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Abstract
Considering the recent significant drop in the groundwater level (GWL) in most of world regions, the importance of an 
accurate method to estimate GWL (in order to obtain a better insight into groundwater conditions) has been emphasized 
by researchers. In this study, artificial neural network (ANN) and support vector regression (SVR) models were initially 
employed to model the GWL of the Aspas aquifer. Secondly, in order to improve the accuracy of the models, two preprocess-
ing tools, wavelet transform (WT) and complementary ensemble empirical mode decomposition (CEEMD), were combined 
with former methods which generated four hybrid models including W-ANN, W-SVR, CEEMD-ANN, and CEEMD-SVR. 
After these methods were implemented, models outcomes were obtained and analyzed. Finally, the results of each model 
were compared with the unit hydrograph of Aspas aquifer groundwater based on different statistical indexes to assess which 
modeling technique provides more accurate GWL estimation. The evaluation of the models results indicated that the ANN 
model outperformed the SVR model. Moreover, it was found that combining these two models with the preprocessing tools 
WT and CEEMD improved their performances. Coefficient of determination (R2) which indicates model accuracy was 
increased from 0.927 in the ANN model to 0.938 and 0.998 in the W-ANN and CEEMD-ANN models, respectively. It was 
also improved from 0.919 in the SVR model to 0.949 and 0.948 in the W-SVR and CEEMD-SVR models, respectively. 
According to these results, the hybrid CEEMD-ANN model is found to be the most accurate method to predict the GWL in 
aquifers, especially the Aspas aquifer.
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Abbreviations
GWL  Groundwater level
SVR  Support vector regression
ANN  Artificial neural network
WT  Wavelet Transform
EMD  Empirical mode decomposition
CEEMD  Complementary ensemble empirical mode 

decomposition

W-ANN  Wavelet artificial neural network
ARIMA  Autoregressive integrated moving average
W-ANFIS  Wavelet transform-adaptive neuro-fuzzy 

inference system
W-SVR  Wavelet transform-support vector regression
ANFIS  Adaptive neuro-fuzzy inference system
SVM  Support vector machine
GEP  Gene expression programming
W-GEP  Wavelet transform-gene expression 

programming
W-M5  Wavelet transform-M5
SE  Sample entropy
HS  Harmony search
KELM  Extreme learning machine with the kernel
ELM  Extreme learning machine
PV  Photovoltaic
RF  Random forest
IGIVA  Improved gray ideal value approximation
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DIFPSO  The particle swarm optimization algorithm 
based on dynamic inertia factor

BPNN  Backpropagation neural network
Trainlm  Levenberg–Marquardt
Trainbfg  BFGS quasi-newton
Trainrp  Resilient backpropagation
Trainscg  Scaled conjugate gradient
Trainsgb  Conjugate gradient with Powell/Beale restarts
Traincgf  Fletcher–Powell conjugate gradient
Traincgp  Polak–Ribiére conjugate gradient
Trainoss  One step secant
Traingdx  Variable learning rate gradient descent
Trainbr  Bayesian regularization
Traingdm  Gradient descent with momentum
Traingd  Gradient descent
IMF  Intrinsic mode function
EEMD  Ensemble empirical mode decomposition
R2  Coefficient of determination
RMSE  Root mean squared error
AIC  Akaike information criterion
Poly  Polynomial
Lin  Linear

Introduction

The population growth, industrial and agricultural devel-
opment, and occurrence of droughts in recent years have 
exerted pressure on groundwater in Iran, such that most 
aquifers have experienced medium to high groundwater level 
drops. Consequently, many aqueducts have been dried out, 
and most of permanent springs have experienced remarkable 
reductions in their water yield. More than 50% of the need 
for drinking water in Iran is supplied through groundwater. 
Accordingly, investigating the current condition of ground-
water sources can assist managers in terms of more effi-
cient planning and decision-making. The literature review 
of the field reveals that the most of the studies performed 
on groundwater have used intelligence models to estimate 
groundwater level (GWL). Among these intelligence mod-
els, the support vector regression (SVR) and artificial neural 
network (ANN) models have shown to have a good perfor-
mance. In the following, some of the studies on groundwater 
using these models are presented.

Sattari et al. (2017) used the SVR and M5 tree models to 
predict the GWL in Ardabil city plain. Their results showed 
that both models had satisfactory performances, but the M5 
model was easier to implement and interpret. In a review 
paper, Rajaei et al. (2019) assessed the artificial intelligence 
models used in groundwater modeling. Mirarabi et al. (2019) 
investigated SVR and ANN models for the GWL prediction. 
The outcomes indicated the better performance of the SVR 
model than the ANN model.

Preprocessing tools such as wavelet transform (WT) and 
empirical code decomposition (EMD) have received atten-
tion in different fields over recent years, such that the com-
bination of these tools with different models has resulted in 
hybrid models with higher accuracy. The EMD is a thor-
oughly effective method for extracting signals from data and 
is used to decompose signals in the time–frequency domain 
(Huang et al. 2009). The complementary ensemble empirical 
mode decomposition (CEEMD) method is the completed 
form of EMD. In this method, a pair of positive and neg-
ative white noise is added to the main data to create two 
series of IMF. Therefore, a combination of the main data 
and the additional noise is obtained in which the sum of 
IMFs equals the main signal. Sang et al. (2012) employed 
the EMD method to analyze nonlinear data in hydrology.

In the following, some of the studies on the use of the two 
preprocessing tools are discussed.

Adamowski and Chan (2011) applied the wavelet arti-
ficial neural network (W-ANN) to predict the GWL in the 
Quebec Province of Canada. The ANN and autoregressive 
integrated moving average (ARIMA) models were also used. 
The results indicated the high capability of the W-ANN 
compared to the other two models. Moosavi et al. (2014) 
optimized hybrid models of wavelet transform-adaptive 
neuro-fuzzy inference system (W-ANFIS) and W-ANN 
using the Taguchi method to predict the GWL in Mash-
had, Iran. In this study, different structures were evaluated 
for both integrated models. According to the results, the 
W-ANFIS model had better performance than the W-ANN 
model. Suryanarayana et al. (2014) used the ANN, SVR, 
wavelet transform-support vector regression (W-SVR) and 
ARIMA to forecast monthly fluctuations of the GWL in 
Visakhapatnam, India. This research used monthly data of 
precipitation, average temperature, maximum temperature, 
and groundwater depth for a 13-year period (2001–2012). 
The results showed that the W-SVR had better performance 
than other models.

Eskandari et al. (2018) simulated the GWL fluctuations 
of the Borazjan plain using an integration of the support 
vector machine (SVM) and WT. The outcomes indicated 
the better performance of the hybrid model than the SVM 
model. Eskandari et al. (2019) assessed the combination of 
the adaptive neuro-fuzzy inference system (ANFIS) and WT 
in modeling and predicting the GWL of the Dalaki basin in 
Bushehr Province in Iran. Their results indicated that the use 
of the WT improved the performance of the ANFIS model 
by 14%. Salehi et al. (2019) predicted the GWL of Firuzabad 
plain using the combined model of time series-WT. They 
reported that the combined model outperformed the time 
series model.

Bahmani et al. (2020) simulated GWL using GEP and 
M5 tree models and their combination with WT. According 
to the results, the combined models had better performance 
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than GEP and M5 models. Moreover, the performance of the 
two combined models (W-GEP and W-M5) was similar. It 
was also observed that choosing the proper level of decom-
position significantly affected the accuracy of the combined 
models.

Bahmani and Ouarda (2021) modeled GWL by combin-
ing artificial intelligence techniques. They used four obser-
vation wells in Delfan plain in Iran. They combined gene 
expression programming (GEP) and M5 models with WT 
and CEEMD techniques. The results indicated the better per-
formance of the model combined with GEP.

Awajan et al. (2019) presented a review on empirical 
mode decomposition in forecasting time series from 1998 to 
2017. Wang et al. (2019) provided a wind power short-term 
forecasting hybrid model based on the CEEMD-SE method 
in a Chinese wind farm. This method was obtained after 
integration processing CEEMD, sample entropy (SE), and 
harmony search (HS) with an extreme learning machine with 
the kernel (KELM). The results showed the hybrid method 
(CEEMD-SE-HS-KELM) had higher forecasting accuracy 
than EMD-SE-HS-KELM, HS-KELM, KELM, and the 
extreme learning machine (ELM) model.

Niu et al. (2020) provided short-term photovoltaic (PV) 
power generation forecasting based on random forest feature 
selection and CEEMD. A hybrid forecasting model was cre-
ated combining random forest (RF), improved gray ideal 
value approximation (IGIVA), CEEMD, the particle swarm 
optimization algorithm based on dynamic inertia factor 
(DIFPSO), and backpropagation neural network (BPNN), 
called RF-CEEMD-DIFPSO-BPNN. Results revealed that 
RF-CEEMD-DIFPSO-BPNN was a promising approach in 
terms of PV power generation forecasting.

The GWL has considerably dropped in the 
Tashk–Bakhtegan basin and Maharlu lakes over recent years 
(Ashraf et al. 2021). The Aspas aquifer is one of the aquifers 
in the Basin that a high drop in GWL has experienced. The 
aquifer is located upstream of the basin. Due to the drop in 
the groundwater level, the effluent rivers have turned into 
influents rivers. Rivers in Aspas are of the head branches of 
the Kor River, and their drying or low water causes drying 
up of the Kor River and Bakhtegan Wetland.

Based on the review of the sources, two artificial intel-
ligence models (ANN and SVR) have performed well. Thus, 
these models were used to investigate the GWL in the Aspas 
plain. To increase this models accuracy were used preproc-
essing tools. Two preprocessing tools WT and CEEMD have 
had a good performance in different studies, so in this study 
have been used. After the emergence of four combined mod-
els W-ANN, W-SVR, CEEMD-ANN, and CEEMD-SVR, 
the results were compared with the ANN and SVR models, 
and the best intelligent model was determined.

The main differences between our study and the latest 
studies (Bahmani et al. 2020; Bahmani and Quarda 2021) are 

as follows: (i) in exception to this study, they used minimal 
local data, usually 3 to 8 observation wells. In this study, 
we used the aquifer unit hydrograph (extracted from the 
data of 40 observation wells) and the isohyetal, isothermal 
and isoevaporation maps that provide a global estimation of 
the aquifer accurately. (ii) The proposed hybrid approaches 
increased the accuracy of the intelligent models.

Materials and methods

Study area

The Tashk–Bakhtegan and Maharlu lakes basin, with an area 
of 31,451.8  km2, is located in Fars Province in Iran. The 
basin is divided into two basins, namely Tashk–Bakhtegan 
and Maharlu, and 27 sub-basins. The Aspas study area with 
the code 4321 is located in the northwest of the basin. The 
region has a total area of 1590.5  km2, including the plain 
(764.9  km2), highlands (816.5  km2), and lake (9.1  km2). 
The maximum height of the region is 3495 m (the peak 
of Bar Aftab mountain in the east), while the minimum 
height is 2061 m (Oujan river in the central plains). The 
most important city of the region is Sadeh. Figure 1 depicts 
the location of the study area and the Aspas aquifer in the 
Tashk–Bakhtegan and Maharlu lakes basin in Fars Province 
of Iran.

Data preparation

According to the data of the Aspas aquifer, 40 observation 
wells with a better reference period were selected. After 
introducing the GWL data of the observation wells in the 
HEC-4 software, the reference period of 2002–2020 was 
chosen to plot the unit hydrograph. The box plot method 
was used to assess the outlier data. In case of encounter-
ing any outlier data, they were removed and regenerated 
using the HEC-4 software. Ultimately, the unit hydrograph 
of the groundwater (water level variations) was plotted in 
a monthly scale for the Aspas aquifer, as shown in Fig. 2. 
Table 1 provides the location of the used meteorology sta-
tions inside and outside the Aspas aquifer. After evaluating 
and extending the data using the HEC-4 software and exam-
ining the outlier data, the monthly isohyetal maps were plot-
ted for the Aspas study area, using 13 meteorology stations 
inside and outside it. Afterward, the monthly precipitation 
values were extracted for the aquifer. According to the maps, 
the average precipitation on the aquifer in the 19-year refer-
ence period (2002–2020) was 427 mm.

The data of eight meteorology stations inside and out-
side the Aspas sub-basin were employed to evaluate the 
temperature of the aquifer. After investigating the data and 
extending them using the method of differences, the outlier 
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data were examined. The monthly isothermal maps were 
plotted for the study area. Then, the monthly temperature 
values were extracted for the Aspas aquifer. The average 
annual temperature of the Aspas aquifer was obtained 
13 °C. The data of eight meteorology stations inside and 
outside the Aspas study area were employed to evaluate 

the evaporation of the aquifer. After assessing the data and 
extending them based on the temperature-evaporation rela-
tionship for each station and examining their outlier data, 
the isoevaporation maps were plotted for the study area. 
Afterward, the monthly evaporation values were extracted 

Fig. 1  Location of the Aspas 
aquifer in Iran

Fig. 2  Unit Hydrograph of groundwater in the Aspas aquifer
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for the aquifer. The average evaporation of the Aspas aqui-
fer was obtained at 2273 mm.

The modeling was performed after determining the 
monthly data of the GWL, precipitation, temperature, and 
evaporation. Before using the data, they were standardized 
(changed to values between zero and one). For this purpose, 
Eq. 1 was used as recommended by Solgi et al. (2017). The 
input parameters of the model included precipitation, tem-
perature, evaporation, and the GWL in a given month, and 
the output parameter was the GWL in the next month. Of 
the whole data, 75% were used for training, and 25% were 
used for testing. The input parameters of the model included: 
precipitation ( Pt ), temperature ( Tt ), evaporation ( Et ), and 
groundwater level ( GWLt ) at time t and groundwater level 
at time t + 1 ( GWLt+1).

In Eq. (1), x is the desired data, x is the average data, xmax 
is the maximum data, xmin is the minimum data, and y is the 
standardized data.

Figure 3 shows the general flowchart of the work steps. 
As can be seen in this fig., first are received the data of 
observation wells and meteorological stations. Then, the 
data are completed and extended by Hec-4 software. The 
boxplot method is used to check outlier data. The unit hydro-
graph of groundwater is drawn. Maps of isohyetal, isotem-
perature and isoevaporation are drawn in the GIS software. 
Then, monthly values for the aquifer are extracted from 
these maps. These values are entered as input data to tools 
based on data analysis. The main signal is decomposed, 

(1)y = 0.5 +

(
0.5 ×

(
x − x

xmax − xmin

))

and the sub-signals are extracted. The sub-signals of each 
input parameter are entered as input to artificial intelligence 
models. After modeling by artificial intelligence models, the 
results of each model are compared by observed values. If 
the results are acceptable, the model results are extracted, 
otherwise, the models are run again to improve the results 
by changing the effective factors in the modeling. In the end, 
the results of all models are compared based on evaluation 
criteria and the best model is selected.

Artificial intelligence models

According to the evaluations of the intelligence models, 
two of them that had good performance in previous studies, 
i.e., ANN and SVR, were used. Afterward, two preprocess-
ing tools, namely the WT and CEEMD, were employed to 
enhance the performance of the models.

ANN model

The following are effective in modeling artificial neural net-
works (ANNs) (Solgi 2014):

1. Sufficient training,
2. Number of layers in a network,
3. Number of neurons of the middle layers,
4. Training laws,
5. Simulation functions (transmission)

An important criterion in training a network is the num-
ber of iterations (epochs) or repetitions the network experi-
ences while training. In training a network, determining the 

Table 1  Specifications of the stations used

Stations Variable Station code UTMx UTMy Elevation (m)

Ahmad abad Precipitation (mm) 43–068 662436 3363117 2233
Emamzadeh esmaeil 43–124 652573 3355239 1833
Bidkol 43–025 656499 3338446 1613
Chobkhaleh 43–061 585762 3379456 2053
Khosro shirin 43–055 596699 3419146 2340
Dezgard reisun 43–054 592058 3399077 2107
Dashtak 43–134 641114 3352077 2046
Dehbid 43–095 710365 3388840 2312
Dashtbal Temperature (°C), Evaporation (mm) 43–035 690731 3321090 1673
Kemehr 43–202 584103 3368805 2377
Mehrabad ramjerd 43–008 664068 3316903 1616
Chamriz Precipitation (mm), Temperature (°C), 

Evaporation (mm)
43–015 605703 3370902 1840

Sadeh 43–201 611470 3399141 2192
Abas abad 43–082 620649 3354465 1690
Kaftar 43–029 666049 3379054 2350
Madar soleyman 43–105 709769 3341856 1861
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proper number of iterations is of great importance. In gen-
eral, the more the number of iterations in training a network, 
the smaller the simulation (prediction) error. However, when 
the number of iterations exceeds a given value, the testing 
group error increases. The best number of iterations mini-
mizes the errors in both training and testing groups.

The number of layers in a network is among the main 
criteria in designing ANNs. These networks are usually 
comprised of several layers. These layers include an input 
layer, middle layers, and an output layer. The number of the 
middle layers is determined by trial and error. In general, 
it is recommended to use ANNs with lower middle layers.

In ANNs, the number of neurons of the input and output 
layers is a function of the type of problem. However, there 
is no particular relationship for the number of neurons in 

the middle layers, and these neurons are determined based 
on trial and error for each middle layer.

The internal mode of a neuron caused by the activation 
function is known as the activity level or action. Generally, 
each neuron sends its activity level to one or more of the 
other neurons in the form of a single signal. The activation 
functions of a layer's neurons are typically, but not essen-
tially, the same. Moreover, these activation functions are 
nonlinear for the neurons of the hidden layer while being 
identity functions for the input layer's neurons. Using a 
reaction function, a neuron produces outputs for various 
inputs. Linear and sigmoid functions are two well-known 
functions (Karamuz and Araghinezhad 2010). An activa-
tion function is chosen based on the specific need of a 
problem that should be solved by the ANN. In practice, a 
limited number of activation functions is used, as listed in 
Fig. 4 (Alborzi 2001).

The network architecture in solving a problem refers to 
choosing the proper number of layers, the number of neu-
rons in each layer, the way connections are made between 
neurons, and the proper activation functions for neurons, 
along with determining the training algorithm and the way 
the weights are adjusted.

Another major parameter of an ANN is the training func-
tion. Table 2 lists the training functions used in the current 
study.

SVR model

In this case, the kernel functions are used. In this study, four 
common kernels as the following were used:

k(x, y) = (x.y + 1)d d = 2, 3, …

These kernels are the polynomial (Poly) kernel, RBF 
kernel, Sigmoid kernel, and linear (Lin) kernel, respec-
tively (Raghavendra and Deka 2014). The RBF kernel has 
one parameter g (Gamma). In the sigmoidal kernel, just the 
default values, including zero and 1/k Gamma, are used. 
The linear kernel does not have any parameters. The poly-
nomial kernel has two parameters d (the degree of the poly-
nomial) and r (an accumulative fixed number). For more 
information on this topic, see references (Cortes and Vapni 
1995; Raghavendra and Deka 2014). As listed in Table 3, 

k(x, y) = exp

�
−
‖x − y‖2

2�2

�

k(x, y) = tanh(x.y + �)

(2)k(x, y) = (x.y)

Fig. 3  Flowchart of work steps in this study
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six combinations of architecture were considered to run the 
ANN and SVR models.

Preprocessing tools

In this study, used two tools includes the WT and CEEMD.

Wavelet transform (WT)

Wavelet transform (WT) is one of the efficient mathematical 
transformations in the field of signal processing. Wavelets 
are mathematical functions that provide a time-scale form 
of time series and their relationships for analyzing time 
series that include variables and non-constants. The wavelet 
function is one that has two important properties of oscilla-
tion and being short-term. The wavelet coefficients can be 

Fig. 4  A number of activation 
functions used in the ANN 
(Alborzi 2001)

Table 2  Training functions used in this study

No Training function Function name 
in MATLAB 
software

1 Levenberg–Marquardt Trainlm
2 BFGS Quasi-Newton Trainbfg
3 Resilient backpropagation Trainrp
4 Scaled conjugate gradient Trainscg
5 Conjugate gradient with powell/Beale restarts Traincgb
6 Fletcher–Powell conjugate gradient Traincgf
7 Polak–Ribiére conjugate gradient Traincgp
8 One Step Secant Trainoss
9 Variable learning rate gradient descent Traingdx
10 Bayesian regularization Trainbr
11 Gradient descent with momentum Traingdm
12 Gradient descent Traingd

Table 3  Details of different architectures of ANN and SVR models

Architecture Input Output

1 GWL
t−1,GWL

t
GWL

t+1

2 P
t−1,Pt

GWL
t+1

3 T
t−1,Tt GWL

t+1

4 E
t−1,Et

GWL
t+1

5 GWL
t
,P

t
,E

t
,T

t
GWL

t+1

6 GWL
t−1,GWL

t
,P

t−1,Pt
,E

t−1,Et

,T
t−1,Tt

GWL
t+1
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calculated at any point of the signal (b) and for any value of 
the scale (a) in the following equation (Nourani et al. 2009).

In Eq. (3), � is the mother wavelet function, a is scales 
and b translates the function. For different values of a b, the 
value of T is obtained.

Because the effect of time series data is differentiated 
before entering different models and the initial signal is 
decomposed into several sub-signals, it is possible to use 
an analysis that includes short-term and long-term effects, 
which in turn optimizes the model in future evaluations and 
estimates.

For more information on this topic, see references (Mallat 
1998; Foufoula-Georgiou & Kumar 1994).

CEEMD method

The empirical mode decomposition (EMD) is a method for 
decomposing different signals in a process called screening. 
During this process, the main signal is decomposed into a 
number of components with different frequency contents. 
According to Eq. 4, the EMD method decomposes the main 
signal x(n) to a number of intrinsic mode functions (IMFs) 
(Amirat et al. 2018).

In Eq. 4, rn(x) is the remaining component after n IMFs 
and ci(x). C(x) is the wave-shape (harmonic) function 
extracted from the main signal, which does not have the 
conditions of the IMF. Data can have several IMFs at a time. 
These fluctuating modes are called intrinsic mode functions 
and have the two following conditions: 1. in all data, the 
number of extremum points equals the number of zero points 
or, at most, is different by a unit. 2. At each point, the aver-
age of the envelopes fitted to local maximum and minimum 
points should be zero.

Given the presence of alternation and noise in the signals, 
in some cases, the frequency-time domain distribution is 
interrupted, and the EMD performance is disturbed due to 
the difference in the modes. In order to solve this problem, 
Wu and Huang (2004) proposed a different method called 
ensemble empirical mode decomposition (EEMD). In the 
decomposition procedure of EEMD, a limited volume of 
white noise enters the main signal. By using the positive 
statistical aspects of the white noise, which is uniformly dis-
tributed in the frequency domain, the effect of the alternating 
noise is removed from the decomposition process. In the 
CEEMD method, a pair of positive and negative white noise 

(3)T(a.b) =
1
√
a∫

+∞

−∞

�

�
t − b

a

�
f (t)dt

(4)x(n) =

n∑

i=1

ci(x) + rn(x)

is added to the main data to create two series of IMF. There-
fore, a combination of the main data and the additional noise 
is obtained in which the sum of IMFs equals the main signal.

Combining models with the WT method

This section discusses the formation of hybrid models 
obtained from the combination of WT with the ANN and 
SVR intelligence models. When an initial signal is decom-
posed using the WT method, and the resulting sub-signals 
are used as inputs to the ANN and SVR intelligence models, 
the hybrid models of W-ANN and W-SVR are obtained. As 
shown in Fig. 4, at first, the signals of the input parameters 
of precipitation, temperature, evaporation, and the GWL are 
decomposed using the WT. Then, the obtained sub-signals 
are introduced as inputs in the ANN and SVR models to 
create W-ANN and W-SVR hybrid models. Figure 5 depicts 
the Pa(t),Ta(t),GWLa(t) andEa (t) sub-signals of the overall 
scale (approximate) in the last level and other sub-signals 
of the detailed scale (detail) from level one to the last level.

Combining models with the CEEMD method

This section describes the creation of hybrid models 
obtained from the combination of CEEMD with the ANN 
and SVR intelligence models. When an initial signal is 
decomposed using the CEEMD method, and its sub-signals 
are used as inputs to the ANN and SVR intelligence mod-
els, the hybrid models of CEEMD-ANN and CEEMD-SVR 
are obtained. As shown in Fig. 5, at first, the signals of the 
input parameters of precipitation, temperature, evapora-
tion, and the GWL are decomposed using the CEEMD. 
Then, the obtained sub-signals are introduced as inputs 
in the ANN and SVR models to create CEEMD-ANN 
and CEEMD-SVR hybrid models. Figure 6 depicts the 
Pimf(t),Timf(t),GWLimf(t) andEimf (t) sub-signals of the 
overall scale (IMF) in the last level and other sub-signals of 
the residuals from level one to the last level.

The CEEMD method has two parameters, i.e., the maxi-
mum number of IMFs and £. It can be said that the number 
of IMFs is the level of decomposition in the WT method. 
In this study, the values of 0.1, 0.2, and 0.3 were used for 
£. Some studies have used 0.2 for this parameter. Moreover, 
according to the structure of the study, the number of IMFs 
was one to six. Accordingly, the hybrid models were used in 
different modes by combining six IMFs and three £ values.

Evaluation criteria

In the performance assessment of models, different quali-
tative and quantitative parameters should be evaluated to 
clearly observe the effectiveness of each input parameter on 
the results. Accordingly, the following parameters were used 
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to examine the efficiency of the methods (Solgi et al. 2017; 
Bahmani et al. 2020).

In equations above, the parameters include:
n: number of data, i counter variable, Giobs : observational 

data, Giobs : average of the observational data, Gipre : com-
putational data, Gipre : average predicted data, m: number 
of the parameters of the model and Npar : number of the 
trained data.

The coefficient of determination ( R2 ) determines the 
agreement between the data created by the model and the 

(5)RMSE =

�∑n

i=1
(Giobs − Gipre)

2

n

(6)R2 =

�
n∑
i=1

(Giobs − Giobs)(Gipre − Gipre)

�2

n∑
i=1

(Giobs − Giobs)
2

n∑
i=1

(Gipre − Gipre)
2

(7)AIC = m × ln(RMSE) + 2(Npar)

real data. The values closer to one indicate better agree-
ment and lower error. Therefore, this parameter was used 
to evaluate the effectiveness of each parameter, such as the 
type of the wavelet function, number of middle neurons, and 
decomposition degree of wavelet in the performance of all 
models. Moreover, the parameter of RMSE is the root mean 
square error of the computational and observational data. It 
is clear that lower values of this parameter indicate the better 
training and simulation of the data. Regarding the Akaike 
information criterion (AIC), it can be said that lower Akaike 
coefficients reveal the better performance of the models. The 
low value of the Akaike coefficient is caused by two factors, 
i.e., the error of the model and the number of parameters. 
Therefore, it is a good criterion to evaluate models.

Results and discussion

This section provides the results of the intelligence models 
executed for the GWL estimation using the data obtained 
from the plotted isohyetal, isothermal, and isoevapora-
tion maps and the unit hydrograph of the groundwater. 

Fig. 5  Schematic diagram of the 
W-ANN and W-SVR models
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Afterward, the preprocessing methods were used, and the 
obtained hybrid models and their results were provided. 
Eventually, the results of the models were compared based 
on the statistical criteria.

Artificial intelligence models

Results of the ANN model

The ANN was modeled by coding in the MATLAB software 
and using all effective parameters previously mentioned. 

For this purpose, different structures were evaluated in 
each combination. Table 4 provides the results of the best 
structure in each combination. As can be seen in the table, 
combination No. 6 with eight input parameters and three 
neurons in the middle layer had the best performance. Its 
coefficient of determination was 0.927, and its error was 
0.0158. In this prior combination, the training law of trainlm 
and stimulation (transmission) function of tansig had the 
best performance compared to other training laws and trans-
mission functions. The performance of this model can be 
compared with the observational values in Fig. 7. As can be 

Fig. 6  Schematic diagram of the 
CEEMD-ANN and CEEMD-
SVR models

Table 4  The best performance 
in the ANN model combinations 
at the monthly scale

Bold values represent the best performance

Combination Model parameters R2 RMSE

Structure Epoch Learning rules Transfer function Train Test Train Test

1 2–6-1 1000 Trainlm Tansig 0.955 0.888 0.0198 0.0215
2 2–5-1 111 Trainbfg Tansig 0.184 0.165 0.0839 0.2302
3 2–4-1 1000 Trainlm Tansig 0.192 0.144 0.0834 0.2263
4 2–4-1 1000 Trainlm Tansig 0.329 0.224 0.0760 0.2126
5 4–3-1 225 Trainbr Tansig 0.969 0.912 0.0163 0.0179
6 8–3-1 1000 Trainlm Tansig 0.985 0.927 0.0113 0.0158
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seen, the ANN model had better performance in minimum 
points compared to the peak points.

Results of the SVR model

The SVR was modeled by coding in the MATLAB software 
and using all effective parameters previously mentioned. 
For this purpose, different structures were evaluated in each 
combination. Table 5 provides the results of the best struc-
ture in each combination. As can be seen in the table, com-
binations 5 and 6 had the same coefficient of determination, 
but given its lower error, combination No. 6 was known as 
the superior combination. The coefficient of determination 
and error of this combination were 0.918 and 0.0168, respec-
tively. In this superior combination, the line kernel had the 
best performance among all kernels. The performance of 
this model can be compared with the observational values 
in Fig. 8. As can be seen in the figure, the estimations of the 
SVR model in the maximum and minimum points were dif-
ferent from the observational values.

Results of the W‑ANN model

According to Nourani et al. (2009), Eq. 8 can be used as an 
initial estimation in determining the decomposition level in 
the WT method on a monthly time scale. In this equation, 
L denotes the decomposition level, and N is the number of 
data. Given the number of data in this study, which was 216, 
L was calculated at two. In order to improve the accuracy, 
the decomposition levels were considered from one to four. 
For this purpose, the WT method was coded in MATLAB 
software.

In order to execute the W-ANN model, the sub-sig-
nals obtained from the execution of the WT in different 
decomposition levels were introduced as inputs to the 
ANN model. To this end, the W-ANN model was stud-
ied in different decomposition levels with various wave-
let functions in different structures, whose results are 
listed in Table 6. According to the table, wavelet function 

(8)L = Int
[
log(N)

]

Fig. 7  Comparison of the ANN 
model with observed data

Table 5  The best performance 
in the SVR model combinations 
at the monthly scale

Bold values represent the best performance

Combination Model parameters R2 RMSE

Kernel Gam Sin2 B Polynomi-
als degree

Train Test Train Test

1 Lin 5.157 – − 0.0003 – 0.954 0.886 0.0198 0.0216
2 Poly 0.0001 419.84 − 0.0001 3 0.122 0.214 0.0870 0.2313
3 Lin 0.0555 – 0.0006 – 0.102 0.153 0.0880 0.2294
4 Poly 1.0749 0.1919 0.2020 3 0.228 0.230 0.0816 0.2139
5 Lin 4.0064 – − 0.0002 – 0.967 0.919 0.0167 0.0194
6 Lin 1.4603 – − 0.0002 – 0.972 0.918 0.0156 0.0168
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Sym3 in decomposition level 1 had the best performance. 
This superior combination had eight input neurons with 
four hidden layers with the training law of trainbr and 
the stimulation function of purelin. In this combination, 
RMSE = 0.0149 and R2 = 0.938, which indicated its better 
performance than other combinations. The performance of 

this model can be compared with the observational values 
in Fig. 9. As can be seen in the figure, the W-ANN model 
did not have proper performance in the peak points.

Fig. 8  Comparison of the SVR 
model with observed data

Table 6  Result of W-ANN model at the monthly scale with different mother wavelets and decomposition levels

Bold values represent the best performance

Wavelet Function Level Model parameters R2 RMSE

Structure Epoch Learning rules Transfer function Train Test Train Test

Coif1 1 8-3-1 133 Trainbr Tansig 0.991 0.920 0.0087 0.0301
2 12-7-1 1000 Trainbr Tansig 0.987 0.879 0.0107 0.0279
3 16-4-1 429 Trainbr Tansig 0.995 0.842 0.0068 0.0254
4 20-4-1 1000 Trainbr Purelin 0.987 0.885 0.0106 0.0264

Db2 1 8-3-4-1 238 Trainbr Tansig 0.995 0.871 0.0067 0.0291
2 12-4-1 230 Trainbr Tansig 0.997 0.769 0.0050 0.0337
3 16-3-1 386 Trainbr Tansig 0.991 0.834 0.0089 0.0290
4 20-4-1 1000 Trainbr Purelin 0.987 0.927 0.0107 0.0166

Db4 1 8-4-1 339 Trainlm Purelin 0.983 0.836 0.0119 0.0429
2 12-6-1 123 Trainlm Purelin 0.995 0.645 0.0065 0.0504
3 16-3-3-1 1000 Trainbr satlin 0.983 0.929 0.0120 0.0177
4 20-5-1 455 Trainbr Tansig 0.999 0.767 0.0029 0.0620

Sym3 1 8-4-1 1000 Trainbr Purelin 0.984 0938 0.0116 0.0149
2 12-4-4-1 1000 Trainbr Tansig 0.984 0.937 0.0116 0.0163
3 16-4-1 159 Trainlm Purelin 0.984 0.903 0.0116 0.0252
4 20-4-1 436 Trainbr Tansig 0.997 0.658 0.0052 0.0445

Haar 1 8-4-1 1000 Trainbr Tansig 0.986 0.921 0.0108 0.0196
2 12-3-3-1 320 Trainbr Tansig 0.985 0.923 0.0112 0.0193
3 16-6-1 1000 Trainbr Purelin 0.985 0.921 0.0113 0.0190
4 20-5-5-1 179 Trainbr Tansig 0.985 0.924 0.0112 0.0191



Applied Water Science (2023) 13:88 

1 3

Page 13 of 18 88

Results of the W‑SVR model

In order to execute the W-SVR model, the sub-signals 
obtained from the execution of the WT in different decom-
position levels were introduced as inputs to the ANN 
model. To this end, the W-SVR model was studied in 

different decomposition levels with various wavelet func-
tions in different structures, whose results are listed in 
Table 7. According to the table, wavelet function Coif1 
in decomposition level 2 had the best performance. This 
superior combination had an RBF kernel. In this com-
bination, RMSE = 0.0164 and R2 = 0.949, which indi-
cated its better performance than other combinations. 
The performance of this model can be compared with the 

Fig. 9  Comparison of the 
W-ANN model with observed 
data

Table 7  Result of W-SVR model at the monthly scale with different mother wavelets and decomposition levels

Bold values represent the best performance

Wavelet function Level Model parameters R2 RMSE

Kernel Gamma Sin2 B P- Degree Train Test Train Test

Coif1 1 RBF 1277.39 1231.07 6.6989 – 0.992 0.942 0.0084 0.0149
2 RBF 2292.08 1365.20 7.4714 – 0.992 0.949 0.0086 0.0164
3 RBF 883.19 1182.99 0.0001 – 0.991 0.930 0.0087 0.0174
4 RBF 804.06 118,838 0.0004 – 0.991 0.860 0.0088 0.0279

Db2 1 RBF 1520.50 2495.24 0.0003 – 0.987 0.011 0.0108 0.0692
2 RBF 6487.95 1728.11 0.0001 – 0.986 0.872 0.0108 0.0390
3 Lin 0.49 – − 0.0002 – 0.986 0.898 0.0109 0.0405
4 Lin 0.51 – 0.0002 – 0.986 0.901 0.0109 0.0380

Db4 1 Lin 1.4804 – − 0.0001 – 0.983 0.901 0.0121 0.0395
2 Lin 0.4913 – − 0.0001 – 0.983 0.835 0.0122 0.0432
3 Lin 0.44 – − 0.0003 – 0.983 0.898 0.0122 0.0205
4 RBF 7422.24 2246.52 0.0001 – 0.997 0.761 0.0047 0.0290

Sym3 1 Lin 2.03 – − 0.0001 – 0.984 0.937 0.0117 0.0147
2 RBF 3132.17 1422.53 0.0006 – 0.993 0.830 0.0077 0.0039
3 Lin 1.6352 – − 0.0001 – 0.984 0.810 0.0117 0.0477
4 Lin 1.5527 – − 0.0001 – 0.984 0.703 0.0117 0.0694

Haar 1 RBF 1469.69 3458.91 − 0.0534 – 0.991 0.938 0.0086 0.0195
2 RBF 1521.31 2628.48 − 0.0003 – 0.991 0.932 0.0089 0.0173
3 RBF 4681.02 1126.31 − 0.4914 – 0.992 0.936 0.0084 0.0172
4 RBF 1012.11 6522.21 − 0.0081 – 0.991 0.933 0.0088 0.0169
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observational values in Fig. 10. As can be seen in the fig-
ure, the W-SVR model did not have proper performance 
in the minimum and maximum points.

Results of the CEEMD‑ANN model

The R software was employed to execute the CEEMD 
method. At first, the "hht" package was installed on the 
R software. Then, sub-signals were extracted using the 
CEEMD method through coding in the R software envi-
ronment. The program was executed for the maximum 

IMF number of 10. The results showed that the maximum 
number of sub-signals could be six. Thus, the code of the 
program was executed for the IMF numbers of one to six. 
Afterward, the obtained sub-signals were introduced as 
inputs to the ANN model. The results of the evaluation 
are given in Table 8. According to the table, the best per-
formance in the IMF equaled one, and the value of � was 
obtained 0.2. In this superior structure, the training law of 
trainbr and transmission function of tansig were the best. 
This structure had an R2 of 0.98 and an RMSE of 0.0035. 
The performance of this model can be compared with the 

Fig. 10  Comparison of the 
W-SVR model with observed 
data

Table 8  Result of CEEMD-
ANN model at the monthly 
scale

Bold values represent the best performance

Number 
of IMF

� ANN model parameters R2 RMSE

Structure Epoch Learning rules Transfer function Train Test Train Test

1 0.1 8-5-1 1000 Trainbr Purelin 0.976 0.929 0.0143 0.0180
0.2 8-4-4-1 1000 Trainbr Tansig 0.997 0.997 0.0052 0.0035
0.3 8-4-1 163 Trainlm Purelin 0.971 0.918 0.0157 0.0194

2 0.1 1-5-1 165 Trainlm Purelin 0.980 0.947 0.0131 0.0144
0.2 1-4-1 1000 Trainbr Purelin 0.976 0.920 0.0143 0.0187
0.3 1-4-1 234 Trainlm Purelin 0.973 0.932 0.0154 0.0181

3 0.1 1-4-1 256 Trainlm Purelin 0.984 0.941 0.0116 0.0139
0.2 12-4-1 1000 Trainbr Purelin 0.981 0.931 0.0129 0.0150
0.3 12-3-3-1 144 Trainbfg Purelin 0.980 0.927 0.0132 0.0170

4 0.1 20-4-1 306 Trainbfg Purelin 0.984 0.936 0.0119 0.0146
0.2 20-3-3-1 247 Trainlm Purelin 0.982 0.919 0.0124 0.0165
0.3 20-5-1 1000 Trainbr Purelin 0.981 0.925 0.0127 0.0163

5 0.1 24-4-1 1000 Trainbr Purelin 0.985 0.927 0.0113 0.0155
0.2 24-4-1 1000 Trainbr Purelin 0.985 0.921 0.0113 0.0186
0.3 24-4-1 220 Trainbfg Purelin 0.980 0.918 0.0131 0.0198

6 0.1 24-4-1 1000 Trainbr Purelin 0.984 0.927 0.0118 0.0172
0.2 24-6-6-1 1000 Trainbr Purelin 0.981 0.925 0.0128 0.0183
0.3 28-4-1 29 Trainlm Purelin 0.981 0.923 0.0126 0.0187
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observational values in Fig. 11. As can be seen in the fig-
ure, the CEEMD-ANN model had a suitable performance 
in almost all points, and its estimates were close to the 
observational values.

Results of the CEEMD‑SVR model

The program was executed for the IMF numbers of one to 
six. Then, the resulting sub-signals were introduced as inputs 
to the SVR model to obtain the CEEMD-SVR hybrid model. 

Table 9 lists the results of using this hybrid model. Accord-
ing to the table, the best performance in the IMF equaled 
two, and the value of � was obtained 0.1. Kernel Lin had 
the best performance. The values of R2 and RMSE were 
equal to 0.95 and 0.0155, respectively. The performance of 
this model can be compared with the observational values 
in Fig. 12. As can be seen in the figure, the CEEMD-SVR 
hybrid model did not have proper performance in the peak 
points.

Fig. 11  Comparison of the 
CEEMD-ANN model with 
observed data

Table 9  Result of CEEMD-
SVR model at the monthly scale

Bold values represent the best performance

Number 
of IMF

� SVR Model Parameters R2 RMSE

Kernel Gamma Sin2 B P- Degree Train Test Train Test

1 0.1 RBF 4594.20 1266.71 0.0007 – 0.980 0.935 0.0133 0.0182
0.2 RBF 146.33 205.76 0.0001 – 0.977 0.930 0.0142 0.0154
0.3 RBF 805.59 767.47 0.0005 – 0.974 0.919 0.0149 0.0215

2 0.1 Lin 2.42 – − 0.0003 – 0.980 0.948 0.0133 0.0155
0.2 Lin 4.30 – − 0.0002 – 0.976 0.920 0.0143 0.0187
0.3 Lin 3.66 – − 0.0001 – 0.973 0.932 0.0154 0.0182

3 0.1 Lin 1.37 – 0.0003 – 0.984 0.940 0.0116 0.0140
0.2 RBF 1216.76 1132.01 − 0.0003 – 0.984 0.940 0.0118 0.0142
0.3 Lin 1.09 – − 0.0002 – 0.980 0.924 0.0132 0.0179

4 0.1 Lin 1.23 – − 0.0004 – 0.984 0.937 0.0119 0.0149
0.2 RBF 459.93 419.69 − 0.0001 – 0.988 0.923 0.0101 0.0163
0.3 Lin 1.61 – − 0.0002 – 0.988 0.908 0.0103 0.0190

5 0.1 Lin 4.95 – − 0.0003 – 0.985 0.928 0.0113 0.0155
0.2 Lin 1.29 – − 0.0002 – 0.985 0.919 0.0113 0.0188
0.3 Lin 1.33 – − 0.0001 – 0.980 0.910 0.0132 0.0217

6 0.1 Lin 5.43 – 0.0001 0.983 0.744 0.0118 0.0408
0.2 RBF 4259.04 1146.82 − 0.0002 – 0.990 0.920 0.0094 0.0164
0.3 Lin 2.86 – − 0.0008 – 0.981 0.922 0.0127 0.0274
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Comparison of the results of the models

This section compares the results obtained from the execu-
tion of different models in different modes. According to 
the reference period used for the data of the testing step, the 
different methods were compared in the years 2016 to 2020. 
As can be seen in Table 10, the use of preprocessing tools 
improved the performance of the ANN and SVR models, 
such that using the WT resulted in an improvement of 1.10% 
in the ANN model and 3.07% in the SVR model. Further-
more, the use of the CEEMD model resulted in improve-
ments by 7.08% and 2.89% in the ANN and SVR models, 
respectively. A comparison of the results reveals that the 
hybrid CEEMD-ANN model with a coefficient of determina-
tion of 0.99 and an error of 0.0035 had the best performance. 
This model had an Akaike coefficient of 85.5, which was 
lower than other models. Figure 13 compares the different 
models in the testing period based on the unit hydrographs 
of the aquifer. As can be seen, the hybrid models had a better 
performance, among which the hybrid CEEMD-ANN model 

was closer to the observational values. Therefore, this model 
can be used in forecasting the GWL of the Aspas aquifer.

The results of this study are consistent with the results of 
Bahmani et al. 2020; Bahmani and Ouarda 2021, based on 
the better performance of models combined with WT and 
CEEMD. It is also consistent with the results of Adamowski 
and Chan (2011) and Solgi et al (2017) who stated that the 
model combined with the artificial neural network had the 
best performance.

Due to the fact that preprocessing tools divide initial 
signals into several sub-signals and these sub-signals are 
included in the models, this preprocessing of the data causes 
the execution time of the models to be reduced and the per-
formance to be increased. So, in the artificial neural network 
model, it usually reduces the number of layers and neurons, 
and in fewer repetitions, it achieves better results, and in 
the SVR model, it also shortens the execution time of the 
program. On the other hand, the use of the standardization 
formula is another effective parameter in improving the 
result, which was used in all simple and combined models 
in this study.

Fig. 12  Comparison of the 
CEEMD-SVR model with 
observed data

Table 10  Comparison of the 
models used in this study

Bold values represent the best performance

Model Type R2 RMSE AIC

Train Test Train Test Train Test

SVR 0.972 0.918 0.0156 0.0168 305.35 91.66
ANN 0.985 0.927 0.0113 0.0158 304.07 91.41
W-ANN 0.984 0.938 0.0116 0.0149 304.18 91.18
W-SVR 0.992 0.949 0.0086 0.0164 302.96 91.57
CEEMD-SVR 0.980 0.948 0.0133 0.0154 304.72 91.32
CEEMD-ANN 0.997 0.998 0.0052 0.0035 300.99 85.35
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Selecting a suitable decomposition level affects the accu-
racy of hybrid models. A high level of decomposition is not 
always helpful to increase the accuracy of the model and an 
optimal decomposition level must also be identified.

The results of CEEMD-based models illustrate the impor-
tance of ε for modeling and its impact on the accuracy of 
the hybrid models. No specified rule for ε determination has 
been presented and selecting ε depends on the features of a 
time series such as mean and extreme values. Therefore, it 
is recommended to find an optimal value for ε, for a given 
specific hydrological time series.

Conclusions

The aim of this paper was to identify the most reliable mod-
eling technique in prediction of GWL monthly drop through 
comparison of models outcomes with observed GWL in 
existing wells. Two intelligent modeling techniques, ANN 
and SVR, were combined with two preprocessing tools 
WT and CEEMD resulting in four hybrid models. These 
hybrid methods were utilized to predict the GWL variations 
in the Aspas alluvial aquifer located in Tashk–-Bakhtegan 
and Maharlu lakes basin. Model input data included pre-
cipitation, temperature, evaporation, and GWL of past 
months which were standardized before being used in the 
models. After model training process and during model 
testing phase, all models were implemented for the refer-
ence period 2016–2020 for which real GWL was available 
from existing observation wells. This allows to assess which 
model provides the closest fit to the real observed data. The 
performance of each modeling technique was evaluated 
by three main criteria including R2, RMSE, and AIC. The 

results indicated that the hybrid models outperformed the 
intelligence models of ANN and SVR due to decomposed 
and de-noised input data. Among hybrid models, CEEMD-
ANN was found to be the most accurate one with 7.08% 
performance improvements as compared to ANN model. 
Therefore, it is recommended to use this hybrid model 
(CEEMD-ANN) in forecasting the GWL variations in the 
Aspas aquifer according to findings of this paper.

There are a number of limitations in this research which 
can be pursued and further developed in future studies. 
Firstly, the proposed models used existing observation wells 
data as input data which is not usually available for recent 
months and might revert back up to a year ago. This under-
mined the need and importance of up-to-date data for pur-
poses of water resource planning and management. To reme-
diate this issue, the authors recommend utilizing GRACE 
satellite data and precipitation, temperature and evaporation 
satellite data as input data for intelligent models which are 
usually available for recent months and even days. Secondly, 
additional intelligent models such as Random Forest can be 
implemented in future studies to assess whether they provide 
more accuracy in GWL prediction.
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