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Abstract
Nowadays, infiltration tactics are widely used to manage storm water in urban areas. These techniques are used and recog-
nized around the world due to their benefits, such as reducing the negative consequences of urbanization, reducing storm 
water flow in sewage systems and recharging groundwater. Richards equation is one of the most well-known equations for 
simulating water infiltration in soil in the unsaturated area. In the present study, a one-dimensional approach to the numerical 
solution of Richards equation is presented using meshless Petrov–Galerkin method and Kirchhoff transformation. The results 
of this modeling have been compared with analytical solution, laboratory data, and finite difference and meshless numerical 
methods. Given that the proposed model can provide an accurate representation of water level changes in unsaturated soil 
compared to analytical solution, laboratory data, finite difference method and MQ-RBF with the root mean square error 
equal to 0.09, 1.02, 0.7 and 0.1, it can be claimed that the model can model the flow of water infiltration in unsaturated soil.

Keywords Infiltration equation · Numerical model · Soil water · Porous media · Kirchhoff transformation · Gardner 
exponential model

Introduction

Urban flood is the volume of water that is beyond the drain-
age capacity of the city and leads to a series of problems 
and damages in the city. Infiltration system is a popular 
method of storm water management. The models of water 
flow in the unsaturated environment have been considered by 
scientists since the past. The most common model that has 
been presented so far is the Richards equation, which was 
first presented in 1931. The continuity (transport) equation 
is combined with Darcy’s law as momentum equation and 
Richards equation is obtained (Richards 1931). One of the 
simulation methods of water flow in unsaturated environ-
ment is numerical methods. Numerical methods of finite 
difference, finite elements, finite volumes, etc., are a set of 

methods that estimate the desired values in the equations 
by a mesh in the solution field, and many researchers used 
them to solve the Richards equation. Taheri Shahraiyni and 
Ataie Ashtiani (2009) compared finite difference designs for 
water flow in unsaturated soils. Xiao (2016) used meshless 
Petrov–Galerkin method for the one-dimensional solution 
of Richards equation and obtained acceptable results. Keita 
et al. (2021) used meshless Petrov–Galerkin method to ana-
lyze the Richards equation. Farahi et al. (2017) proposed 
a new model for simulating the hydraulic performance of 
an infiltration trench using the one-dimensional solution 
of Richards equation and the finite volume method. This 
model showed an accurate simulation of flow movement in 
unsaturated soil.

Despite many advantages, numerical methods have 
limitations. During the past years, many researchers have 
attempted to resolve these limitations, but still all the classi-
cal numerical methods have problems related to field mesh-
ing (Li et al. 2003). Recently, in addition to the above meth-
ods, a different approach is used for equation analysis and 
computational geometry discretization, which are known as 
particle-based and meshless methods. These methods use 
a set of scattered nodes in the problem domain along with 
a set of scattered nodes on the boundaries of the domain to 
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represent the problem domain and boundaries (Liu 2002). 
Kanzari and Mariem (2017) used Kirchhoff transforma-
tion and Richards equation to simulate water flow in porous 
environments. Suk and Park (2019) numerically solved the 
Richards equation using the Kirchhoff transformation func-
tion to simulate the variable saturation flow in heterogene-
ous layered porous environments. Boujoudar et al. (2021a, 
b) modeled unsaturated flow through porous environments 
using RBF and Kirchhoff transformation. Therefore, accord-
ing to the above, in this study, the combined form of the 
Richards equation was used to simulate the changes in 
water flow in the soil because this equation is applicable 
to both saturated and unsaturated soils and has more mass 
retention. Also, it can be used in layered soils. Until now, 
the Kirchhoff transformation seems to be very promising 
method for simulating unsaturated Richards equation. But 
there are some limitations in its use, especially when the 
Kirchhoff transformation is employed to solve nonlinear 
Richards equation based on specific constitutive relation 
such as Gardner relation. Despite widespread popular use 
of the Gardner constitutive relations, some people noted 
that exponential dependence of hydraulic conductivity on 
pressure head may not be representative of the full moisture 
range in real soils (Philip 1984; Khaleel and Relyea, 2001) 
and so applicability of Gardner model is limited compared 
to Brooks-Corey and van Genuchten models. Nevertheless, 
some scientists like Ji et al (2008) proved the applicability 
of Gardner relations by using Kirchhoff transformation in 
pseudo-heterogeneous layered porous media. But there was 
no research in this field in homogeneous soil. Therefore, in 
this research, for the first time, we investigated the Richards 
equation using the Gardner model with the Kirchhoff trans-
formation. Then, for the first time, the numerical method, 
meshless Petrov–Galerkin method along with moving least 
squares approximation function and Spline weight function 
was used for the one-dimensional solution of Richards equa-
tion. Finally, after modeling, the results were compared with 
the results of other researchers.

Materials and methods

Governing equations

The meshless Petrov–Galerkin method is one of the real 
meshless methods because it does not require meshing over 
the domain of the problem at any of the analysis stages, 
including field variable approximation and numerical inte-
gration of weak form equations. This method solves the 
equations using the local weak form and was first presented 
by Atluri and Zhu (1998). In the proposed method, the 
domain is determined by a set of nodes that have no prede-
termined relationship. Then, local weak form equations and 

moving least squares approximation function are used to 
transform the problem into a system of linear or nonlinear 
equations. Also, Gaussian integration method is used to 
solve integral equations (Atluri and Shen 2005).

Moving least squares approximation function

Differential equations can be discretized using moving least 
squares approximation function. This function can provide 
a continuous approximation for the interpolation of the field 
function throughout the problem domain. Also, the ability 
to approximate with an order of consistency is one of the 
most important features of this function, which leads many 
researchers to use it to generate shape functions. The mov-
ing least squares approximation that describes the variable 
field locally by the coefficient of the polynomial matrix in 
the matrix of coefficients is expressed as follows (Liu and 
Gu 2005):

where Uh (X) is the function of field changes in the studied 
range, PT (X) is a vector of basic functions based on Pascal’s 
triangle, a(X) is the vector of coefficients, �I(X) is the shape 
function, and UI is a nodal parameter. The coefficient a(X) is 
obtained from minimizing the weighted discrete norm func-
tion L2 as the following linear equation:

where A, B and Us are, respectively, obtained from the fol-
lowing relations:

Finally, the moving least squares approximation function 
is presented as follows:

The base vector often includes the maximum number of 
monomials necessary to achieve minimal completeness. In a 
one-dimensional space, a complete polynomial base function 
of order l is expressed according to the following equation:
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and in a two-dimensional space

In general, the base vector is based on Pascal’s triangle.

Weight function

The weight function plays an essential role in the perfor-
mance of moving least squares approximation and should 
have the following features: the value of the weight func-
tion is positive in the support domain, zero outside the sup-
port domain, and the value of the weight function uniformly 
reduces with respect to the desired point. This function is 
fairly smooth on the boundaries and is used in different 
forms like Gaussian, Quartic and Spline. Since the spline 
weight function is used in this study, its calculation method 
is described below (Liu an Gu 2005):

rw is the influence radius of the nodal point. For each point, 
rw should be selected in such a way that the number of 
nonzero weights is greater than the number of the polyno-
mials (N > M).

Discretization of Richards equation

Understanding the process of infiltration and movement of 
flow in porous environments is very necessary for flood con-
trol. Several models have been developed to describe flow 
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infiltration and flow movement in the porous soil, among 
which the Richards equation has high accuracy and effi-
ciency. This equation is obtained from the integration of 
Darcy’s and continuity equations, and it is defined in the 
form of a mixed-form as the following equation (Richards 
1931):

where θ is the volumetric soil water content ( L3∕L3 ), h is 
the pressure head (L), and K is the unsaturated hydraulic 
conductivity of the soil (L⁄T), which is obtained by the equa-
tion K = KsKr . In this regard, K_s is the saturated hydraulic 
conductivity, which is as follows:

where ρ is water density, g is the gravitational acceleration, 
k is the inherent permeability of the environment, and μ is 
the dynamic viscosity of the fluid. Kr is the relative hydraulic 
conductivity of water, indicating the effect of partial satura-
tion. In unsaturated soils, soil water content and hydraulic 
conductivity are also in unsaturated conditions and depend-
ent on each other and change by changing each of the other 
parameters. There are several models to describe the rela-
tionship between specific hydraulic parameters, including 
Brooks and Corey (1964), Genuchten (1980) and Mualem 
(1976). Given that Gardner’s exponential model is one of 
the widely used models to describe the physical properties 
of unsaturated porous environments, this function has been 
selected in this study.

Gardner’s model describes volumetric soil water content 
and the relationship between hydraulic conductivity and 
pressure head in the following exponential form (Gardner 
1958).

where λ is a parameter related to soil pore size distribution 
(1⁄L), �r is residual soil water content (-), and �s is saturated 
soil water content (-). By applying the above equations to 
Eq. (11), the Richards equation is obtained as follows:

Since the Richards equation is highly nonlinear, Kirch-
hoff transformation has been used to reduce the nonlinear-
ity of the above equation. So far, Kirchhoff transformation 
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is considered as a very promising method to simulate the 
unsaturated Richards equation because Kirchhoff transfor-
mation head changes due to its integral nature are much 
smaller than the pressure head changes, so the numerical 
errors can be effectively reduced (Pullan 1990; Bakker and 
Nieber 2004; Ameli et al. 2013; Friedman and Gamliel 
2019). The method is very stable and conserves mass, allow-
ing a very fast solution, using Picard’s iteration method, as 
opposed to the expensive Newton–Raphson iterations that 
are often required with traditional formulas and provide 
correct solutions (Lehmann and Ackerer 1998). In fact, by 
applying Kirchhoff transformation in this way, the strongly 
nonlinear Eq. (15) is reduced to a weakly nonlinear form.

Kirchhoff transformation is as follows:

where φ(h) is a transformation variable or Kirchhoff pres-
sure head. By applying Eq. (13) to the above equation, the 
Kirchhoff transformation is obtained as follows:

By replacing the above equation in Eq. (15), the Richards 
equation is obtained as follows:

To solve the above equation, Picard’s method, fixed point 
iteration method, is used. By applying Picard’s method to 
the mixed-form of Richards equation, Eq. (18) is defined as 
follows:

where n and m represent time and iteration, respectively. The 
above equation is discretized using Petrov–Galerkin method 
and weighted residuals:
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The first and second terms on the right side of the above 
equation become simpler by integrating part by part, and the 
following equation is obtained:

The estimated value considered for the unknown is:

By replacing Eqs. (22) in (21):

Finally, a linear form of the equation has been obtained, 
and the stiffness, unknown and load matrices are given below:

Then, Richards equation modeling algorithm is specified: 
Fig. 1.
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Evaluation of model performance

The criterion used in this study is the root mean square error 
(RMSE) and Nash–Sutcliffe efficiency coefficient ( NS ), and 
their relationship is as follows:

(27)RMSE =

√
1

n

∑(
Hcalc − Hobsr

)2

(28)NS = 1 −

∑n

i=1

�
Hcalc − Hobsr

�2
∑n

i=1

�
Hobsr − Hobsr

�2

where n is the number of data, Hcalc is the pressure head 
calculated by meshless Petrov–Galerkin method, and Hobsr 
is the observed pressure head.

Results and discussion

To evaluate the accuracy and trustworthiness of the model 
prepared from the simulation of infiltration flow, the data of 
several articles have been used, which are examined below.

Fig. 1  Richards equation modeling algorithm using local meshless Petrov–Galerkin method
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Example 1 (comparison with analytical solution)

One of the conventional methods to verify the results of the 
numerical solution of a model is to compare it with the results 
of the analytical solution of that model (Phoon et al. 2007). 
There are many models to describe water infiltration in soil. 
One of these models is Green–Ampt equations. Consider a 
column of soil with a height of L that is first dry and then 
water begins to infiltrate into the soil. After infiltration, a pond 
of water is kept at the ground level and the pressure head is 
kept at zero. This problem is known as one-dimensional 
Green–Ampt problem (Green & Ampt 1911). Tracy (2006) 
attempted to analytically solve the Richards equation under 
Green–Ampt conditions. In the initial test, we compare the 
results of the model presented in this study with the analytical 
solution of the Richards equation by Tracy. In this regard, we 
considered a column of soil with a thickness of 10 m and λ of 
2 ×  10–5 in Gardner’s exponential model. Saturated hydrau-
lic conductivity, and saturated and residual water content are 
equal to  10–4 (m/h), 0.35 and 0.14, respectively (Lu and Likos 
2004). The initial conditions of the soil under drought and 
equal to 10 m and Dirichlet boundary condition are as follows:

where hd is the initial compressive head in dry soil. Dirichlet 
boundary condition is applied using the following analytical 
solution (Tracy 2006):

Finally, to evaluate the solution of the Richards equa-
tion by meshless Petrov–Galerkin method, the analytical 
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Fig. 2  Comparison of suction profile modeled by meshless Petrov–Galerkin method and analytical solution of Richards equation
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solution of the equation under the above initial and bound-
ary conditions for 1 h was used. All numerical problems 
in this article are the result of a code written by the author 
using MATLAB 2018. Then, the suction profile modeled 
by the numerical model proposed in this article is com-
pared with the suction profile calculated by the analytical 
solution of the Richards equation by Tracy (2006) at dif-
ferent times.

Figure  2 shows the suction profile modeled by the 
model presented in the present study as a continuous line. 
As shown, there is a high agreement between that profile 
and the analytical solution. Table 1 shows errors of differ-
ent methods at different times. As shown, over time, the 
results of numerical and analytical solutions are closer 
together, indicating that meshless Petrov–Galerkin method 
is a suitable choice for the one-dimensional solution of 
Richards equation.

Example 2 (comparison with laboratory data)

In this problem, one-dimensional infiltration of water into 
the sandy soil column is investigated. To simulate this 
model, a plexiglass column has been used in vitro. The 
length of this soil column is 70 cm, and its cross-section is a 
square with a side of 5 cm. Measured values of water content 
at different depths and times were reported by Haverkamp 
et al. (1977). In this problem, primary and boundary condi-
tions governing are as follows:

Haverkamp et al. used Gardner’s water content curve and 
hydraulic conductivity models as follows:

They determined the parameters of the above model as 
follows.

(35)

⎧
⎪⎨⎪⎩

h(0, t) = −20.7cm

h(70, t) = −61.5 cm

h(L, 0) = −61.5cm

(36)� = �r +
A
(
�s − �r

)
A + hB

(37)k(h) = ks
D

D + hc

Table 1  Calculation of RMSE and NS at different times for soil suc-
tion profile (m)

60 48 36 24 12 Time(minute)
Evaluation criteria

0.99999 0.99999 0.99998 0.99996 0.9995 NS

0.09 0.095 0.14 0.3 1.42 RMSE

Fig. 3  Comparison of the suction profile modeled by meshless Petrov–Galerkin method and the laboratory data (Havercamp et al. 1977)
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Then, the pressure load profile after 360 s was calculated 
using meshless Petrov–Galerkin method. Figure 3 shows the 
calculation results as a continuous line along with the labo-
ratory data as a circle. As shown, the results obtained from 
the solution of the numerical method and the laboratory data 
match very well. RMSE and NSH in this example are 0.97 
and 0.96 cm, respectively, confirming the above results.

Example 3 (comparison with finite difference 
method)

Suk and Park (2019) considered the one-dimensional flow 
of water in homogeneous porous environments under three 
different scenarios. Parameter values and initial and bound-
ary conditions for simulation are shown in Fig. 4. Under 
all scenarios, the upper boundary was Dirichlet boundary 
condition with pressure head of -75 cm, while the lower 
boundary was Dirichlet boundary condition under three sce-
narios with pressure head of -200, -400 and -600 cm. Initial 
pressure head, exactly like Dirichlet boundary condition at 
the lower boundary, was -200, -400, and -600 cm corre-
sponding to each scenario. In this section, we will investigate 
the Richards equation under the above conditions. Figure 5 
shows the pressure head profile under three scenarios using 

�s = 0.287, �r = 0.075,A = 1.611 ∗ 106,B = 3.96,
Ks = 34cm∕h,D = 1.175 ∗ 106,C = 4.74

Fig. 4  Domain of interest, initial and boundary conditions (Suk and 
Park 2019)

Fig. 5  Comparison of the suction profile modeled by meshless Petrov–Galerkin method and the numerical solution of the Richards equation 
(Suk and Park 2019)
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the method proposed in this study. In this example, the mesh 
dimensions were 0.01 cm and the time step was 0.001 s. 
As shown, the drawn profiles are in good agreement with 
the results of Suk and Packer (2019) and acceptable results 
were obtained. RMSE and NSH in this example are 0.99 and 
0.98 cm, respectively.

Example 4 (comparison with MQ‑RBF)

The last example to investigate the accuracy of the mod-
el’s performance is a one-dimensional infiltration problem 
whose numerical solution is available. Boujoudar et al. 
(2021a, b) attempted to numerically solve the Richards 
equation by MQ-RBF and reached acceptable results. They 
simulated the one-dimensional infiltration problem using a 
computational domain of 50 m and set the soil parameters 
as �r = 0.15, �s = 0.45, Ks = 0.1(m∕day) . This numerical 
example was with λ = 0.1, 0.2, 0.3 and 0.4  (m−1). The initial 
conditions of the soil under drought and equal to −20 m 
and Dirichlet boundary conditions are as follows: the upper 
boundary has a fixed pressure head of zero, and the lower 
boundary has a constant pressure head of −20. Numeri-
cal simulation of Richards equation for different values of 
λ and using correct values of shape parameter coefficient 

was done by trial-and-error method and acceptable results 
were obtained, which are shown in Fig. 6. As shown, for all 
values of λ at all times, the mentioned parameter has reason-
able values, and this indicates the high accuracy of meshless 
Petrov–Galerkin method in numerical modeling to simulate 
flow in unsaturated soils. RMSE and NSH in this example 
are 0.99 and 0.99 cm, respectively. As shown, the size of λ 
had no significant effect on the performance of the model, 
but by increasing the value of λ, the dimensionless magni-
tude of the base domain should be reduced to maintain the 
stability of the method.

Conclusion

In this study, meshless Petrov–Galerkin method was used 
for one-dimensional solution of the mixed formulation of 
Richards equation, which has excellent results of mass bal-
ance, with water movement in unsaturated soil. Since the 
Richards equation is one of the nonlinear equations, Kirch-
hoff transformation and Picard’s iteration method were 
used to solve it to reduce its nonlinearity. After solving the 
above equation, to investigate its performance, the Rich-
ards equation was verified by different analytical solution 

Fig. 6  Comparison of the time evolution of the suction modeled by meshless Petrov–Galerkin method and the numerical solution of the Rich-
ards equation (Boujoudar et al 2021a, b)
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methods, laboratory data, finite difference method and 
MQ-RBF; and the relative error of this method was calcu-
lated. Then, the results were compared in the form of suc-
tion profiles. The comparison results showed that all the 
investigated methods had an assessment criterion of root 
mean square error from 0.09 to 1.02 cm and Nash–Sut-
cliffe efficiency coefficient of 0.96 to 0.99 which is within 
an acceptable range, but compared to the above 4 methods, 
analytical solution and MQ-RBF, it obtained a better solu-
tion at the verification stage. The high consistency of the 
results shows that meshless Petrov–Galerkin method for 
one-dimensional solution of the Richards equation is suit-
able in terms of accuracy, efficiency and stability.

Funding The authors received no specific funding for this work.

Declarations 

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Compliance with ethical standards Informed consent was obtained 
from all individual participants included in the study. This article does 
not contain any studies involving human participants performed by any 
of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ameli AA, Craig JR, Wong S (2013) Series solutions for saturated–
unsaturated flow in multi-layer unconfined aquifers. Adv Water 
Resour 60:24–33. https:// doi. org/ 10. 1016/j. advwa tres. 2013. 07. 
004

Atluri SN, Shen S (2005) The basic of meshless domain discretization: 
the meshless local Petrov-Galerkin (MLPG) method. Adv Comput 
Math 23:73–97

Atluri SN, Zhu T (1998) A new meshless method (MLPG) approach in 
computational mechanics. J Comput Mech 22(2):117–127. https:// 
doi. org/ 10. 1007/ s10444- 004- 1813-9

Bakker M, Nieber JL (2004) Two-dimensional steady unsaturated flow 
through embedded elliptical layers. Water Resour Res. https:// doi. 
org/ 10. 1029/ 2004W R0032 95

Boujoudar M, Beljadid A, Taik A (2021a) Localized MQ-RBF mesh-
less techniques for modeling unsaturated flow engineering analy-
sis with boundary elements localized MQ-RBF meshless tech-
niques for modeling unsaturated flow. Eng Anal Bound Elem 
130:109–123. https:// doi. org/ 10. 1016/j. engan abound. 2021. 05. 011

Boujoudar M, Beljadid A, Taik A (2021b) Modelling of unsaturated 
flow through porous media using meshless methods. In: Annual 
Conference Inspired by Nature–Inspiré par la Nature. https:// doi. 
org/ 10. 48550/ arXiv. 2105. 13133

Brooks RH, Corey AT (1964) Hydraulic Properties of Porous Media. 
Colorado State University, Fort Collins

Farahi G, Khodashenas SR, Alizadeh A, Ziaei AN (2017) New model 
for simulating hydraulic performance of an infiltration trench with 
finite-volume one-dimensional richards ’ equation. J Irrig Drain 
Eng 143:1–10. https:// doi. org/ 10. 1061/ (ASCE) IR. 1943- 4774. 
00011 76

Friedman SP, Gamliel A (2019) Steady water flow with interacting 
point source–point sink–water table in a cylindrical soil domain. 
Vadose Zone J. https:// doi. org/ 10. 2136/ vzj20 18. 11. 0204

Gardner WR (1958) Some steady-state solutions of the unsaturated 
moisture flow equation with application to evaporation from a 
water table. J Soil Sci 85(4):228–232. https:// doi. org/ 10. 1097/ 
00010 694- 19580 4000- 00006

Green W, Ampt G (1911) Studies on soil physics, part I, the flow of air 
and water through soils. J Agric Sci 4:11–24. https:// doi. org/ 10. 
1017/ S0021 85960 00014 41

Haverkamp R, Vauclin M, Touma J, Wierenga PJ, Vachaud G (1977) A 
comparison of numerical simulation models for one-dimensional 
infiltration. Soil Sci Soc Am J 41:285–293. https:// doi. org/ 10. 
2136/ sssaj 1977. 03615 99500 41000 20024x

Ji S-H, Park Y-J, Sudicky EA, Sykes JF (2008) A generalized trans-
formation approach for simulating steady-state variably-saturated 
subsurface flow. Adv Water Resour 31:313–323. https:// doi. org/ 
10. 1016/j. advwa tres. 2007. 08. 010

Kanzari S, Mariem SB (2017) Kirchhoff transformation of Richards 
equation for simulating water flow in porous media. Int J Syst Sci 
Appl Math 2(2):8–12

Keita S, Beljadid A, Bourgault Y (2021) Advances in Water Resources 
Implicit and semi-implicit second-order time stepping methods for 
the Richards equation. J Adv Water Resour 148:1–15. https:// doi. 
org/ 10. 1016/j. advwa tres. 2020. 103841

Khaleel R, Relyea JF (2001) Variability of Gardner's α for coarse-
textured sediments. Water Resour Res 37(6):1567–1575. https:// 
doi. org/ 10. 1029/ 2000W R9003 98

Lehmann F, Ackerer Ph (1998) Comparison of iterative methods for 
improved solution of the fluid flow equation in partially saturated 
porous media. Transp Porous Media 31(3):275–292

Li J, Chen Y, Pepper D (2003) Radial basic function method for 1-D 
and 2-D groundwater contaminant transport modeling. J Compu 
Mech 32:10–15. https:// doi. org/ 10. 1007/ s00466- 003- 0447-y

Liu GR (2002) Mesh free methods: moving beyond the finite element 
method, 2nd edn. CRC Press, Boca Raton. https:// doi. org/ 10. 1201/ 
97814 20082 104

Liu GR, Gu YT (2005) An introduction to Meshfree methods and their 
programming. Springer Science+Business Media, Singapore

Lu N, Likos WJ (2004) Unsaturated soil mechanics. Wiley, Hoboken, 
pp 494–527

Mualem Y (1976) A new model for predicting the hydraulic conductiv-
ity of unsaturated porous media. J Water Resour Res 12(3):513–
522. https:// doi. org/ 10. 1029/ WR012 i003p 00513

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.advwatres.2013.07.004
https://doi.org/10.1016/j.advwatres.2013.07.004
https://doi.org/10.1007/s10444-004-1813-9
https://doi.org/10.1007/s10444-004-1813-9
https://doi.org/10.1029/2004WR003295
https://doi.org/10.1029/2004WR003295
https://doi.org/10.1016/j.enganabound.2021.05.011
https://doi.org/10.48550/arXiv.2105.13133
https://doi.org/10.48550/arXiv.2105.13133
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001176
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001176
https://doi.org/10.2136/vzj2018.11.0204
https://doi.org/10.1097/00010694-195804000-00006
https://doi.org/10.1097/00010694-195804000-00006
https://doi.org/10.1017/S0021859600001441
https://doi.org/10.1017/S0021859600001441
https://doi.org/10.2136/sssaj1977.03615995004100020024x
https://doi.org/10.2136/sssaj1977.03615995004100020024x
https://doi.org/10.1016/j.advwatres.2007.08.010
https://doi.org/10.1016/j.advwatres.2007.08.010
https://doi.org/10.1016/j.advwatres.2020.103841
https://doi.org/10.1016/j.advwatres.2020.103841
https://doi.org/10.1029/2000WR900398
https://doi.org/10.1029/2000WR900398
https://doi.org/10.1007/s00466-003-0447-y
https://doi.org/10.1201/9781420082104
https://doi.org/10.1201/9781420082104
https://doi.org/10.1029/WR012i003p00513


Applied Water Science (2023) 13:119 

1 3

Page 11 of 11 119

Philip JR (1984) Steady infiltration from circular cylindrical cavities. 
Soil Sci Soc Am J 48(2):270–278. https:// doi. org/ 10. 2136/ sssaj 
1984. 03615 99500 48000 20008x

Phoon KK, Tan TS, Chong PC (2007) Numerical simulation of Rich-
ards equation in partially saturated porous media: under-relaxation 
and mass balance. Geotech Geol Eng 25(5):525–541. https:// doi. 
org/ 10. 1007/ s10706- 007- 9126-7

Pullan AJ (1990) The quasilinear approximation for unsaturated porous 
media flow. Water Resour Res 26(6):1219–1234. https:// doi. org/ 
10. 1029/ WR026 i006p 01219

Richards LA (1931) Capillary conduction of liquids through porous 
mediums. J Appl Phys 1:318–333. https:// doi. org/ 10. 1063/1. 
17450 10

Suk H, Park E (2019) Numerical solution of the Kirchhoff-transformed 
Richards equation for simulating variably saturated flow in het-
erogeneous layered porous media. J Hydrol. https:// doi. org/ 10. 
1016/j. jhydr ol. 2019. 124213

Taheri Shahraiyni H, Ataie Ashtiani B (2009) Comparison of finite 
difference schemes for water flow in unsaturated soils. Int J Mech 
Indus Aerosp Eng 3:10–14

Tracy FT (2006) Clean two- and three-dimensional analytical solutions 
of Richards’ equation for testing numerical solvers. Water Resour 
Res. https:// doi. org/ 10. 1029/ 2005W R0046 38

Van Genuchten MT (1980) A closed-form equation for predicting the 
hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 
https:// doi. org/ 10. 2136/ sssaj 1980. 03615 99500 44000 50002x

Xiao Y (2016) A discontinuous Galerkin finite element method solu-
tion of one-dimensional Richards equation. Thesis-Master of Sci-
ence in the Graduate School of The Ohio State University

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.2136/sssaj1984.03615995004800020008x
https://doi.org/10.2136/sssaj1984.03615995004800020008x
https://doi.org/10.1007/s10706-007-9126-7
https://doi.org/10.1007/s10706-007-9126-7
https://doi.org/10.1029/WR026i006p01219
https://doi.org/10.1029/WR026i006p01219
https://doi.org/10.1063/1.1745010
https://doi.org/10.1063/1.1745010
https://doi.org/10.1016/j.jhydrol.2019.124213
https://doi.org/10.1016/j.jhydrol.2019.124213
https://doi.org/10.1029/2005WR004638
https://doi.org/10.2136/sssaj1980.03615995004400050002x

	Numerical solution of the Richards equation in unsaturated soil using the meshless Petrov–Galerkin method
	Abstract
	Introduction
	Materials and methods
	Governing equations
	Moving least squares approximation function
	Weight function
	Discretization of Richards equation
	Evaluation of model performance


	Results and discussion
	Example 1 (comparison with analytical solution)
	Example 2 (comparison with laboratory data)
	Example 3 (comparison with finite difference method)
	Example 4 (comparison with MQ-RBF)

	Conclusion
	References




