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Abstract
Flow prediction is regarded as a major computational process in strategic water resources planning. Prediction’s lead time has 
an inverse relationship with results’ accuracy and certainty. This research studies the impact of climate-atmospheric indices 
on surface runoff predictions with a long lead time. To this end, the correlation of 36 long-distance climate indices with 
runoff was examined at 10 key nodes of the Great Karun multi-reservoir system in Iran, and indices with higher correlation 
are divided into 4 different groups. Then, using Artificial Neural Network (ANN) and Ensemble Learning to combine the 
input variables, flow is predicted in 6-month horizons, and results are compared with observed values. To assess the impact 
of extending the prediction lead time, results from the proposed model are compared with those of a monthly prediction 
model. The performed comparison shows that using an ensemble approach improves the final results significantly. Moreo-
ver, Tropical Pacific SST EOF, Caribbean SST, and Nino1 + 2 indices are found to be influential parameters to the basin’s 
inflow. It is observed that the performance of the prediction process varies in different hydrological conditions and the best 
results are obtained for dry seasons.

Keywords  Runoff forecast · Water resources management · Prediction lead time · Wavelet transformation · Artificial neural 
network

Introduction

Water is the most important element of vitality in human 
life, such that all civilizations were formed by rivers. In 
many countries around the world, rainfalls are not evenly 

distributed over the year or do not conform to the demands. 
While climates in many parts of the Middle East are entering 
a critical situation. It is essential to understand that the water 
shortage crisis also adversely affects the qualitative charac-
teristics of the flow (Bakhsipoor et al. 2019). Meanwhile, 
asymmetric distribution of drought and flood on the surface 
of the earth cause widespread human and financial losses 
(Kim et al. 2005; Moazami et al. 2016). According to the 
Parliament of Iran, an estimated $2.5 billion per year in dam-
ages is caused by drought in the country. In 2019, the Inter-
governmental Panel on Climate Change (IPCC) reported 
that over the past decades, changes in climate caused by 
global warming have led to alterations in the hydrological 
regime (Change 2019; Gholami et al. 2022). Over the years, 
a distorted pattern of inflow to reservoirs due to climate 
change and human activities such as land-use change has 
led to significant alterations in the amount, frequency, and 
timing of the inflow to the water reservoirs (Demirel et al. 
2013; Halgamuge and Nirmalathas 2017; Yang et al. 2018; 
Mostaghimzadeh et al. 2021). Therefore, the need for the 
employment of strategies to reduce the damages caused by 
droughts and floods has become more eminent. Predicting 
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the inflow to reservoirs is considered a fundamental solution 
to deduce more efficient operation policies and thus reduce 
damages. However, alteration of the inflow to the system 
affects its supply values, energy production, and quality 
properties in the long term (Ashrafi and Mahmoudi 2021). 
It is important to note that extending the prediction further 
into the future will provide the policy-makers and opera-
tors with more leeway in making immediate or long-term 
decisions (Mostaghimzadeh et al. 2022). However, longer-
term predictions come with higher uncertainty and therefore 
make the decision-making processes more complicated. In 
this context, data-based models are widely used. In these 
models, hydrologic processes are not presented definitively, 
but the main focus is on finding the relationship between the 
variables influencing the output of the models (Shortridge 
et al. 2016; Peng et al. 2018). With this rationale, using these 
models to estimate the values outside the observation inter-
vals must be carried out with caution (Tongal and Booij 
2018).

In general, awareness of the emerging uncertain condition 
requires an estimation of future status (MostaghimZadeh 
et al. 2021; Huang et al. 2022; Beshavard et al. 2022; Luo 
et al. 2023). This means the prediction should present the 
desired accuracy and meet the evaluation indices at a signifi-
cant level and, at the same time, its horizon must be as far 
ahead in the future as possible to paint a better picture of the 
situation and allow for making short-term decisions follow-
ing the long-term course of events. A review of the previous 
research reveals that the development of the flow predictive 
models is summarized in several different structures. Much 
of previous research has developed predictive models with 
a one-month lead time using novel methods and smart algo-
rithms. In such researches, a wide range of feature selection 
methods was employed and various learning models such as 
neural networks, support vector regression, etc., were used 
to relate inputs to outputs. Also, in studies where the fore-
casting lead time extended further than a month, the work 
was based solely on the amount of rainfall. By predicting 
the rainfall values and subsequently using a rainfall-runoff 
model, the flow was obtained in the future. Despite all capa-
bilities of Artificial Neural Networks (ANNs) in prediction 
of real-word phenomenon (Geem 2011), the framework of 
learning processes affects the accuracy of the results con-
siderably. Osman et al. (2020) employed Fast Orthogonal 
Search to investigate the nonlinear relation of the inflow to 
the Aswan High Dam basin. The results showed that this 
method outperformed the classic artificial intelligence meth-
ods, especially for larger numbers. Ni et al. (2020) proposed 
the GMM-XGboost hybrid model, created by coupling the 
Extreme Gradient Boosting and the Gaussian Mixture mod-
els, to develop a monthly flow model in the Gangtze River 
basin. The results showed that the proposed hybrid model 
was more successful than the SVM model in the detection 

of hydrologic patterns. Ren et al. (2020) compared the per-
formance of eight feature selection methods in predicting 
the monthly flow (CAMELS). Ashrafi et al. (2020) used the 
Ensemble Learning technique to compare seven different 
approaches to estimate the monthly flow upstream of the Dez 
dam in the Southwest of Iran. The results showed the superi-
ority of coupled Discrete Wavelet Transformation-Artificial 
Neural Network (DWT-ANN) model with four-item groups. 
Quedi and Fan (2020) developed a seasonal hydrologic pre-
dictive model and extended the results for tropical weather 
conditions as well as large-scale basins. The results showed 
the desirable performance of Ensemble Prediction in the 
assessment of flow patterns and consequently its accept-
able estimation on higher lead times. Sigaroodi et al. (2014) 
attempted to develop a long-term precipitation forecasting 
model by investigating the correlation of the oceanic-atmos-
pheric indices on the precipitation of the Maharloo basin in 
Iran. The results indicated a deep correlation between the 
fluctuations in rainfall patterns and some of these indices. 
In the end, the final model was able to estimate the amount 
of precipitation with more than one-month lead times based 
on a set of influential indices. Kilinc and Haznedar (2022) 
developed a model to estimate future streamflow conditions 
considering sustainability using deep learning models. The 
estimation results of the models were evaluated with RMSE, 
MAE, MAPE, STD and R2 statistical metrics. The compari-
son of daily streamflow predictions results revealed that the 
proposed model provided promising accuracy results and 
mainly presented higher performance than the benchmark 
model and the linear regression model. Liu et al. (2022) 
integrate meteorological forecasts, land surface hydrological 
model simulations and machine learning to forecast hourly 
streamflow over the Yantan catchment, where the streamflow 
is influenced by both the upstream reservoir water release 
and the rainfall–runoff processes within the catchment. Eval-
uation of the hourly streamflow hindcasts during the rainy 
seasons of 2013–2017 shows that the hydrometeorological 
ensemble forecast approach reduces probabilistic and deter-
ministic forecast errors by 6% compared with the traditional 
ensemble streamflow prediction (ESP) approach during the 
first 7 days.

The literature shows that most of the flow prediction mod-
els use novel feature selection methods along with learning 
models to assess the flow in the form of monthly models. 
Also in some cases, models with lead times shorter than one 
month have been investigated. Indirect methods were often 
used for runoff predictions with longer than one-month lead 
times. In other words, first, a model for long-term rainfall 
is obtained. Then, by using a rainfall-runoff model and esti-
mating the other contributors at the basin level, flow in a 
long-time scale (more than one month) is estimated based on 
the predicted precipitation (Adamowski and Prasher 2012; 
Chu et al. 2017; Mosavi et al. 2018; Peng et al. 2019). In 
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that sense, there is a research gap in the development of 
models that can directly predict runoff within water resource 
systems with long forecasting lead times. Furthermore, com-
parisons of flow prediction models with short and long lead 
times have rarely been carried out.

Therefore, this study attempts to develop a model based 
on the ensemble learning approach derived from (Ashrafi 
et al. 2020) and the various oceanic-atmospheric indices that 
can estimate the inflow to a drainage basin with a six-month 
lead time. In an ensemble learning system, the impact of 
predictors on target parameters is investigated systematically 
in groups and the final solution can be a range of predic-
tors. In the beginning, the flow with one-month lead time is 
calculated and used as a benchmark to compare the results 
of the short-term and long-term lead time. To do so, first, 
different approaches to the development of a flow prediction 
model with monthly time steps are examined (Ashrafi et al. 
2020). Then, solutions to extend the prediction lead time are 
proposed and a model is deduced to provide a proper estima-
tion of the flow for a long-time step (six-month lead time). 
In the end, the best long-and short-term models according to 
assessment indices are selected and their performances are 
compared to study the impact of extending the prediction 
horizon. Investigation of the direct impact of climate indices 
on inflow to a multi-reservoir system and the model develop-
ment approach are innovations of this study.

Research methodology

In this study, two sub-models are presented. First, the short-
term model, which is a prediction model for monthly inflow 
to a multi-reservoir system. Second, the long-term model, 
which is a flow prediction model with a six-month lead time. 
For the one-month lead time, the seven approaches proposed 
by Ashrafi et al. (2020) are extended to predict future inflows 
into a multi-reservoir system and the best scheme for each 
reservoir is selected. Then, to increase the prediction lead 
time, the flow time series is used in combination with vari-
ous climatic-oceanic indices contributing to the flow of the 
multi-reservoir basin. In addition, a new structure based on 
ensemble learning is introduced to select proper inputs for 
model learning. In the end, the best short- and long-term 
models are selected and compared to study the impact of 
prediction lead time on the model's performance and the 
evaluation indices.

For the short-term forecast model, the wavelet compo-
nents of the streamflow time series are adopted as potential 
predictors considering the lags of 1 to 10. In contrast, for 
longer forecast horizon the oceanic atmospheric teleconnec-
tion indices are used as predictors. As these indices have 
a seasonal behaviour, it is better not to use them for every 
month and sampling of them was different from monthly 
horizons. Moreover, the lack of enough data was a barrier 

to consider their lags within the feature selection process. In 
order to develop a solution, the present state of each index is 
just considered as a potential predictor. Finally, the potential 
lags are identified using ACF and PACF function according 
to the rate of correlation between streamflow and selected 
indices. The length of forecast horizon is considered as the 
closest effective lags to the present state.

The proposed forecasting model

The proposed structure is based on the developed model by 
Ashrafi et al. (2020) to obtain short- and long-term predic-
tion models. This structure consists of learning sub-models 
(McCulloch 1990), input selection model (Phuong et al. 
2005; Wang et al. 2009), and evaluation indices (Nash and 
Sutcliffe 1970; Willmott 1981; Shamseldin and Press 1984; 
Legates and McCabe 1999; Krause et al. 2005; Chai and 
Draxler 2014). In this structure, seven proposed approaches 
are studied for each reservoir and the final model is selected 
based on the evaluation indices. The short-term flow predic-
tion is generally based either on the exclusive use of time 
series of the inflow or the forecast deduced from satellite 
and radar data on precipitation and its conversion into the 
runoff. With the extended prediction lead time, the flow time 
series is not sufficient as more data are required to estimate 
the flow with optimal accuracy. Long lead times surpass the 
one-month benchmark and which fills the gap between short-
term predictions and long-term climate changes (Tourigny 
and Jones 2009). These forecasts are often influenced by sig-
nificant uncertainties. Many researchers have been attempt-
ing to propose methods for more accurate predictions (Wu 
et al. 2011). Many studies have concluded there are nonlin-
ear relations between meteorological phenomena, climate 
indices, and accuracy of answers (Kim and Barros 2001; 
Tourigny and Jones 2009; Guérémy et al. 2012). According 
to Teschl and Randeu (2006), certain variables representing 
the atmospheric flow fluctuation, which are directly related 
to the sea surface temperature fluctuations, have a signifi-
cant long-term impact on rainfall, and as a consequence, on 
stream flows. At the same time, atmospheric flow dynam-
ics are influenced by solar activities including radiation 
intensity and sunspots which are defined as temporary phe-
nomena of the photosphere and are seen as dark patches 
on the surface of the sun. Solar radiation is considered the 
energy source for climate systems and is often measured as 
a constant factor. According to Sigaroodi et al. (2014), the 
number of solar patches is correlated with rainfall. Wang 
et al. also confirmed the correlation between sunspot and 
runoff in river basins (Wang and Sheeley 1997). They also 
showed that the length of the sunspot cycles is strongly cor-
related with the temperature of the northern hemisphere and 
drought periods (Vennerstrøm et al. 1991; Weickmann et al. 
2000). Meanwhile, the high thermal capacity of the oceans 
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has a significant impact on the atmosphere–ocean interac-
tion, which ultimately changes the atmospheric flow patterns 
over the subsequent periods (Penland and Matrosova 1998). 
Based on the above-mentioned studies, climate indices are 
highly correlated with precipitation at a basin scale. In the 
same way, the amounts of rainfall and runoff are always 
correlated. Therefore, the correlation between climate indi-
ces and runoff can be directly measured concerning other 
contributors to runoff, such as soil conditions, vegetation, 
snow depth. Also, a model to predict the direct runoff can 
be developed based on the indices using machine learning 
algorithms.

To develop a prediction model, the relation between the 
oceanic-atmospheric currents and the time series of inflows 
to a multi-reservoir system is examined with the proposed 
approach. Then, according to the level of correlation 
between these indices and the inflow to each system, inputs 
are selected for the learning model. For input selection, vari-
ous quality grades are defined based on the amount of cor-
relation for each index, and the model’s input parameters are 
selected by categorizing the elements at each grade. Then, 
after the best group in each grade is determined, combina-
tions with the best groups from all the levels are created and 
the final model is chosen based on the evaluation indices. In 
Fig. 1 a flow chart of the model is demonstrated.

Atmospheric‑oceanic indices

Atmospheric-oceanic Indices represent the physical phe-
nomena correlated with rainfall. In this study, 36 climate 
indices from the NOAA’s website (http://​www.​esrl.​noaa.​

gov/​gmd/​dv/​ftpda​ta) are used to evaluate existing correla-
tions. In Table 1, a list of the indices as climate predictors 
along with their respective harvest periods is presented.

The study area

The Karun River in Khuzestan, Iran comprises five opera-
tional dams: the Karun4, the Karun3, the Karun1, Masjed 
Soleyman, and Gotvand-Olya, and the Dez River includes 
the Dez dam. The two rivers join at Band-e-Ghir and form 
the Great Karun River. The average annual precipitation in 
the basin range from about 150 mm per year in the lowland 
plains to around 1800 mm per year in the adjacent Koohrang 
Mountains. The Khersaan River is one of the most water-
rich tributaries of the Karun River which drains into the 
Karun-3 reservoir. In addition, the outflow from the Karun-4 
also drains into the Karun-3 reservoir. Past the Karun-3, all 
the dams on the Karun basin are positioned serially behind 
one another where at the end of each reservoir is another 
dam. At the downstream of the Karun3 is the Karun1, which 
has been in operation for years. The Masjed Soleyman dam 
is located in Masjed Soleyman downstream of the Karun1 
and is tasked with energy supply. The last dam on the Karun, 
the Gotvand-Olya, is currently in operation. Meanwhile, on 
the Dez basin is located the Dez storage dam whose outflow 
joins that of the Gotvand-Olya dam in Band-e-Ghir and form 
the Great Karun River (Ashrafi 2021). In the figure below, 
the layout of the reservoirs on the Great Karun basin, which 
is investigated in this research, is presented. In this study, 10 
flow nodes including tributaries and sub-basin inflows are 
accounted for according to the following Table 2 and Fig. 2.

Correlation 
assessment using ACF 

and PACF

Categorize inputs 
based on the 

correlation assessment

Oceanic-Atmospheric 
Indices

Historical runoff time 
series

Group 1
High correla�on

Group 2

Group 3
Low correla�on Rejection

Extract different 
combination of inputs

Inter-group 
combination

Intra-group 
combination

Performance 
evaluation

Different input combination for forecast 
runoff for each key node of the system

Choosing the best 
combination for 
forecast model

Fig. 1   Conceptual flow chart of long-term forecast model
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Results and discussion

The achieved results are presented in two following sub-sec-
tions for short and long lead times separately, and the perfor-
mance of the proposed approach is discussed.

Runoff forecasting with Short‑lead time

According to the initial framework proposed by Ashrafi et al. 
(2020), the short-term forecast model has been developed 
using an approach consisting of an Artificial Neural Net-
work (ANN) and a Discrete Wavelet Transformation (DWT) 
operator. This combination has been employed in order to 
deduce the frequency of variation dominant in the initial 
time series. The general equation of the DWT function is 
defined as follows (Polikar 1999);

(1)DWT
x(s, b) =

1
√

s
m

0
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∫
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t − nb0s
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0

s
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0
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dt

Here, �(.) is the mother wavelet function,s > 0 , is the 
scale parameter, b, stands for the time transfer parameter, 
and DWT

x(s, b) indicates the discrete wavelet transform 
of x(t) . The scale parameter determines the wavelet width. 
The monthly runoff time series of all watershed nodes are 
decomposed to the fourth level. At each level of wavelet 
decomposition, one of the coefficients indicates low-fre-
quency, long-term changes and the other indicates high-
frequency, short-term fluctuations. Also, at other levels, 
the low-frequency coefficient is split and two new coeffi-
cients are obtained. Thereby, the changes hidden in the ini-
tial time series are more accurately evaluated, enabling the 
learning model to estimate the relationship more precisely 
by accurately recognizing the underlying runoff patterns. 
As the levels of decomposition progress, the coefficients 
become smoother. The process proceeds until the initial 
mother wavelet replaces the coefficients. In this process, 
at each level of decomposition, multiple parts of the time 
series are sampled by the mother wavelet, and the similar-
ity is determined in the form of the internal multiplication 
of the two vectors. This process continues until the sam-
pling replaces the initial time series with the mother wavelet 
chart, as the smoothed surface. Accordingly, the number of 
decomposition levels should not be too high (to inhibit fluc-
tuation patterns from being hidden) and too low (to restrict 
the model from reaching the initial mother wavelet due to 
low oscillations). Hence, as previously mentioned, each 
time series is split into four levels. An “Only ANN” and six 
“pre-processed ANN” approaches including self-correlation 
and correlation with the main data are analysed to develop 

Table 1   Primary selection of ocean-atmospheric predictors

NO Climate index Data period No Climate index Data period

1 AAO 1979–2019 19 Northest Brazil rainfall 1948–1999
2 AO 1950–2019 20 NP 1948–2018
3 Atlantic multidecadal oscilation smoothed 1948–2014 21 NTA 1950–2019
4 Atlantic multidecadal oscilation unsmothed 1948–2019 22 ONI 1950–2019
5 Atlantic tropical SST EOF 1948–2007 23 Pacific warm pool 1948–2007
6 Caribbean SST)CAR( 1951–2019 24 PDO 1948–2017
7 Central Indian percipitation 1948–1998 25 PNA 1950–2019
8 ENSO percipitation index 1979–2015 26 QBO 1948–2019
9 Global mean land–ocean temperature index 1948–2018 27 Sahel rainfall 1948–2017
10 Globally integrated angular momentum 1958–2013 28 SOI 1951–2019
11 Hurrican activity 1948–2015 29 Solar flux 1948–2018
12 MEI 1979–2018 30 Sunspot 1749–2018
13 NAO jones 1948–2000 31 SW mansoon region Rainfall 1948–2010
14 NAO 1950–2019 32 TNA 1948–2019
15 Nino 1 + 2 1950–2019 33 TNI 1948–2018
16 Nino 3 1950–2019 34 Tropical Pacific SST EOF 1948–2008
17 Nino 4 1950–2019 35 Atlantic Tripole SST EOF 1948–2008
18 NOI 1948–2006 36 WHWP 1948–2019

Table 2   Inflow nodes of great Karun Basin

Bakhtiari head flow Karun4 to Karun3 Sub-basin inflow

Cezar head flow Karun3 to Karun1 Sub-basin inflow
Dez to band-e-Ghir 

Sub-basin inflow
Karun1 to MasjedSoleyman Sub-basin inflow

Karun4 head flow MasjedSoleyman to Gotvand Sub-basin inflow
Khersan head flow Gotvand to Band-e-Ghir Sub-basin inflow
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the monthly forecast model for each of the time series of 
reservoirs’ inflows and sub-basin inflows. Several models 
are extracted for each time series (Table 3). Importantly, 
ECWT models include the best possible combination with 
the desired evaluation indicators.

Several neural networks have been trained to estimate 
the runoff into each key point of the system using 85% 
of the observed data. The trained networks are evaluated 
using 15% of the observed data and the best one is imple-
mented for predicting the runoff of each key point. The 
best networks for different key nodes of the system are 

presented in Table 3. Table 4 summarizes the performance 
evaluation indicators related to 10 independent training 
processes in the form of mean and standard deviation 
(SD).

The highest correlation coefficient (R) is associated with 
the prediction process of the Sub-basin inflow of Karun1 to 
MasjedSoleyman. The Willmotts index works like a correla-
tion coefficient. In this case, the Sub-basin inflow of Karun1 
to MasjedSoleyman has the best performance. Also, by ana-
lysing the Nash Sutcliffe index, and according to (Sham-
seldin 1997), all predictions are satisfactory, and in some 
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Fig. 2   Schematic of great Karun Basin

Table 3   Beast predictor 
combination for inflow nodes 
(monthly forecast model)

Location Best model Predictor combination

Bakhtiari head flow ECWT (Foursquare) (a4, d1, d3, d4)∕Qt

Cezar head flow ECWT (Foursquare) (a4, d1, d3, d4)∕Qt

Dez to band-e-Ghir Sub-basin Inflow ECWT (Foursquare) (a4, d1, d3, d4)∕Qt

Karun4 head flow ECWT (Quintuple) (a4, d1, d2, d3, d4)∕Qt

Khersan head flow ECWT (Foursquare) (a4, d1, d3, d4)∕Qt

Karun4 to Karun3 Sub-basin inflow ECWT (Foursquare) (a4, d1, d3, d4)∕Qt

Karun3 to Karun1 Sub-basin inflow ECWT (Quintuple) (a4, d1, d2, d3, d4)∕Qt

Karun1 to MasjedSoleyman sub-basin inflow ECWT (Foursquare) (a4, d1, d3, d4)∕Qt

MasjedSoleyman to Gotvand sub-basin inflow ECWT (Foursquare) (a4, d1, d3, d4)∕Qt

Gotvand to band-e-Ghir Sub-basin inflow ECWT (Quintuple) (a4, d1, d2, d3, d4)∕Qt
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cases, such as the Bakhtiari and Karun 4 Head flows, the 
overall performance is highly acceptable.

RMSE and MAE indicators are two scalar indexes in 
terms of quantity and their numerical value does not pro-
vide information on their relative utility, i.e., we cannot cer-
tainly discuss the predictive performance of these indicators. 
Therefore, the relative RRMSE and MAPE indicators, which 
measure the residual value or error of the model relative to 
the target value, are calculated. From Table 4, the chosen 
models for all runoff time series have a low relative error and 
are in the acceptable range. Figure 3 shows simulated runoffs 
compared to the observed flows in all considered nodes.

From Fig. 3, the performances of the selected methods for 
detecting the runoff pattern in all key nodes of the system are 
highly acceptable. At this step, the wavelet transformation 
operator has helped to accurately identify the existing fluc-
tuations and repetitive patterns. It has also helped the learn-
ing process to perform and the corresponding coefficients to 
be determined following these patterns. Importantly, peak 
values have not been desirable in most sub-basins. Peak val-
ues are always difficult to predict in methods based on the 
streamflow time series. The reason is that in a long time, the 
maximum number of samples is very small, and if learning 
is done only based on the number of occurrences, these val-
ues cannot be accurately predicted. However, according to 
Fig. 3, in all key nodes, the pattern of peak occurrence has 
been correctly identified and its period obtained. Also, the 
evaluation of the proposed method in the study of time series 

with a natural cycle is important. According to Table 4 and 
Fig. 3, the evaluation indicators are achieved in nearly the 
same range, meaning that time series derived from a natural 
cycle have similar patterns, and if this pattern is correctly 
identified, then it can be accurately predicted. However, this 
is expected not to change the general patterns governing 
the natural cycle. That’s why peak events that are somehow 
the result of disruption of natural cycles are not properly 
identified.

Accordingly, if the forecast lead time increases, it is not 
possible to merely follow the pattern of current changes, 
and other influential parameters need to be identified. The 
following figure shows the peak estimation performance of 
the selected methods at all key nodes.

Figure 4 shows that the peak values are often estimated to 
be less than the observed values. As mentioned earlier, due 
to the small number of training patterns and the data-driven 
nature of the neural network, more samples are required to 
determine the exact behaviour of a real-world phenomenon. 
The lower peak value of runoff diminishes the rate of predic-
tive relative error and increases the accuracy of the estimated 
value, as the low peak values are closer to the normal data 
range, and there are more samples in that range. During the 
learning process, the neural network has more similar sam-
ples to determine its weight coefficients for estimating nor-
mal ranges (Geem et al. 2007). A box-plot diagram is used to 
further examine the distribution of the predicted data. Due to 
its nonparametric nature, the box plot is independent of the 

Table 4   Performance evaluation indicators for the best monthly forecast models

Method Index R WI Nash RRMSE (%) MAPE (%)

Bakhtiari head flow Average 0.944 0.917 0.901 24.01 32.169
Std 0.003 0.011 0.010 1.066 0.996

Cezar head flow Average 0.927 0.923 0.874 26.36 33.731
Std 0.005 0.009 0.013 0.267 0.246

Dez to Band-e-Ghir Sub-basin Inflow Average 0.917 0.932 0.896 27.51 32.23
Std 0.007 0.004 0.008 0.279 0.156

Karun4 Head flow Average 0.921 0.909 0.903 26.03 31.25
Std 0.007 0.007 0.007 0.380 0.128

Khersan Head flow Average 0.912 0.915 0.885 27.45 34.51
Std 0.006 0.006 0.006 0.399 0.52

Karun4 to Karun3 Sub-basin Inflow Average 0.899 0.921 0.898 29.32 35.169
Std 0.004 0.005 0.011 0.114 0.270

Karun3 to Karun1 Sub-basin Inflow Average 0.951 0.930 0.908 23.22 32.404
Std 0.006 0.007 0.009 0.249 0.323

Karun1 to MasjedSoleyman Sub-basin Inflow Average 0.963 0.946 0.891 24.44 30.107
Std 0.021 0.014 0.012 0.441 0.435

MasjedSoleyman to Gotvand Sub-basin Inflow Average 0.923 0.914 0.900 28.84 32.52
Std 0.006 0.007 0.008 0.39 0.445

Gotvand to Band-e-Ghir Sub-basin Inflow Average 0.889 0.910 0.875 28.81 31.36
Std 0.005 0.005 0.006 0.411 0.51
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Fig. 3   Observed and predicted 
monthly streamflow in testing 
period (a Bakhtiari Head flow, 
b Cezar Head flow, c Dez to 
Band-e-Ghir Sub-basin Inflow, 
d Karun4 Head flow, e Karun4 
to Karun3 Sub-basin Inflow, f 
Karun3 to Karun1 Sub-basin 
Inflow, g Karun1 to Masjed-
Soleyman Sub-basin Inflow, h 
MasjedSoleyman to Gotvand 
Sub-basin Inflow, i Gotvand to 
Band-e-Ghir Sub-basin Inflow, j 
Khersan Head flow)

(b)(a)

(d)(c)

(f)(e)

0

200

400

600

800

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Foursquare

0

200

400

600

800

1000

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Foursquare

0

200

400

600

800

1000

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Quintuple

0

50

100

150

200

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Axis Title
Observed ECWT-Foursquare

0

50

100

150

200

250

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Quintuple

0

200

400

600

800

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Foursquare

0
50

100
150
200
250

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Foursquare

0

50

100

150

200

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Foursquare

(h)(g)

(j)(i)

0

100

200

300

400

500

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Foursquare

0

50

100

150

0 20 40 60 80

St
re

am
flo

w
 (m

cm
)

Month
Observed ECWT-Quintuple



Applied Water Science (2023) 13:124	

1 3

Page 9 of 21  124

Fig. 4   Peak estimation within 
the test period for (a Bakhtiari 
Head flow, b Cezar Head flow, 
c Dez to Band-e-Ghir Sub-basin 
Inflow, d Karun4 Head flow, e 
Karun4 to Karun3 Sub-basin 
Inflow, f Karun3 to Karun1 
Sub-basin Inflow, g Karun1 to 
MasjedSoleyman Sub-basin 
Inflow, h MasjedSoleyman to 
Gotvand Sub-basin Inflow, i 
Gotvand to Band-e-Ghir Sub-
basin Inflow, j Khersan Head 
flow)
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initial assumption regarding statistical distribution, leading 
to a better understanding of the degree of expansion and 
skewness of a time series. Also, whiskers show the diversity 
in the data in down and upper quartiles (25% and 75%).

Figure 5 shows that the predictions of the chosen model 
are almost identical to observational data in all sub-basins. 
Besides, in estimating the minimum, maximum, and median 
values, the chosen models have acceptable performance with 

Fig. 5   Monthly Streamflow Peak estimation within the test period 
for (a Bakhtiari Head flow, b Cezar Head flow, c Dez to Band-e-Ghir 
Sub-basin Inflow, d Karun4 Head flow, e Karun4 to Karun3 Sub-
basin Inflow, f Karun3 to Karun1 Sub-basin Inflow, g Karun1 to Mas-

jedSoleyman Sub-basin Inflow, h MasjedSoleyman to Gotvand Sub-
basin Inflow, i Gotvand to Band-e-Ghir Sub-basin Inflow, j Khersan 
Head flow)
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a justified error level. It is also observed that the estimated 
values of the chosen models are skewed to the upper values 
as the observational values, which can be due to the presence 
of a larger number of data greater than the median in the 
observational values. In other words, there are many points 
outside the box range, which tends to distribute upwards. 
Importantly, in a limited number of nodes, such as Khersan, 
Karun 4 Head flows, and also Sub-basin inflow between 
Karun 4 and Karun 3, the distribution of data varies from 
the observed value, especially in small quantities. This could 
be due to a lack of appropriate data in this range. Also, the 
high difference between scattered points outside of the box 
in all basins is due to the inability of the proposed models 
to estimate peak values, which has caused a large difference 
between the maximum points.

Runoff forecasting with long‑lead‑time

As discussed in the methodology section, as the forecast 
lead time increases, the uncertainty of the results progresses, 
and the prediction accuracy decreases. Accordingly, it is no 
longer feasible to rely only on the current time series and 
even its decomposed components as a proper input for the 

learning model. In this study, a wide range of atmospheric-
climatic characteristics are introduced (Table 1). Initially, 
the Pearson test was performed for each of these indicators 
relative to all current time series in the Great Karun Basin. 
In other words, a linear correlation was obtained between 
each indicator and the amount of streamflow in each of the 
inlet nodes of the catchment area. Importantly, a common 
period was initially obtained in each pair and became the 
basis of the work due to the inconsistency of the observed 
flows and climatic characteristics. In the following, different 
quality levels were defined based on the correlation values. 
In other words, concerning the amount of correlation, the 
influential indicators were ranked from the highest value to 
the lowest level of correlation, respectively. The results of 
the grouping of indicators are summarized in Table 5.

According to Table 5, from 36 indicators examined in 
this study, CAR, Tropical Pacific SST EOF, Nino1 + 2, and 
Atlantic Tripole SST EOF have the highest correlation with 
the streamflow time series in all key nodes of the water-
shed. As the goal of developing a long-term model is to 
predict runoff values with a more than six-month lead time, 
in classifying the correlation of an index, values related to 
7th lag onwards are considered as a basis to can estimate the 
runoff at the 7th month according to these values in each 
time step. Note that each indicator, due to its nature, has 
an internal relationship with the amount of flow and has a 
unique correlation pattern. Figure 6 shows the correlation 
values of the last twelve lags of 1st-group indicators with the 
Bakhtiari Head flow time series. From the figure, each index 
has its correlation pattern with different values in each lag. 
For example, the Tropical Pacific SST EOF (Red) index is 
more consistent from the sixth lag onwards, with the highest 
number happening in the ninth lag. Therefore, the assump-
tion of choosing the seventh lag onwards as the inputs of 
the learning model to predict the runoff that leads to the 

Table 5   Grouping of the climatic index based on the correlation coef-
ficient

Group Correlation range Climatic indicator

1 |R| ⩾ 0.65 Tropical Pacific SST EOF, CAR, 
Nino1 + 2, Atlantic Tripole SST 
EOF

2 0.5 ⩽ |R|< 0.65 Nino3, HA, MEI, SMRF, TNA, NBR
3 0.4 ⩽ |R|< 0.5 AMOS, AMOSUn, EPI, NTA, QBO, 

ATSE, NAOJones, NP, PDO
4 |R|< 0.4 Other indexes

Fig. 6   Correlation patterns of 
the first group indicators
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six-month growth of the forecast lead time is correct and 
can be quantified by having the input variables per month. 
The runoff in the seventh month can be estimated from input 
variables in each month. The seasonal nature of these indica-
tors is also important. The effects of all indicators are dif-
ferent in seasons and according to the dominant climatic 
phenomena, their effects also vary. As it is clear in Fig. 6, 
the behaviour of some of these indicators is similar. It should 
be mentioned that in order to develop an efficient forecasting 
model, a wide range of different indicators should be used so 
that somehow all the dominant phenomena are well identi-
fied and used in the model. But one of the most important 
problems of seasonality is the small number of monthly and 
seasonal samples. In other words, there is a small number of 
indicators in each stage, which causes problems for numeri-
cal models that are dependent on data.

For longer forecast horizons effective teleconnection indi-
ces for each month were identified. Afterwards, ACF and 
PACF functions were drew to identify effective lags. As we 
know, we must estimate streamflow for future month within 
a specified time interval. So, the distance between the cur-
rent states and the first lag with high correlation determines 
forecast horizon. It is obvious that the other lags more than 
horizon lag also could be used as predictor but the first one 
is the forecast horizon. Figure 6 shows the behaviour of each 
index against streamflow. The length of this interval could 
identify the forecast lead time because there is a distance 
between current state and past. Indeed, the graph identifies 
how these indices could affect streamflow. In other words, 
the seasonality is gained form the fluctuations reflected in 
each chart.

Models are grouped after determining each of the influen-
tial indicators and qualitative grouping. In this way, single, 
double, triple, and quadruple categories are created at each 
level and the best category is chosen in each combination. In 
this way, the learning process is based on the similarities of a 
category with the main data (Ensemble Learning) and some-
how distributes the effective feature and ultimately improves 

the performance of the training. Importantly, due to the dif-
ferences in climatic indicators and the subsequent diversity 
of existing correlations, in some months, the correlation rate 
of an indicator may be at its best but other months of the year 
at worst. As established in many studies (Jayawardena and 
Fernando 1998; Palmer et al. 2004; Guérémy et al. 2012; 
Sigaroodi et al. 2014), the initial correlation of the indi-
cators with the current values is relatively low due to the 
long spatial-local distance of the general atmospheric indi-
cators as well as the potential low data resolution. To solve 
these problems, it is recommended to use an intermediate 
mode with a moderate correlation in all conditions. Accord-
ingly, the basis of grouping makes it possible to balance 
the remaining months of the year while taking advantage 
of the highest correlation rates. Also, combinations have 
been created between other levels to assess the possibility 
of the quality of other indicators and choose the best possible 
mode. This is because the grouping criterion is based on the 
maximum monthly correlation, and the maximum correla-
tion rate may be low in one month but has a uniform distri-
bution in other months of the year. It can increase the accu-
racy of the final answers. In this research, a limited number 
of indicators have been used in each group of the long-term 
forecasting model, which indicates the low correlation of 
other indicators in each group. It is obvious that the quality 
of the model should be reduced if less important indicators 
are included in the learning process. Accordingly, removing 
some of them can improve the final performance. Table 6 
presents the best compounds of one, two, three, and four 
members and also the best interfacial compounds related to 
Bakhtiari Head flow as a certain case.

Eighty-five per cent of observed data are used to train 
neural networks and 15% to test developed networks. Table 7 
presents the evaluation indicators for the 10 independent 
runs of the best neural network for each key point of the 
system in the form of mean and standard deviation.

Table 7 shows the appropriateness of the linear fit in 
terms of the correlation coefficient. In other words, in the 

Table 6   The best combination of climatic indexes for Bakhtiari head flow

Model name Contributed 
groups

Active elements of 
each group

Performed combination

L1_Single 1 1 (Pacific SST)/Qt

L1_ Double 1 2 (Pacific SST, Nino1 + 2)/Qt

L1_Triple 1 3 (Pacific SST, CAR, Nino1 + 2)/Qt

L1_Foursquare 1 4 (Pacific SST, Tripole SST, CAR, Nino1 + 2, CAR)/Qt

L1&2_Triple 1/2 3 (Pacific SST, CAR, Nino1 + 2) and (Nino3, HA, MEI)/Qt

L1&2&3_Triple 1/2/3 3 (Pacific SST, CAR, Nino1 + 2) and (Nino3, HA, MEI) and (QBO, NP, PDO)/Qt

L1&2_Foursquare 1/2 4 (Pacific SST, Tripole SST, Nino1 + 2, CAR) and (Nino3, HA, MEI, TNA)/Qt

L1&2&3_Foursquare 1/2/3 4 (Pacific SST, Atlantic SST, Nino1 + 2, CAR) and (Nino3, HA, MEI, TNA) and 
(QBO, NP, PDO, ATSE)/Qt
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chosen models, a proper linear relationship has been estab-
lished between the input and the output. Note that the differ-
ence in the amount of correlation coefficient in the monthly 
and six-month model is because the monthly model uses the 
time series of runoff and its decomposed components, and 
the one-month lag has increased the correlation to 0.9. Also, 
the highest correlation coefficient is related to the Gotvand 
to Band-e-Ghir sub-basin inflow belonging to the L1_Triple 
model, which is a single-group model. It is observed that 
the intra-group and inter-group categorization of indicators 
has ultimately led to the distribution of correlation values. 
In other words, the overlap of correlations has led a final 
correlation coefficient of the group to be higher than the cor-
relation coefficient of every single component of the group 
compared to the original data, and in some nodes to record 
0.8. The Willmotts index relatively works similar to the cor-
relation coefficient, although it is more sensitive to differ-
ences in observational and predictive values. In this case, 
the Gotvand and Band-e-Ghir currents with the selected 
L1_Triple model have the highest value of this index. Also, 
it is observed that in all flow inlet nodes, this index has a 
value of more than 0.7. This is due to the nature of the index, 
which is slightly more than 0.65, even in weaker models. 
By examining the Nash Sutcliffe index and, according to 
(Shamseldin 1997) as the monthly model, all predictions 
are satisfactory and a uniform state is observed in all flow 
key nodes. The RRMSE index shows that the highest rela-
tive difference between the hypothetical fitting line and the 

observed samples is 32%, which is related to the Karun3 
to Karun1 sub-basin inflow with the chosen L1 & 2_Triple 
model. This is an acceptable value for the forecast model 
that estimates the value of the target parameter over the next 
six months. Also, in other forecasting key nodes, the index 
is less than this value, indicating the optimal performance 
of the models. The RRMSE index is more sensitive to peak 
values due to its structure. Part of the RRMSE error can 
be attributed to the fact that the performance of all chosen 
models in predicting peak values is not fully satisfactory. 
However, in the MAPE index, the remaining value is calcu-
lated by the power of one and, therefore, it is more affected 
by the normal data. Accordingly, it is more reliable in the 
current problem. Figure 7 shows comparative predicted and 
observed values for all key nodes. The simulated values are 
the results of the best-chosen models in each node (Table 7).

From Fig.  7, the effect of climatic indicators on the 
hydrologic processes within a watershed eventually causes 
changes in the surface flow pattern, and surface flows can be 
effectively predicted by identifying such effective indicators. 
However, these indicators directly affect the amount of pre-
cipitation in the basin and consequently have indirect effects 
on the surface flow pattern. Surface flow is not entirely due 
to precipitation, and the amount of base current accounts for 
a significant portion of the surface flow. As a result, the high 
correlation between climatic indicators and precipitation in 
all seasons does not lead to a high correlation between pre-
cipitation and surface runoff. However, it can be said that 

Table 7   Evaluation Index for runoff prediction with six months lead time

Key point/sub-basin The best achieved model Index R WI Nash RRMSE (%) MAPE (%)

Bakhtiari head flow L1_Foursquare Average 0.803 0.794 0.810 27.06 35.169
Std 0.000 0.014 0.016 0.541 0.98

Cezar head flow L1_Foursquare Average 0.796 0.781 0.803 29.86 38.731
Std 0.006 0.006 0.010 0.293 0.221

Dez to band-e-Ghir sub-basin inflow L1&2_Triple Average 0.788 0.769 0.792 30.05 38.23
Std 0.003 0.007 0.004 0.284 0.147

Karun4 head flow L1_Triple Average 0.801 0.799 0.803 29.12 36.374
Std 0.002 0.009 0.006 0.375 0.118

Karun4 to Karun3 Sub-basin inflow L1_Foursquare Average 0.736 0.784 0.771 32.31 38.951
Std 0.008 0.006 0.017 0.152 0.263

Karun3 to Karun1 Sub-basin inflow L1&2_Triple Average 0.703 0.769 0.781 32.56 39.41
Std 0.007 0.006 0.005 0.351 0.325

Karun1 to MasjedSoleyman sub-basin Inflow L1_Foursquare Average 0.744 0.781 0.793 31.21 38.61
Std 0.006 0.016 0.016 0.476 0.114

MasjedSoleyman to Gotvand sub-basin inflow L1_Foursquare Average 0.801 0.798 0.809 27.84 35.42
Std 0.006 0.007 0.009 0.364 0.406

Gotvand to band-e-Ghir Sub-basin inflow L1_Triple Average 0.804 0.803 0.814 27.61 35.36
Std 0.008 0.002 0.004 0.484 0.574

Khersan head flow L1_Foursquare Average 0.761 0.782 0.791 30.64 37.51
Std 0.003 0.009 0.003 0.396 0.361
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Fig. 7   Observed and forecasted 
streamflow with six-month 
lead time within the testing 
period (a.Bakhtiari Head flow, 
b Cezar Head flow, c Dez to 
Band-e-Ghir Sub-basin Inflow, 
d Karun4 Head flow, e Karun4 
to Karun3 Sub-basin Inflow, f 
Karun3 to Karun1 Sub-basin 
Inflow, g Karun1 to Masjed-
Soleyman Sub-basin Inflow, h 
MasjedSoleyman to Gotvand 
Sub-basin Inflow, i Gotvand to 
Band-e-Ghir Sub-basin Inflow, j 
Khersan Head flow)
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the base current is generally due to the infiltration process, 
which is itself due to precipitation in previous months. 
Therefore, in the months when the base flow is minimal, the 
climatic characteristics are directly related to the amount of 
runoff, whilst in the months when the base flow has a sig-
nificant value, the surface flow has two direct and indirect 
correlations and is estimated using the indicators affecting 
the rate of penetration and precipitation.

In general, the performance of each of the chosen meth-
ods in detecting the runoff pattern is very acceptable. For 
example, we can highlight the input node of Karun4 Head 
flow, in which the L1_Triple model has a very small rela-
tive error in appearance, besides obtaining a correlation 
coefficient above 0.8. Also, most of the chosen models are 
from the indicators available in level 1. And the L1 & 2_Tri-
ple model has been chosen as an intermediate level model 
only in estimating the Dez to Band-e-Ghir and Karun3 to 
Karun1 sub-basin inflow, where the second level indica-
tors have been influential. The overlap of correlation values ​​
in estimating a target variable is another point to consider. 
Each indicator has a unique correlation pattern based on its 
internal nature (Fig. 6). In all key nodes, Ensemble mod-
els have been chosen from different multi-group member 
combinations. Also, in some nodes, such as the Karun3 to 
Karun1 sub-basin inflow, the effects of correlation overlap 
are observed. In other words, despite a lower correlation 
between the two groups, the final chosen model, L1 & 2_Tri-
ple, is an intermediate group combination and gives a better 
result due to the synergy of the correlation values. Also, the 
six-month forecasting model is not optimal in estimating 
peak values, which can be due to the low number of peak 
observation samples. Figure 8 shows the peak estimation 
results using the top three models in each node compared to 
the observed values.

From Fig. 8, there is a kind of underestimation with peak 
values. This could be due to the low number of observed 
data of peak events throughout the considered time hori-
zon. For example, Karun4 to Karun3 sub-basin inflow, the 
L1_Foursquare model, which originated from the quadru-
ple grouping of level one, can make the least error in peak 
values. However, it underestimates all peak values. Another 
case is the node of Dez to Band-e-Ghir sub-basin inflow, in 
which the chosen model L1 & 2_Triple has experienced the 
most relative error in the fourth peak. It is also observed that 
the relative error in smaller peaks is less, which is consistent 
with the monthly forecast performance. For example, in the 
node of Karun1 to MasjedSoleyman sub-basin inflow, the 
chosen L1_Foursquare model has a relative error of 22% in 
the second peak and 1% in the seventh peak. This indicates 
that higher peaks have a higher relative error and a higher 
underestimation rate. Also, the proper performance of a fore-
casting model in terms of statistical indicators does not mean 
the exact prediction value of peak values. For example, in 

the node of Gotvand to Band-e-Ghir sub-basin inflow, the 
L1_Foursquare, and L1 & 2_Triple models, which had a 
high correlation with the main current, could not even iden-
tify the peak current pattern and its time leg, because statis-
tical indicators measure the mean time series and exclude 
local effects such as peak values. Also, data-driven learning 
methods are data-orientated and can train neural networks 
and ultimately estimate similar values by repeating a prede-
fined pattern (Geem, and Roper 2009). As a result, due to 
the lack of peak samples, it is not appropriate to use only 
classical learning models to accurately estimate peak values. 
To examine the distribution of forecast data, the box-plot 
diagram of the results is shown in Fig. 9.

In the key nodes of Bakhtiari Head flow, Karun4 Head 
flow, Karun1 to MasjedSoleyman sub-basin inflow, and 
MasjedSoleyman to Gotvand sub-basin inflow the distribu-
tion is such that the values outside the box are similar to the 
observations and the maximums are estimated more accu-
rately. It can be attributed to the better estimation of peak 
values by the selected model (yellow box). The figure clearly 
shows that in the selected models the span, mean, and range 
are 25% and 75% similar to the observations, whereas in 
other models generally the whiskers are propagated in the 
opposite direction or the dispersion of the answers is not 
sufficient. For example, for the node of Karun1 to Masjed-
Soleyman sub-basin inflow, the L1&2 Foursquare model, 
derived from the combination of first and second four-item 
groups, shows a downward whisker which is contrary to the 
observed data. This is not just an underestimation in the peak 
values but indicates that the means and minimums were also 
underestimated. In another example, the Dez to Band-e-Ghir 
sub-basin inflow where the L1 & 2 Triple model, resulting 
from the combination of first- and second-grade three-item 
groups, has a very small span and in a sense formed a limited 
box which is usually because the pattern of the target vari-
able is not accurately recognized in the correlation. Here, the 
six-item group comprised of three first- and second-grade 
indices has not been able to accurately identify the pattern 
of flow change in the node; hence, the estimated values are 
calculated in a limited range of original data changes. It is 
also seen that in some of the selected models, such as L1_
Foursquare, the distribution of data is fully similar to the 
observed values for Dez to Band-e-Ghir sub-basin inflow 
while the lower whisker, which is completely skewed, is in 
contrast to the observation. However, the small difference 
between the lower whisker and the observations indicates 
that there is sufficient data in this interval and the difference 
can be due to low local correlation in some months. Because 
in practice calculations are based on the mean correlation 
and in some cases, large differences between correlation and 
observation in a certain month lead to such results. Accord-
ing to Table 5, grade-1 indices are more correlated with the 
overall flow in the drainage basin which indicates the flow 
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Fig. 8   Six-month lead time 
peak estimation within the test 
period (a Bakhtiari Head flow, 
b Cezar Head flow, c Dez to 
Band-e-Ghir Sub-basin Inflow, 
d Karun4 Head flow, e Karun4 
to Karun3 Sub-basin Inflow, f 
Karun3 to Karun1 Sub-basin 
Inflow, g Karun1 to Masjed-
Soleyman Sub-basin Inflow, h 
MasjedSoleyman to Gotvand 
Sub-basin Inflow, i Gotvand to 
Band-e-Ghir Sub-basin Inflow, j 
Khersan Head flow)
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Fig. 9   Box-plots of six-month 
streamflow peak estima-
tion within the test period (a 
Bakhtiari Head flow, b Cezar 
Head flow, c Dez to Band-
e-Ghir Sub-basin Inflow, d 
Karun4 Head flow, e Karun4 
to Karun3 Sub-basin Inflow, f 
Karun3 to Karun1 Sub-basin 
Inflow, g Karun1 to Masjed-
Soleyman Sub-basin Inflow, h 
MasjedSoleyman to Gotvand 
Sub-basin Inflow, i Gotvand to 
Band-e-Ghir Sub-basin Inflow, j 
Khersan Head flow)
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was generally influenced by the fluctuations in Pacific SST. 
This is in agreement with the findings of (Guérémy et al. 
2012; Sigaroodi et al. 2014) on precipitation correlation in 
the Mediterranean region. It is also essential to note that 
the results are slightly different because the flow is partially 
influenced by snow melting and base flows in the Great 
Karun basin. For instance, the Caribbean SST is a decisive 
index in the first level of correlation; indicating that the flow 
is influenced by fluctuations in the Caribbean region. The 
long-distance between the studied area and the reference 
point of the indices such as the Pacific SST in a way repre-
sents the time lag in the correlation between precipitation 
and flow. In other words, while a strong correlation between 
an index and precipitation in a region means also a high cor-
relation with the flow, the impact of rainfall-runoff transfor-
mation time delay, determined by snow melting, soil mois-
ture, penetration rate, etc., influences the selection of final 
correlated indices. Another point is the seasonal distribution 
of prediction performance and the better forecasting condi-
tions of droughts compared to wet seasons. A demonstration 
of the predicted flow in each season with another reference 
to Fig. 7 shows that the largest difference between predic-
tion and observation occurred in spring. This indicates the 
maximum flow volume occurred in spring and the prediction 
error increased due to insufficient data on peak values. At the 
same time, the lowest difference was observed in autumn. 
In this context, for the same reason of low flow volume in 
autumn and adequate data distribution in this interval, the 
model has been well able to identify the pattern of change.

A closer view of Tables 4 and 7 reveals increasing the 
prediction lead time eventually led to a decrease in the 
values of evaluation indices. The mean correlation coeffi-
cient on the monthly lead time was estimated as 0.92 while 
increasing the prediction lead time lowered the mean to 0.76. 
The Wilmotts index was calculated as 0.92 for the monthly 
and 0.77 for the six-month time step. Also, the Nash Sut-
cliffe index was recorded as 0.9 on the monthly and as 0.76 
on six-month models. For RRMSE and MAPE relative indi-
ces, 25% and 32% on the monthly calculation, as well as 29% 
and 36% on the six-month prediction were recorded, respec-
tively. While the proposed technique was used for the devel-
opment of six-month prediction, the results are weaker than 
the monthly forecasting despite the desired results in terms 
of assessment indices. This is due to the complex nature 
of flow and various parameters affecting the rainfall-runoff 
process as well as errors in calculating the long-distance 
climate indices which make a prediction with long-lead-time 
difficult. Figures 4 and 8 highlight the difficulty of accu-
rately predicting peak values in short and long lead times. A 
shorter prediction lead time did not increase the accuracy of 
peak values; even at certain nodes, larger underestimations 
were recorded. It also showed that the quality of peak results 
is relatively independent of the horizon and dependent on 

the frequency of occurrence. Finally, in Figs. 5 and 9, it is 
observed that the lead time has no bearing on the data dis-
tribution and does not follow a clear pattern.

Analysis of the results from the monthly and six-month 
prediction model suggests a proper ANN performance in the 
recognition of nonlinear patterns. The accurate identifica-
tion of input patterns and their impact on output indicates 
the high flexibility of ANNs (Teschl and Randeu 2006; Wu 
and Chau 2010; Li et al. 2012). In addition, using ensemble 
learning in examining a group of inputs led to better recog-
nition of patterns and proper distribution of desirable prop-
erty among the members. This feature caused the overlap of 
the wavelet components’ desired properties in the monthly 
model and also distributed the positive impact of each index 
in a group in the six-month model; improving the answers 
in the end.

At the end, it should be pointed that both the short- and 
long-term forecast models should be implemented in their 
suitable applications. The first and the most important func-
tion of forecast models is the water resources operating sys-
tems. The more accurate the water resources model handle 
the future situation, the more accurately it can allocate the 
available water and reduce the critical shortages. But it can 
be said that the main difference between short-term and 
long-term models in managing water resources is how they 
are used. Long-term models are mostly proper to extract the 
management strategies while, short-term models are used 
to modify and verify the operational actions during critical 
periods (e.g. within droughts or wet seasons).

Conclusion

The present study adopted the Ensemble approach based 
on ANN to predict the long-term inflow to the Great Karun 
multi-reservoir system in Iran. For this purpose, and to find 
the contributing input parameters, the relationship between 
runoff and 36 long-distance climate indices was investigated 
and influential indices were selected. In the input selection 
process, ACF and PACF functions, which calculate linear 
correlation as a function of time delay, were used. With a 
hydrological-geographic division of the drainage basin and 
considering the location of reservoirs, inflows to the Great 
Karun multi-reservoir system were modelled at 10 separate 
key nodes and the surface runoffs in the nodes were pre-
dicted. An examination of the correlations showed that in 
most of the selected indices, there is a similar behaviour in 
short-term (1–3 months) and long-term (6–8 months) delays. 
This feature was used in categorizing climate-atmospheric 
indices, and the resulting categories were selected to form 
the inputs for the learning model.

Tropical Pacific SST EOF, CAR, Nino1 + 2, Atlantic 
Triple SST EOF indices had a higher correlation with 
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inflows to the Great Karun system, indicating that runoff 
is primarily influenced by Pacific STT. Results showed 
that the fluctuation pattern of runoff can be predicted with 
acceptable accuracy even for six-month horizons using 
these indices; even if the unique correlation of each index 
with runoff is not high. The low correlation is due to the 
long-distance and time delay between the reference point 
of indices and the studied area. In other words, the dif-
ference between observations and forecasts suggests that 
other local parameters such as local wind, humidity con-
tribute directly to precipitation and indirectly to surface 
runoff and therefore, must be considered in predictions. 
Other factors (i.e. soil moisture, slope, etc.) also contribute 
directly to flow rate, and excluding them increases com-
putational error. Therefore, the use of ensemble learning 
resulted in the acceptable accuracy of the final model’s 
performance.

Results also showed the nonuniform distribution of 
prediction performance during wet and dry seasons. The 
largest difference between forecast and observation values 
occurred in spring. This is due to an inadequate number 
of peak samples; because the highest runoff amount in 
this area occurs during spring and the learning model was 
unable to cover these values due to insufficient occurrence 
frequency. Results also show the flexibility of ANN in 
investigating nonlinear relationships. Finally, it was found 
that prediction lead time has a restrictive effect on the 
model’s performance. The longer the prediction lead time, 
the more data are needed for accurate prediction, and the 
results’ accuracy decreases proportionally. Implement-
ing various ensemble learning methods can significantly 
improve the achieved results.
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