performances of AB and RF models were the 
lowest for all input combinations. The estimation of ANN4 
and M5Tree4 models in the 3-input models was very close. 
The highest performance in the training phase was recorded 
with the RF model, while it was poor in the testing phase. 
The result indicated a certain degree of over-fitting in the 
RF models.

The highest prediction performance was obtained in 
Model 1 (Tmin, Tmax, Tavg, u2, RHavg, Rs, and DOY), while 
the lowest prediction performance was obtained in Model 4, 
which used three inputs (Tavg, RHavg, and DOY). The com-
parison of Model 4 and Model 3 showed that the inclusion 
of u2 and Rs to the models significantly improved the predic-
tion performance. The MAE and RMSE values in the ANN 
model decreased from 0.401 to 0.176 (56.1%) and from 
0.531 to 0.241 (54.6%), respectively, and the R2 and NSE 
values increased from 0.802 to 0.959 (19.6%) and 0.796 
to 0.958 (20.4%), respectively. The removal of Rs from the 
variable input list in the ETo estimation (Model 2) caused 
a significant decrease in the R2 (12.8%) and NSE (12.7%) 
compared to ANN2, while a significant increase in RMSE 
(65.5%). The ETo estimation without Rs as an input variable 
had a negative impact on the estimation performance of the 
model. Granata et al. (2020) reported similar findings related 
to the Rs as an input variable. When Model 3 and Model 1 
are compared in terms of ANN, the RMSE decreases by 
36.5%, while the R2 increases by 2.6%.

The addition of Tmin and Tmax variables to the models 
improved the accuracy compared to the use of Tavg input 
alone. The results demonstrated that addition of the maxi-
mum and minimum temperatures is preferable to the use 
of only the average temperature. Lu et al. (2018) reported 
similar results in the estimation of daily pan evaporation. 
The comparison of the model in which only Tavg was the 
only input variable in the estimation of evaporation with 
the models with Tmin and Tmax input variables revealed that 
the RMSE value decreased by 41.7% in the 2-input model. 
Therefore, the ANN1 model is the best machine learning 
model in the estimation of the ETo. However, collection of 
climate data throughout the experiments may not always be 
possible; thus, limited data are used in the estimation. For 
instance, the ANN4 model with 3 input variables provided 
quite reliable estimation of the ETo (NSE = 0.796).

The test phase scatter of ETo values estimated by seven 
machine learning models versus FAO-56 PM values under 
four different input combinations and the line graphs of the 
best model is shown in Fig. 6. The ETo values estimated 
by the ANN, M5Tree, and kNN models had a distribution 

similar to the ETo values calculated using the FAO-56 
PM equation. The results suggested that the performance 
of these three models in estimating the ETo is better. The 
RF, AB, DNN, and SVM models produced more scattered 
estimations than the other machine learning models. The 
highest estimation performance with all meteorological vari-
ables was obtained in Model 1 compared to the other input 
combinations (Fig. 6). The estimation accuracy of Model 
3 and Model 1 was similar in the absence of all meteoro-
logical variables. Machine learning models produced more 
diffuse predictions and moved away from the fitted line in 
the absence of Rs in Model 2 and u2 and Rs in Model 4. The 
line graphs revealed that the predicted series overlap better 
with the observed series when all meteorological variables 
are used in the models, while the predicted series fluctu-
ate more when fewer input variables are used (Fig. 6). The 
lack of parameters reduced the estimation performance of 
models, while the addition of the Rs parameter improved the 
model performances.

The Taylor diagram was used for the comparison between 
the machine learning models (Fig. 7). The radial axis in a 
Taylor diagram represents the standard deviations, while the 
angular axis represents the correlation coefficients (Taylor 
2001). Each point on the diagram represents the perfor-
mance of a specific model, and the model closest to the ref-
erence point is considered estimating more accurately. The 
Taylor diagrams comparing various input combinations and 
machine learning models in estimating the ETo during the 
testing phase are shown in Fig. 7. The ANN model is placed 
much closer to the reference points than the other machine 
learning models. The RF and AB models are placed at the 
furthest location from the observed values for all input com-
binations. Therefore, the worst predictive models were the 
RF and AB models. The Model 1, in which all meteorologi-
cal variables were used as the input data, was the closest 
model to the observed values in terms of standard deviation, 
correlation, and RMSE (Fig. 7).

Estimation of ETc using different machine learning 
models

The ETc value was calculated by multiplying ETo by the 
crop coefficient (Kc) as reported by Allen et al. (1998). Soil 
water and salinity stress, plant density, disease and pests, 
weed infestation, or low productivity did not cause any 
restrictions on plant growth and evapotranspiration. Mete-
orological conditions such as climate data, and some plant 
growth indicators such as crop height, LAI, and CGDD 
were used as the inputs in the estimation of ETc. Four dif-
ferent input datasets consisting of different combinations 
were prepared to estimate the ETc. The performances of 
ANN, DNN, M5Tree, SVM, kNN, RF, and AB models 
during training and testing phases in ETc estimation are 
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Fig. 6   Scatter and line graphs 
ETo values calculated using 
FAO-56 PM during the test 
phase versus estimated by the 
seven machine learning models
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presented in Table 4. The performance of various machine 
learning models and models with different input variables 
varied significantly. The prediction performance of the RF 
and ANN models in Model 5 and Model 6 was very close 
to each other (Table 4). The ANN models, on the other 
hand, had the best predictive performance (i.e., maximum 
R2 and NSE and minimum MAE and RMSE values) dur-
ing the testing phase for Model 7 and 8 compared to other 
models.

ANN7 model performed better when Tavg, u2, RHavg, and 
Rs variables were used as the inputs, while RF6 (ANN6 very 
close) model performed better when Tavg, u2, RHavg, Rs, and 
CGDD variables were used as the inputs. The performance 
of models was improved by including cumulative growing 
degree days (CGDD) in addition to climate data. Including 
the CGDD variable in the ETc estimation increased the R2 
and NSE of the model from 0.660 to 0.774 and 0.656 to 
0.771, respectively, while decreasing the MAE and RMSE 
values from 0.503 to 0.395 and 0.676 to 0.551, respectively. 

Fig. 7   Taylor diagram of ETo estimated with 7 different machine learning models using different input parameters during the test phase
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Granata (2019) compared the performances of machine 
learning models in ETc estimation and indicated that the 
accuracy of RF model including Tavg, u2, RHavg, and Rs as 
the input variables was the highest. In addition, M5Tree 
model provided the best performance when soil moisture 
and sensible heat flux variables were added to the model. 
In this study, adding LAI and crop height variables signifi-
cantly improved the performance of the model. MAE and 
RMSE values in Model 5 (eggplant characteristics were used 
as input variables) were 27.8 and 26.8% lower than those 
obtained in the Model 7 (only climatic parameters). The 
comparison of prediction performances of Model 5 (with the 

highest number of variables) and Model 8 (with the lowest 
number of variables) revealed that the RF5 model had 4.01% 
higher R2 and 5.4% higher NSE values (ANN5 model is 
very close). The ETc was estimated with sufficient accuracy 
using fewer climatic parameters (only average temperature) 
in addition to the plant characteristics (crop height, LAI). In 
general, the prediction performance of RF with high num-
ber of input variables was very close to that of the ANN in 
models, while the prediction performance of RF decreased 
with the decrease in the number of input variables. The per-
formance of RF in the ETo prediction was the highest in the 
training phase of all models. However, after testing, the best 

Table 4   The performances of four different input combinations and seven different machine learning models during training and testing phases 
in ETc prediction (bolded values are the models that presented the best results)

Input/model Training Testing

R2 MAE (mm d−1) RMSE (mm d−1) NSE R2 MAE (mm d−1) RMSE (mm d−1) NSE

Model 5: hc, LAI, Tavg, u2, RHavg, Rs

 ANN5 0.836 0.374 0.512 0.835 0.794 0.384 0.529 0.790
 DNN5 0.809 0.418 0.551 0.809 0.755 0.438 0.583 0.745
 M5Tree5 0.732 0.417 0.618 0.722 0.722 0.451 0.624 0.707
 SVM5 0.600 0.549 0.751 0.589 0.639 0.526 0.699 0.633
 KNN5 0.722 0.448 0.625 0.715 0.779 0.457 0.579 0.748
 RF5 0.828 0.198 0.501 0.817 0.821 0.363 0.495 0.816
 AB5 0.770 0.372 0.572 0.762 0.780 0.422 0.550 0.773

Model 6: Tavg, u2, RHavg, Rs, CGDD
 ANN6 0.750 0.380 0.616 0.724 0.777 0.423 0.558 0.766
 DNN6 0.725 0.447 0.623 0.717 0.727 0.448 0.613 0.718
 M5Tree6 0.698 0.458 0.654 0.689 0.696 0.468 0.652 0.680
 SVM6 0.596 0.553 0.756 0.584 0.637 0.526 0.701 0.631
 KNN6 0.732 0.402 0.614 0.725 0.728 0.465 0.604 0.726
 RF6 0.825 0.207 0.504 0.815 0.774 0.395 0.551 0.771
 AB6 0.769 0.369 0.573 0.761 0.737 0.458 0.598 0.732

Model 7: Tavg, u2, RHavg, Rs

 ANN7 0.643 0.522 0.715 0.627 0.660 0.503 0.676 0.656
 DNN7 0.632 0.530 0.715 0.628 0.647 0.506 0.690 0.643
 M5Tree7 0.628 0.529 0.727 0.615 0.626 0.526 0.721 0.610
 SVM7 0.593 0.560 0.757 0.582 0.635 0.533 0.700 0.631
 KNN7 0.648 0.505 0.700 0.643 0.641 0.535 0.692 0.640
 RF7 0.810 0.249 0.523 0.801 0.620 0.516 0.715 0.616
 AB7 0.722 0.451 0.622 0.718 0.603 0.556 0.729 0.601

Model 8: hc, LAI, Tavg

 ANN8 0.731 0.451 0.624 0.716 0.788 0.447 0.550 0.772
 DNN8 0.682 0.508 0.664 0.679 0.700 0.517 0.647 0.685
 M5Tree8 0.708 0.471 0.641 0.700 0.684 0.515 0.670 0.663
 SVM8 0.530 0.621 0.813 0.519 0.548 0.610 0.789 0.532
 KNN8 0.776 0.379 0.572 0.762 0.754 0.465 0.596 0.733
 RF8 0.823 0.221 0.510 0.810 0.749 0.481 0.593 0.735
 AB8 0.757 0.412 0.593 0.744 0.744 0.491 0.604 0.726
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Fig. 8   Scatter and line graphs of 
the estimated crop evapotranspi-
ration (ETc) values by machine 
learning models compared with 
measured values for the testing 
phase
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prediction performance was obtained from the ANN and RF, 
while the model with the lowest prediction accuracy was 
obtained from the SVM.

Comparisons of measured and estimated ETc values dur-
ing the testing phase of seven different machine learning 
models and four different input combinations are presented 
in the scatter plots, and the model with the most accurate 
estimation is presented in a line chart (Fig. 8). The ANN 
model provided the best estimates with the lowest scatter-
ing for all other input combinations except Models 5 and 
6. The prediction performances of the RF and ANN mod-
els were similar in Models 5 and 6. In addition, almost all 

machine learning models predicted ETc values greater than 
5.5 mm d−1. Yamaç and Todorovic (2020) used three dif-
ferent machine learning methods to estimate ET (ETc) for 
potatoes and indicated that the ETc values estimated by the 
AB and kNN methods were lower than the measured ETc 
values and higher than the ETc values estimated by the ANN 
method. In addition, the predicted series overlap better with 
the measured series when all meteorological variables and 
plant characteristics are used in the models (Model 5), while 
they disperse when less input variables are used (Model 7).

The Taylor diagrams comparing various input combi-
nations and machine learning models in the estimation of 

Fig. 9   Taylor diagram of ETc estimated by seven different machine learning models using different input combinations in the testing phase
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eggplant plants’ evapotranspiration (ETc) value are given 
in Fig. 9. The correlation coefficients of Models 5 and 6 
are close, and the ANN models have a standard devia-
tion closer to the reference point (Fig. 9). The ANN had 
the lowest RMSE and the highest correlation coefficients 
for Models 7 and 8 in all machine learning models. The 
prediction performance criteria and visual inspections dif-
fered depending on the input variables and the machine 
learning models employed. Machine learning models 
provided highly accurate predictions with fewer climate 
parameters in the presence of crop height and LAI data.

Estimation of ETa using different machine learning 
models

In this section, the actual evapotranspiration values meas-
ured with the soil water balance approach during the 3-year 
research under field conditions were estimated and compared 
with seven different machine learning models. Transpiration 
and evaporation are both combined in a single Kc coefficient, 
which relates to the plant properties and takes average soil 
evaporation into the account. The average Kc coefficient is 
more useful than the Kc calculated in daily time frames using 
separate plant and soil coefficients for the development of 
basic irrigation programs and many hydrological balance 
studies. Therefore, ETa was estimated by using not only 

Table 5   The estimation performances of four different input combinations and seven different machine learning models during training and test-
ing phases in the estimation of ETa for the dataset 1 (bolded values are the models that presented the best results)

Input/model Training Testing

R2 MAE (mm d−1) RMSE (mm d−1) NSE R2 MAE (mm d−1) RMSE (mm d−1) NSE

Model 9: Tc–Ta, VPD, SWC
 ANN9 0.993 0.064 0.093 0.993 0.988 0.099 0.137 0.987
 DNN9 0.710 0.433 0.611 0.709 0.596 0.618 0.777 0.595
 M5Tree9 0.752 0.453 0.563 0.752 0.736 0.535 0.635 0.730
 SVM9 0.720 0.502 0.630 0.690 0.666 0.596 0.731 0.641
 KNN9 0.908 0.277 0.366 0.896 0.881 0.349 0.438 0.871
 RF9 0.984 0.114 0.150 0.982 0.889 0.306 0.412 0.886
 AB9 0.976 0.164 0.192 0.971 0.901 0.290 0.393 0.896

Model 10: Tc–Ta, SWC
 ANN10 0.827 0.387 0.474 0.825 0.846 0.417 0.494 0.836
 DNN10 0.770 0.429 0.552 0.762 0.683 0.544 0.692 0.679
 M5Tree10 0.738 0.458 0.579 0.738 0.718 0.542 0.654 0.713
 SVM10 0.718 0.504 0.631 0.689 0.664 0.599 0.733 0.639
 KNN10 0.812 0.402 0.492 0.811 0.784 0.457 0.574 0.779
 RF10 0.968 0.168 0.207 0.966 0.788 0.446 0.586 0.770
 AB10 0.941 0.253 0.281 0.938 0.809 0.418 0.558 0.791

Model 11: Tc–Ta, VPD
 ANN11 0.911 0.275 0.337 0.911 0.933 0.251 0.320 0.931
 DNN11 0.270 1.148 1.349 -0.422 0.410 1.191 1.437 -0.385
 M5Tree11 0.752 0.453 0.563 0.752 0.736 0.535 0.635 0.730
 SVM11 0.747 0.662 0.817 0.479 0.727 0.784 0.920 0.433
 KNN11 0.885 0.304 0.388 0.882 0.878 0.342 0.441 0.869
 RF11 0.974 0.147 0.185 0.973 0.840 0.377 0.492 0.838
 AB11 0.955 0.212 0.243 0.954 0.842 0.370 0.486 0.842

Model 12: VPD, SWC
 ANN12 0.558 0.584 0.752 0.558 0.568 0.642 0.812 0.558
 DNN12 0.236 0.790 1.001 0.218 0.192 0.885 1.106 0.180
 M5Tree12 0.458 0.661 0.838 0.452 0.378 0.788 0.969 0.369
 SVM12 0.260 0.832 1.023 0.182 0.219 0.925 1.119 0.160
 KNN12 0.460 0.655 0.840 0.449 0.518 0.738 0.872 0.490
 RF12 0.927 0.255 0.341 0.909 0.495 0.735 0.901 0.455
 AB12 0.804 0.449 0.534 0.778 0.547 0.701 0.852 0.512
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climate parameters but also soil and plant-specific data to 
determine ETa with machine learning models.

The prediction performances of two different data sets 
and seven different input combinations were compared in 
ETa estimation with machine learning models. The first 
data set included Tc–Ta, VPD, and SWC and the second 
data set included hc, LAI, Tavg, u2, RHavg, and Rs (Table 1). 
The ETa was estimated in the first data set using four dif-
ferent input combinations. The training and testing accu-
racies of ANN, DNN, M5Tree, SVM, kNN, RF, and AB 
models for ETa prediction using the first dataset are given 
in Table 5. Overall, the ANN models outperformed the 
other seven machine learning methods in estimation per-
formance during the testing phase and followed by the AB 
and kNN methods. The lowest estimation performances 
were obtained in SVM and DNN models. The results 
revealed that the decrease in the number of input variables 
caused a decrease in the performance of the DNN method 
while an increase in the estimation error. The accuracy of 
the models increased with an addition of a new variable 
as input, and the highest accuracy in ETa prediction was 

obtained in Model 9, which included all three variables. 
The inclusion of the VPD variable in the model during the 
testing phase caused a 76 and 72% decrease in MAE and 
RMSE values of the ANN9 model, respectively. At the 
same time, R2 increased from 0.846 to 0.988 (16.8%). The 
addition of the SWC variable to the model caused a 60% 
and 57% decrease in MAE and RMSE, respectively, and 
the R2 value increased from 0.933 to 0.993 (6%) (compar-
ing ANN11 to ANN9). The RMSE value decreased from 
0.812 to 0.137 (83%) and the NSE increased from 0.558 
to 0.987 (76.8%) when Tc–Ta was added to the model com-
pared to the ANN9 model. The results showed that the 
Tc–Ta variable is the most effective in the estimation of 
ETa, followed by the VPD and SWC.

The performances of three different input combina-
tions and seven different machine learning methods in 
ETa estimation were compared in the second data set. 
Using the second dataset, the performance criteria of dif-
ferent machine learning methods between measured and 
predicted ETa in both training and testing phases are sum-
marized in Table 6. When only climate parameters were 

Table 6   The estimation performances of three different input combinations and seven different machine learning models during training and 
testing phases in the estimation of ETa for the dataset 2 (bolded values are the models that presented the best results)

Input/model Training Testing

R2 MAE (mm d−1) RMSE (mm d−1) NSE R2 MAE (mm d−1) RMSE (mm d−1) NSE

Model 13: hc, LAI, Tavg, u2, RHavg, Rs

 ANN13 0.807 0.334 0.516 0.791 0.742 0.413 0.601 0.698
 DNN13 0.712 0.503 0.652 0.665 0.723 0.489 0.631 0.667
 M5Tree13 0.667 0.491 0.660 0.657 0.628 0.530 0.706 0.584
 SVM13 0.668 0.473 0.676 0.640 0.622 0.507 0.712 0.576
 KNN13 0.779 0.391 0.529 0.779 0.747 0.412 0.553 0.745
 RF13 0.906 0.180 0.347 0.905 0.764 0.401 0.533 0.763
 AB13 0.845 0.338 0.444 0.845 0.737 0.439 0.563 0.735

Model 14: Tavg, u2, RHavg, Rs

 ANN14 0.713 0.461 0.609 0.707 0.679 0.473 0.643 0.654
 DNN14 0.703 0.498 0.647 0.670 0.669 0.522 0.677 0.617
 M5Tree14 0.668 0.496 0.659 0.657 0.611 0.554 0.723 0.563
 SVM14 0.667 0.496 0.683 0.633 0.617 0.523 0.706 0.584
 KNN14 0.729 0.438 0.586 0.729 0.696 0.469 0.610 0.689
 RF14 0.894 0.204 0.370 0.892 0.711 0.459 0.606 0.694
 AB14 0.821 0.381 0.478 0.820 0.667 0.484 0.634 0.664

Model 15: hc, LAI, Tavg

 ANN15 0.683 0.489 0.648 0.669 0.575 0.564 0.741 0.541
 DNN15 0.546 0.622 0.767 0.537 0.551 0.612 0.761 0.516
 M5Tree15 0.500 0.650 0.802 0.494 0.438 0.665 0.835 0.418
 SVM15 0.460 0.673 0.846 0.436 0.492 0.638 0.793 0.475
 KNN15 0.613 0.575 0.706 0.607 0.545 0.618 0.777 0.495
 RF15 0.895 0.215 0.366 0.894 0.570 0.588 0.738 0.545
 AB15 0.772 0.439 0.544 0.767 0.544 0.607 0.763 0.513
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Fig. 10   Scatter and line plots 
of ETa values estimated by 
seven different models versus 
actual evapotranspiration (ETa) 
measured for dataset 1 during 
the testing phase
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used in Model 14 (Tavg, u2, RHavg, Rs), RF produced the 
most accurate prediction. The RF model outperformed 
other machine learning methods in ETc prediction when 
the same input variables were used. The Model 13, which 
included all six variables of the second data set, provided 
the highest accuracy in ETa estimation. The MAE value 
was 14.5% higher and the R2 value was 7% lower in Model 
14 (which included only climate parameters) compared 
to the Model 13, which included crop height and LAI 
as well as climate parameters. The value of MAE was 
40.4% lower, and the values of R2 and NSE were 33% and 

42.6% higher, respectively, for model 13 (hc, LAI, Tavg, 
u2, RHavg, and Rs) compared with model 15 (hc, LAI, and 
Tavg). The climate parameters increased the accuracy of 
models in ETa estimation. Finally, the evaluation of both 
datasets revealed that the ANN9 model with Tc–Ta, VPD, 
and SWC inputs produced the best estimation results. The 
RF14 model provided adequate accuracy in estimation of 
ETa when only climatic data were available.

The scatter and line graphs created for the ETa values 
measured during the testing phase and estimated with dif-
ferent machine learning models are shown in Fig. 10. The 

Fig. 11   Scatter and line plots 
of ETa values estimated by 
seven different models versus 
actual evapotranspiration (ETa) 
measured for dataset 2 during 
the testing phase
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scatter and line graphs created for the second data set 
are shown in Fig. 11. The estimations of ANN model for 
all scenarios are less dispersed than the other methods. 
The accuracy of ANN9 model for the first data set and 
ANN13 model for the second data set were significantly 
better than other machine learning methods (Fig. 10). 
The ANN9 model, on the other hand, had a distribution 
just above the fit line. In addition, the methods that pro-
vided the most scattered results were DNN and SVM. 
The estimated ETa values deviated from the fit line with 
the increase in measured ETa values in both datasets. 

Therefore, the ANN9 model had slightly less estima-
tion accuracy for ETa with high values compared to low 
values.

A Taylor diagram was used to analyze the standard 
deviation, RMSE, and correlation coefficient between 
the measured and estimated ETa values during the test-
ing phase for the ANN, DNN, M5Tree, SVM, kNN, RF, 
and AB models (Figs. 12, 13). The ANN model had a 
standard deviation closer to the measured value compared 
to the other machine learning methods and had the highest 
correlation coefficient and the lowest RMSE value. The 

Fig. 12   Taylor diagram of ETa estimated with 7 different machine learning models using different input parameters during the testing phase 
(dataset 1)
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results indicated that the ANN9 model (Tc–Ta, VPD, and 
SWC) provided the closest estimation of the ETa values 
to the measured values.

Comparison of the stability of different input 
combinations and various machine learning 
methods in estimation of evapotranspiration

Four input combinations were developed to estimate the 
ETo, four to estimate the ETc using the crop coefficient 
approach, and seven to estimate the ETa using the soil 
water balance. A heat map comparison of the RMSE 

Fig. 13   Taylor diagram of ETa estimated with 7 different machine learning models using different input parameters during the testing phase 
(dataset 2)
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a) ETo                                                  Training               
RMSE

Testing
RMSE

b) ETc RMSE RMSE

c) ETa (dataset 1)                                      RMSE RMSE

d) ETa (dataset 2)                                       RMSE RMSE

Fig. 14   RMSE values of machine learning models for different input combinations in training and testing dataset, a ET0, b ETc, c ETa (dataset1), d ETa (dataset 2)
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values of the ANN, DNN, M5TREE, SVM, kNN, RF, 
and AB models during the training and testing phases is 
shown in Fig. 14. Different input combinations had a sig-
nificant impact on prediction performance of each model. 
The models with more input variables performed better 
overall. The RMSE values of the Models 1 and 3 which 
used the net radiation (Rs) variable for ETo estimation in 
both the training and testing stages were lower than the 
RMSE values of the models that did not use the Rs. The 
RMSE values of all machine learning methods were very 
low in the combinations of Tmin, Tmax, Tavg, u2, RHavg, Rs, 
and DOY. The performance of DNN model was the low-
est in 2-input models (especially in Model 11 and Model 
12) with the least number of inputs (Fig. 14). In general, 
the RF models outperformed the other machine learning 
models during the training stage.

The ANN model had the best prediction performance in 
all models except Model 5 (RF), Model 6 (RF), Model 13 
(RF), Model 14 (RF), and Model 15 (RF) during the test-
ing stage. The RMSE increase in RF models during testing 
phase compared to training phase was significantly greater 
than that in other machine learning models. On the con-
trary, the increase in the ANN model was very small, which 
indicated that the ANN method is the most stable model in 
estimating the ETo, ETc, and ETa for eggplant plant.

Discussion

The ETo, ETc, and ETa prediction performances of dif-
ferent machine learning methods and ANN models were 
compared. The ANN model provided better predictions 
than other machine learning models, and the models used 
all input variables had a lower RMSE and MAE values. 
The RF model performed better compared to the other 
machine learning models in the estimation of ETc (hc, LAI, 
Tavg, u2, RHavg, Rs) and ETa (Tavg, u2, RHavg, Rs); the esti-
mation performance of RF model was close to the ANN 
model. Similar to our findings, Yamaç (2021) reported that 
the RF method provided the best prediction performance 
in the estimation model using all input data for sugar beet 
ETc. In addition, a strong linear relationship was recorded 
between the model inputs and the ETc values. The ETc and 
Kc were positively correlated with Tmax and Tmin, while 
Tmin was negatively correlated with RHmax and RHmin. On 
the other hand, it has been reported that the prediction 
performance of the ANN method is better even when an 
input variable with a lower correlation with ETc is entered 
into the model.

In addition to the accuracy of machine learning mod-
els, the stability of the model is also important for a reli-
able estimate of evapotranspiration. When comparing 
the RMSE values for the training and test data sets in 
this study, the largest RMSE increase in the test data set 
was found for the RF model for almost all models. This 
increase has revealed the instability of the models of RF, 
as the prediction accuracy decreases significantly when 
new data outside the training dataset are used in the test 
dataset. Fan et al. (2018) compared different machine 
learning methods in estimating reference evapotran-
spiration and reported that kernel-based models such 
as SVM are generally more stable than the tree-based 
(RF) machine learning models. Evapotranspiration is a 
complex, dynamic, and highly nonlinear hydrological 
phenomenon that is affected by a variety of meteorologi-
cal factors as well as crop growth indicators (Shan et al. 
2020). The results demonstrated that the ANN models 
can accurately model the complex nonlinear relation-
ships between ET and meteorological factors, as well as 
crop growth indicators. The ANN models obtained in this 
study, even in the absence of missing data, can be recom-
mended in estimating the water consumption of eggplant 
grown in semi-humid regions. In addition, plant water 
consumption can be estimated directly without the need 
for machine learning methods using the crop coefficient 
(Kc).

The DNN models performed worse than other machine 
learning models in estimating the reference plant water 
consumption. The result contradicts the findings of Saggi 
and Jain (2019), who reported that the DNN model out-
performs the RF model in ETo prediction. The difference 
in the results may be attributed to the factors such as the 
location of the study and the hyperparameter settings of 
the models, which may affect the performance of ANN 
and DNN models. The worst prediction performance 
with DNN models obtained when the number of inputs 
decreased (models with two inputs). The requirement of 
large datasets as inputs during the training phase is the 
most significant disadvantage of deep learning models 
(Kamilaris and Prenafeta-Bold 2018). The optimization 
problems can arise in small datasets. Chen et al. (2020) 
compared the performance of temporal convolution net-
work (TCN) models for the estimation of maize evapo-
transpiration to the long short-term memory networks 
(LSTM) and deep neural networks (DNN) and reported 
that the TCN model, which used 11 input variables, con-
sistently outperformed the LSTM and DNN models for 
different input data sets. Therefore, the number of data 
should be increased to improve the performance of deep 
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learning models and other deep learning techniques (such 
as LSTM, CNN) should also be tested in future studies.

The generalization capacity of evapotranspiration esti-
mation models decreases with the decrease in the number 
of meteorological variables and crop growth indicators 
used as inputs in the models. The removal of Rs from the 
input variables in ETo estimation significantly decreased 
the performance of models. The finding, in particular, dem-
onstrates that Rs is an important variable that should be 
used in estimating the reference crop water consumption 
using machine learning models. The result also confirms 
the importance of using temperature as the only input vari-
able in reference crop water consumption estimation models 
currently used in water resource planning. Finally, previous 
studies have shown that the ETc can be influenced by vari-
ous factors including crop type, crop height, leaf area index, 
canopy temperature, soil temperature, and climate param-
eters (Chen et al. 2020). Therefore, the prediction accuracy 
was improved by using eggplant plant characteristics such 
as crop height and leaf area index as inputs in modeling ETc 
and ETa.

Within the scope of the study, while the total seasonal 
ETa amount measured with the soil water budget in 2015 
was 563 mm, the ETc calculated according to FAO-56 
PM was 564 mm, which showed only 1 mm (0.2%) dif-
ference. In 2016, ETa was measured as 487 mm and ETc 
as 491 mm, and the difference was determined as 4 mm 
(0.8%). Similarly, while ETa was 558 mm in 2017, ETc 
was calculated as 544 mm with the difference of 14 mm 
(2.5%). When the seasonal total evapotranspiration values 
calculated by these two different methods (soil water bal-
ance and FAO-56 PM methods) were compared, a high 
coefficient of determination (R2 = 0.84) was found between 
them. It can be assumed that the ET values calculated 
by both methods are similar and the differences observed 
in the range of 0.2–2.5% can be negligible. Soubie et al. 
(2016) reported that the measurement of evapotranspira-
tion with the soil water budget method depends on the 
degree of characterization of soil heterogeneity and drain-
age status. Soil water budget measurements are not prac-
tical to use due to the need for expensive instrumenta-
tion, long time, difficulty in application and dependence 
on farm conditions. Therefore, the FAO-56 PM method, 
which is widely used in many parts of the world where 
direct measurements are not available due to complexity 
or cost, may be preferred for ET estimation.

Conclusion

This study was performed to predict the irrigation water 
requirement of eggplant grown in a semi-humid region in 
northern Türkiye in 2015, 2016, and 2017 using machine 

learning methods. In order to predict the crop evapotran-
spiration of eggplant, the estimation performances of 
seven different machine learning algorithms, including 
ANN, DNN, M5Tree, SVM, kNN, RF, and AB models, 
were compared by considering different statistical criteria 
and graphical methods.

This study was carried out in 3 stages. In the first stage, 
climate parameters were used in the estimation of ETo. 
In the second stage, ETc was used as both climate and 
crop parameters, and in the estimation of ETa, climate, 
plant and soil properties were used as output param-
eters. In the models created for ETo, the ANN1 model, 
in which all input variables (Tmin, Tmax, Tavg, u2, RHavg, 
Rs, and DOY) were used, showed the best prediction per-
formance (NSE = 0.983; RMSE = 0.153 mm d−1). In the 
models created for ETc, the RF5 model (NSE = 0.816; 
RMSE = 0.495 mm d−1) in which the variables hc, LAI, 
Tavg, u2, RHavg, and Rs were used as inputs, showed the best 
estimation performance. The best model performance for 
ETa was obtained from the ANN9 model (NSE = 0.987; 
RMSE = 0.137 mm d−1) in which Tc–Ta, VPD and SWC 
variables were used as inputs.

It is seen that the most effective variables in the estima-
tion of ETo are temperature and solar radiation. It has been 
determined that the different combinations of temperature 
and solar radiation increase the prediction performance of 
the models. By using the crop height and leaf area index 
together with the climate data in the ETc estimation, the 
performance of the model (RF5) increased considerably (R2 
increased 19.6% and RMSE value decreased 26.8%).

In the estimation of ETa values measured according to the 
water budget, water deficit applications were also consid-
ered as an input parameter in dataset 1 (Tc–Ta, VPD, SWC). 
The accuracy of the ETa prediction models for dataset 1 
increased considerably when a new variable was added as 
an input. When Tc–Ta data were added to the input variables 
used in the ANN12 model, the RMSE value of the ANN9 
model decreased from 0.812 to 0.137 (83%), and the NSE 
increased from 0.558 to 0.987 (76.8%). This shows that the 
variable that are most affected on ETa was Tc–Ta.

In all three growing seasons (2015–2016–2017), total ETc 
and ETa values were close to each other and a high corre-
lation was found between them. In addition, experimental 
and field data are needed to calibrate Kc in the ETc formula 
to local conditions. This is where the importance of actual 
evapotranspiration (ETa) comes into play. It has been con-
cluded that machine learning models can be successfully 
used to predict ETc and ETa.

Appendix

See Table 7.
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