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Abstract
In the present study, seasonal autoregressive integrated moving average (SARIMA) time series models, nonlinear BL model, 
multi-layer perceptron artificial neural network and SARIMA-bilinear hybrid models were employed to predict the qual-
ity parameters of total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical conductivity (EC) in the Maroon 
basin in Khuzestan Province. For fitting the mentioned models, the monthly data were used for the calibration (1970–2000), 
confirmation (2001–2011) and prediction of the model (2012–2018). The appropriate models of SARIMA, the bilinear BL 
and SARIMA-BL hybrid models of the rationalized parameters of the above-mentioned quality parameters were selected 
based on the adequacy tests, such as the Akaike criterion and the independence test of the model residuals (Ljung–Box). To 
determine the effective input parameters of the network, the partial mutual information (PMI) algorithm was used to model 
the three monthly EC, TDS, and SAR parameters. Also, for input and output layers linear transfer function and for hidden 
layer various active functions with the back-propagation learning algorithm were used for modeling and predicting this water 
quality parameters. Comparison of the models showed the tangible superiority of SARIMA-bilinear hybrid models than 
the artificial neural network with effective input parameters based on PMI algorithm, SARIMA and bl models in performed 
prediction of the all three monthly qualitative parameters in all three stages, training-validation-test in Maroon basin.

Keywords Akaike statistics · Artificial neural network · Bilinear model SARIMA · Hybrid models · Ljung–Box statistics · 
Water saturation

Introduction

One of the most important issues in hydrological science 
is water quality issue as it is valuable in suppling water for 
the agricultural or drinking and industrial purposes. Today, 
most of the researchers study on water quality and focus on 
the surface and groundwater contamination issues. The pol-
lution problem not only in industrialized countries but also in 
developing countries is important. In the field of water quality 

management, several models such as artificial intelligence 
models and artificial neural networks, hydrological models 
such as MIKEH11 and QUAL2K, WASP, QUAN2E, WAT-
EVAL, hec-5Q and time series models have been developed. 
Also due to the complexity and lack of sufficient knowledge 
about the physical processes in the hydrological cycle, the pro-
duction of statistical models and their extension to processes 
has always been an engineer's concerns. The basis of many 
decisions in hydrological processes is the exploitation of water 
resources, which is based on the prediction and analysis of 
time series. Accordingly, some international researches have 
been carried on to predict the river water quality with differ-
ent models. Singh et al. (2009) developed a neural network 
model for estimating the amount of dissolved oxygen (DO) 
and biochemical oxygen demand (BOD) levels in the Gomti 
River (India). In this study, both the models employed eleven 
input water quality variables measured in river water over a 
monthly period of 10 years at eight different sites. Jiang et al. 
(2018) studied the temperature, electrical conductivity and 
pH of groundwater as well as microbial and hydrochemical 

 * Mehdi Panahi 
 panahi40@yahoo.com

 Abbas Ahmadpour 
 aahmadpour67@yahoo.com

 Seyed Hassan Mirhashemi 
 hassan.mirhashemi@yahoo.com

1 Department of Water Engineering, Faculty of Water 
and Soil, University of Zabol, Zabol, Iran

2 Department of Water Engineering, Faculty of Agriculture, 
University of Zanjan, Zanjan, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s13201-023-01876-8&domain=pdf


 Applied Water Science (2023) 13:71

1 3

71 Page 2 of 10

analyses in a Karst valley in northwestern China. Dieng et al. 
(2017) revealed the presence of estuary in the entrance of the 
Saloum River in Senegal, significantly effecting the water 
quality, which caused the intrusion of saline water in the 
aquifers of the region. Narany et al. (2017) based on 25-year 
data investigated the quantitative effect of deforestation on the 
groundwater quality in northwestern Kelantan, Malaysia, and 
concluded that the amount of nitrate annually increased by 
8.1%. Nosrati and Eeckhaut (2012) in their research conducted 
multivariate statistical analyses to assess groundwater quality 
using multiple statistical techniques in Hashtgerd Plain and 
concluded that the main factors affecting the quality of ground-
water associated with natural pollutants are household sew-
age, industrial and agriculture materials. Ahmad and Ali Shah 
(2017) used an adaptive neural fuzzy inference system to esti-
mate the need for BOD in the Surma River in Bangladesh. The 
results showed that the ANFIS model can predict water quality 
with high precision. Asadollahfardi et al (2011) reviewed the 
ability of two models of artificial neural network and recur-
rent neural network to estimate the water quality index of the 
Talkhe River in East-Azerbaijan Province to estimate the TDS 
parameter. Chowdhury et al. (2010) evaluated the performance 
of artificial neural network and ordinary Kriging for interpo-
lation of arsenic values. The founds showed that the artifi-
cial neural network model estimates 15% better than Kriging 
method of arsenic values. Zou et al (2010) compared two mod-
els of ARIMA and artificial neural networks to predict soil salt 
and water content, and the results showed the superiority of 
ARIMA model. Finally, the performance of the comparative 
neural fuzzy inference model in comparison with the neural 
network indicates the superiority of the fuzzy inference model 
compared to the neural network. Sandhu and Finch (1995) 
have also confirmed the ability of artificial neural networks to 
predict daily and actual salinity levels in different waters of the 
watersheds and the ability to estimate the concentration of cati-
ons, anions, EC and TDS in these basins. The main purpose of 
this study is to compare the performance of the classic multi-
layer perceptron neural network, linear (SARIMA), nonlinear 
(BL) time series and SARIMA-BL time series hybrid model 
in predicting and modeling the monthly qualitative parameters 
such as TDS, SAR and EC of the Maroon river. In addition, in 
this research, PMI algorithm was used to introduce the input 
parameters to the neural networks.

Materials and methods

Area of study

Maroon basin with an area of about 3824  km2 is located in 
the geographic coordinates of longitude 49° 50′ to 51° 10′ 
N and latitude of 30° 30′ to 31° 20′ E at the mountains of 
Behbahan city in Khuzestan Province. The Maroon drainage 

basin is surrounded by watersheds of Zohreh and Karun riv-
ers in Khuzestan and Kohgiluyeh and Boyer-Ahmad Prov-
inces. The average annual rainfall in the Maroon basin varied 
from about 150 mm in the coastal plain to about 900 mm in 
the northern mountains, and the rainfall is Mediterranean, 
with the maximum precipitation occurring between Decem-
ber and March. Table 1 presents the statistical characteristics 
of the time series of the monthly quality parameters of the 
Idanak hydrometric station used in this study. Also, Fig. 1 
shows the main rivers of maroon basin.

SARIMA model

Box et al (1994) developed the ARIMA model for seasonal 
time series. If, in a time series, periodical behavior is seen 
in definite interval (S), this time series is seasonal, and the 
SARIMA model is used to model it. This model is shown 
in the form of SARIMA (p, d, q) (P, D, Q) s in which their 
structure is P, D, Q, the seasonal component of the model 
and (p, d, q) nonseasonal component of the model and S is 
the length of the season. Using the backward shift operator 
B, the general form of the model is shown as follows:

where �(B) and �(B) are polynomials of order p and q, 
respectively. Φ(Bs) and Θ(Bs) are polynomials of order P 
and Q in Bs , respectively. p is nonseasonal auto-correlation 
order, d is nonseasonal difference, q is nonseasonal moving 
mean order, P is seasonal auto-correlation order, D is the 
number of seasonal differences, Q is seasonal moving mean 
order, and S is the season duration. ∇d is nonseasonal opera-
tor and ∇D

s
 is seasonal operator.

Time series models consist of this step process:
Model identification This step is started by plotting the 

autocorrelation function (ACF) and the partial autocor-
relation function (PACF) charts, and the stationary in the 

(1)�p(B)�P

(
BS

)
∇d∇D
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Zt = �q(B)ΘQ

(
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)
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Table 1  The statistical features of time series of monthly qualitative 
parameters of Idanak hydrometry station

Qualitative parameter Mean Max Min SD

T (temperature) 25.80 40 10 10.25
EC 910 3777 350 378
TDS 583 10,105 6.6 463
Mg 1.8 12 0.10 1.7
SAR 1.85 11.36 0.16 1.17
Ca 5.19 33 1.30 2.82
Na 3 12.5 0.22 1.96
pH 7.8 8.7 6.5 0.32
SO4 6.75 20,006 0.07 79
Q (discharge) 52.15 377.17 4.25 58
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mean and variance of the data is evaluated. Autocorrela-
tion function (ACF) is one of the most important tools for 
testing data dependency. This function often gives us an 
insight into the probabilistic pattern that produces the data. 
This is used to identify and fit the appropriate stochastic 
model for data.

Model fit (estimation of parameters): At this step, by 
identifying the appropriate models in the previous step, to 
compare several models and select the best ones, the follow-
ing equation is used to calculate Akaike criterion:

where n is the total number of data, m = (p + q + P + Q) , 
RSS is the root of the sum of the squares of the residuals. A 
model is chosen that has the lowest value of AIC.

Model recognition: To check the accuracy of the model, 
the residual chart is evaluated for normal and stationary 
aspects. Therefore, by plotting the ACF and PACF charts of 
the residuals of fitted models, if the values of the auto-cor-
relation coefficients and partial auto-correlation coefficients 

(2)AIC = N(LN
(
2�RSS

n

)
+ 1 + 2m

are within the 95% confidence level, the fitted model is 
adequate.

Bilinear model (BL)

The bilinear model was introduced by Granger and Andersen 
(1978). Linear models of time series are Taylor’s first-order 
extension, and the main idea of the bilinear model is the 
Taylor’s second rank extension, which is defined as follows:

where Zt is the required time series, and p, q, r, and s are 
integers that represent the rank of the bilinear model, which 
is denoted by the form BL (p, q, r, s). The bilinear model 
is actually the same as the extended linear ARMA model, 
which the nonlinear term is added to its right side. In this 

(3)

BL(p, q, r, s):Zt =
p
∑

i=1

(

�i ⋅ Zt−i
)

−
q
∑

j=1

(

�j ⋅ �t−j
)

+
r

∑

i=0

s
∑

j=1

(

�ij ⋅ Zt−i−j ⋅ �t−i
)

+ �t

Fig. 1  The main rivers of Maroon basin
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term, the product of two variables Zt−i−j, �t−j , which are var-
ied with time, eliminates the linear state and the model is 
turned to be nonlinear. There are two steps to fit the bilin-
ear model; the first is to determine the order of the model 
(p, q, r, s) and the other is to estimate �,�, � coefficients. 
Determining the model parameters is performed the Akaike 
method. Each rank with a smaller acacia value is selected 
as the appropriate model order (Akaike 1974). One of 
the tests used to express the model's adequacy of linear ( 
SARIMA) and nonlinear (BL) and time series hybrids mod-
els’ (SARIMA-BL) is Ljung–Box test. This test is applied 
by computing Q statistics that follows ( �2

k−m
 ) Chi-squared 

distribution:

According to this equation, N is the number of sam-
ples, L is the number of delays of auto-correlation func-
tion, and r2

k
 is the square of ε residual time series auto-

correlation in the delay k. Q statistic was compared with 
the value of Chi-squared extracted from table at a sig-
nificant level of 5%. The adequacy of the model was con-
firmed if Q value was lower than table Chi-squared value.

Artificial neural networks

An artificial neural network is a computational mecha-
nism that can produce a series of new information by 
gathering information and calculating them. One of the 
most commonly used neural networks used in the hydro-
logical process is the multilayer perceptron neural net-
work. This network consists of an input layer, an output 
layer and one or more layers between them that are not 
directly connected to the input data and output results. 
Input layer units only have the task of distributing the 
input levels of the next layer, and the output layer also 
responds to the output signals. In these two layers, the 
number of neurons is equal to the inputs and outputs, 
and the hidden layer is responsible for the relationship 
between them. One of the steps in numerical preparation 
and calculations for feeding the neural networks of data 
normalization is to increase the sensitivity of data and 
increase the learning power, which increases the predic-
tive ability. In this research, input and output vectors of 
the network were standardized using (6) in the interval 
(1 and 0).

(4)Q = N(N + 2)

L∑
k=1

(N − k)−1r2
k
(�)

(5)y = 0.5 +

(
0.5 ×

(
x − x

xmax − xmin

))

In the above equation, X is the given data, X ➝ mean 
of data, Xmax: maximum data, Xmin: minimum data and y: 
normalized data.

Determining effective input variables in data‑based 
models

There are various methods to determine input variables in 
models based on data processing, especially in terms of 
artificial neural networks. These include trial-and-error 
method, exploration method, expert knowledge-based 
method, statistical-based method of analysis and com-
bination of different methods (Bowden et al. 2005). The 
trial-and-error method is two major flaws:

1. Although many combinations of variables are consid-
ered as inputs in models based on data processing, there 
is no guarantee of choosing the best combination of input 
variables, especially for modeling phenomena that include 
many input variables. 2. Given that, different models of 
ANNs should be trained and tested for each combination 
of input variables which takes a lot of time and complex 
computing. In the heuristic, the word variables are selected 
step by step. This method is often used in order to avoid 
over-estimating all subsets of input variables. The standard 
step-by-step approach is forward selection and backward 
selection. In the forward method, in each successive step 
with a set of input variables selected, the variable that 
improves the model performance is added as the best final 
input variable. In the backward approach, the program 
starts by selecting all input variables and successively 
input variables that reduce the model performance. The 
main drawback of the exploration methods is that there 
are no guarantees to choose the best combination of input 
variables like trial and error. Used to determine the initial 
set of input variables, this method has been approved by 
the American Society of Civil Engineers (ASEC) Com-
mittee for the Application of ANN to Hydrology Studies 
(Sharma 2000). Well understanding of the hydrological 
system is important to proper select the input variables in 
the model. If effective input variables not be selected and 
considered correctly, some information about the system 
may be lost which led to a confusion in the ANN model 
training process. In the combination of different methods, 
the various methods mentioned above are used to deter-
mine the input variables in the modeling of the system 
studied with the ANN models. Although each of these 
methods has weaknesses for determining effective input 
variables, the statistical method is a suitable method for 
determining effective input variables. Since that it is not 
limited to a specific application, so there is a good poten-
tial for providing appropriate algorithms to be added to 
the ANN model structure as a component, based on data 
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analysis rather than expert knowledge or heuristic only 
nonlinear variables selection algorithm. The input to deter-
mine the effective input variables in the models is based 
on the data processing PMI algorithm.

Introduction of PMI algorithm based on input 
selection (PMIS)

The PMI-based input selection algorithm was initially 
developed by Sharma (2000) to identify the effective input 
variables in hydrology models. The PMI algorithm performs 
each iteration by considering an input (C) and an output (Y) 
and finding the Cs that maximizes the PMI value accord-
ing to the output variable (according to inputs that are pre-
selected). The statistical concept that PMI estimates for Cs 
is based on the confidence ranges defined by the distribution 
generated by a bootstrap loop. If the input is significant, 
the Cs is added to S and the selection will continue, so that 
no significant input remains and the algorithm is stopped 
subsequently.

Estimation of partial mutual information (PMI)

Given a stochastic variable Y, there is some uncertainty 
about y observation which can be defined according to the 
Shannon H entropy (Shannon 1948). Assuming a random 
input variable X, where Y is dependent on it, mutual observa-
tions (x, y) reduce this uncertainty, since knowing x allows 
the derivation of y, and vice versa. According to the defi-
nition of mutual information I (X; Y), the reduction in the 
uncertainty of the variable Y is due to the observation of 
X (Cover and Thomas 1991). This problem is represented 
as a common part between two circles in Fig. 2. This com-
mon part is where the reduced uncertainty around X and Y 
is specified by the conditional entropy H (X | Y) and H (Y | 
X), respectively. Mutual information (MI) can be calculated 
directly by the following formula:

where p(y) and p(x) are the marginal probability density 
functions (pdfs) of X and Y, respectively, and p(x, y) is the 
joint probability density function. However, in practice, 
the correct form of probability density functions in (6) is 
unknown. Hence, estimates of probability densities are used 
instead of it. By placing estimates of probability density with 
the numerical approximation of the integral in (5) we have:

where ƒ denotes the estimated density based on the sam-
ple of n observations of (x, y). It is noteworthy that various 

(6)I(X;Y) = ∬ p(x, y) log
p(x, y)

p(x)p(y)
dxdy

(7)I(X;Y) ≈
1

n

n∑
i=1

log

[
f (xi, yi)

f (xi)f (yi)

]

logarithms are used, but usually 2 or e is used. If the basis 
of logarithm is not mentioned, then the logarithm is natu-
ral. As shown in Eq. (6), it could be said that the accurate 
and effective estimation of MI depends on the method used 
to estimate the marginal and joint probability density func-
tions. Totally, there are three criteria of PMI algorithm stop-
ping as: 1. tabulated critical values, 2. the criterion based 
on Akaike information criterion (AIC), 3. the Hamplel test 
criterion (Shannon 1948; David 1966; Davies and Gather 
1993; Maier and Dandy 2000; Sharma 2000; Pearson 2002; 
Goebel et al. 2005).

SARIMA‑BL hybrid models

To construct a hybrid SARIMA-bilinear models first sea-
sonal ARIMA model, the time series data are processed 
using the very well-known Box–Jenkins method, which 
consists of three steps: identification, estimation and verifi-
cation. The details regarding Box–Jenkins method are given 
in the model description. After verification, the residuals 
of the best SARIMA fitted model are used as inputs for the 
bilinear model. The purpose of this final step is to forecast 
the error sequence of the fit best SARIMA model, which 
cannot be defined using a linear method like SARIMA. The 
construction of the SARIMA-bilinear hybrid model includes 
six steps that are referred to below.

1. Determine the adequacy of data: One way to test the ade-
quacy of data is to use the Hurst coefficient. The Hurst 
coefficient is a criterion for measuring the adequacy of 
the data information in terms of the length of the statisti-
cal period.

2. Data normalization test: The monthly electrical conduc-
tivity of the Maroon basin, in which the Landa coeffi-
cient of Box–Box conversion was used after normalizing 
the data.

Fig. 2  Autocorrelation function chart of residuals of fitted SARIMA 
(1,1,2) (2,1,1) 12 time series EC quality parameter
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3. Fitting SARIMA models on monthly qualitative flow 
data of the Idenak hydrometer station.

4. Confirmation of the fitting of SARIMA models based on 
the behavior of the residual. Auto-correlation function 
(ACF), partial correlation (PACF) and the Manteo port 
statistics (Ljung–Box) are common steps in the modeling 
of both the SARIMA and the hybrid model.

5. Selection of the best SARIMA model based on the mini-
mum values of the AIC and Schwartz statistics

6. Introduction of the residual SARIMA models as inputs to 
the bilinear time series models to build a hybrid model.

In addition, considering the nonlinear structure of the data 
in the SARIMA model, in the condition where residual data 
of the model contain nonlinear data, the use of the bilinear 
time series models model would be appropriate to describe 
the residual SARIMA models. Therefore, the results of bilin-
ear models can be considered as a substitute for SARIMA 
model errors. Then, the sum of the results of both SARIMA 
and bilinear forecasts is considered to be the final forecast. To 
fit the qualitative data with the SARIMA model, the graphi-
cal beauty of the software output mini tab software was used. 
Then, to construct the hybrid model, the residuals obtained 
from fitting the SARIMA models to the monthly qualitative 
data were fitted with the bilinear time series R software.

Model evaluation criteria

In this paper, in order to evaluate the performance of each 
mentioned model, a number of numerical criteria were used 
to determine the performance of the models. These criteria 
include:

• Average absolute error

• Root-mean-squared error

• The coefficient of determination

(8)MAE =
1

n

∑|||Qi − Q̂i
|||

(9)
RMSE =

�����
n∑
i=1

�
Qi − Q̂i

�2

n

(10)R2 =

⎡
⎢⎢⎢⎢⎢⎣

n∑
i=1

�
Qi − Q

��
Q̂i − Q̃

�
�

n∑
i=1

�
Qi − Q

�2 n∑
i=1

�
Q̂i − Q̃

�2

⎤⎥⎥⎥⎥⎥⎦

In the above equations, Qi is the observed monthly quali-
tative parameter values Q̂i the predicted monthly qualitative 
parameter values, Q the average monthly qualitative param-
eter values, and Q̃ the average of the predicted monthly quali-
tative parameter values.

Results and discussion

As mentioned, one of the methods for testing the adequacy 
of the fitted model for the monthly discharge time series is to 
investigate the residual auto-correlation function. Figures 2, 
3 and 4 represent the autocorrelation function and partial cor-
relation of the residuals of fitted SARIMA models based on 
EC, SAR and TDS monthly qualitative parameters. Accord-
ing to Figs. 2, 3 and 4, the ACF values of the residuals are 
located in the permitted range of 95% confidence interval 
( ±1.96∕

√
n ), so the residuals were stationary and did not 

show any trend. Also, the Q values of the Ljung–Box test 
confirmed the zero hypothesis that the residuals series is 
stochastic (Table 2). Also, the best fitted SARIMA, BL and 
SARIMA-BL Hybrid models were selected based on the low-
est AIC information criterion, the Portmanteau statistics and 
the model residuals test (in order to evaluate the adequacy of 
the residuals of the best model).

Table 3 shows a summary of the parameters of the fitted 
bilinear models on the monthly data of TDS, EC, SAR. Given 
the values of the Ljung–Box statistics, BL bilinear models 
and time series hybrid models (SARIMA-bilinear) compar-
ing them with the corresponding values of the Chi-square 
of table which handle to be sure of the validity of fitting 
bilinear models, finally, bilinear model BL (5,1,1,1) with an 
Akaike value of 379.18 as the best model for modeling and 
predicting the SAR parameter, the bilinear model (12,0,1,1) 
with an Akaike value of 396.24 for modeling and predicting 

Fig. 3  Autocorrelation function chart of residuals of fitted SARIMA 
model (1.1.1) (1.1.1) 12 SAR time series quality parameter
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the TDS qualitative parameter… and the bilinear model BL 
(7,2,1,1) having Akaike value of 385.97 were used to predict 
and model the qualitative parameter of EC. It is worth to 
mention that, by increasing the moving average of bilinear 
models, their ability becomes weaker for model and predict. 
On the other hand, in the SARIMA linear model, as the order 
of the model increases, the model performance in forecast-
ing as well as the accuracy of the model greatly reduces. In 
the nonlinear BL and SARIMA-BL hybrid models, it is true 
about the models with higher order of p and lower values of 

q, r and s which have better performance and more fitting 
accuracy.

Determination of effective input variables 
on qualitative variables in artificial neural network

To estimate the qualitative parameters of EC, TDS and SAR 
flow at the Idanak hydrometric station with artificial neural 
network, we initially attempt to determine the effective input 
variables. To provide the potential set of input variables, 
including sodium, magnesium, calcium, sulfate, HC and PH, 
each variable was considered up to three months ago. Then 
input variables affecting output variables including EC, TDS 
and SAR were obtained using PMI algorithm. Table 4 pre-
sents the qualitative parameters affecting the monthly electri-
cal conductivity parameter based on the Hampel and Akaike 
criterion, where the sodium quality parameter (with a delay 
of one month), temperature (with a delay of two months), 
flow rate (with a delay of two months), magnesium (with 
two months delay) and acidity (with a delay of one month) 
were supposed as effective parameters. Table 5 shows the 
qualitative parameters affecting the monthly TDS parameter 
based on the Hampel and Akaike criterion, in which the 
parameters of sodium, magnesium, calcium, flow rate, tem-
perature (with a delay of one month) were introduced as an 
effective input parameter to the neural network for modeling 
and advance monthly TDS parameters. Also parameters of 

Fig. 4  Autocorrelation function chart of residuals of fitted SARIMA 
model (2.1.1) (1.1.2) 12 time series TDS qualitative parameter

Table 2  A summary of the 
statistical parameters of 
fitted SARIMA model of the 
qualitative vectors of SAR, EC, 
TDS of Idanak station

Model Parameter �
1

�
2

�
1

�
2

Φ
1

Φ
2

Θ
1

Θ
2

Q �
2 AIC

SARIMA(2,1,1)(2,1,1)12 TDS 0.02 0.02 0.97 – 0.01 0.02 0.46 – 5.1 18 374
SARIMA(1,1,2)(2,1,1)12 EC 0.08 – 0.07 0.02 0.07 0.03 0.02 – 21 37 283
SARIMA(1,1,1)(1,1,1)12 SAR 0.04 – 0.86 – 0.02 – 0.28 – 25 48 317

Table 3  Results of the goodness 
of fit test of fitted BL bilinear 
and SARIMA-BL hybrids 
models based on monthly 
qualitative parameter of Idanak 
station

Model Monthly qualita-
tive parameters

Lag Q test Chi-square 
value of Table

Test result

BL(7,2,1,1) EC 85 79 107 Acceptable
BL(12,0,1,1) TDS 75 92 101 Acceptable
BL(5,1,1,1) SAR 95 94 118 Acceptable
SARIMA(2,1,1)(2,1,1)12*BL(2,1,1,1) TDS 88 83 105 Acceptable
SARIMA(1,1,2)(2,1,1)12*BL(4,1,1,1) EC 83 78 98 Acceptable
SARIMA(1,1,1)(1,1,1)12*BL(2,0,1,1) SAR 98 90 109 Acceptable

Table 4  Results of the PMI 
algorithm for EC output 
variable

Iteration Variable I(x;y) MC-I*(95) MC-I*(99) AIC(k) AIC(p) Hampel

0 logMg(t–2) 0.0564575 0.0683791 0.0768845  − 1.48833 10.519 2.83221
1 logNa(t–1) 0.0568879 0.0683791 0.0768845  − 2.41602 10.8851 2.67548
2 LogT(t–1) 0.0552132 0.0683791 0.0768845 2.6141 10.9821 2.7641
3 LogQ(t–2) 0.055312 0.068371 0.0768841 3.162 11.3612 2.8862
9 PH(t–1) 0.053388 0.0683791 0.0768845 6.4374 18.261 1.47619
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sodium, magnesium, calcium and acidity (with one month 
delay) parameters were introduced as effective input param-
eters in the modeling and prediction of the monthly param-
eter based on the Hampel and Akaike criterion. Also Based 
on the results in Table 6, monthly parameters of calcium. 
sodium Magnesium without time delay and ph parameter 
with one time delay based on Hempel and Akaike criteria 
were introduced as effective input parameters for modeling 
and forecasting the monthly qualitative parameters of SAR 
by PMI algorithm to the artificial neural networks. Unlike 
Zou et al. (2010) who found the superiority of ARIMA 
model than ANN in predicting EC parameter, our results 
are agreed with Sandhu and Finch (1995) results, who found 
the ability of neural network in predicting the hydrological 
parameters.

Different models were evaluated to determine the opti-
mum levels of hidden layers and transmission functions 
in artificial neural networks. The number of layers as well 
as the number of hidden layer neurons was determined 
based on the trial-and-error test. In the artificial neural 
network model, various scenarios were tested for the 
three parameters TDS, SAR, EC. Then, according to the 
model's studied criteria, the scenarios with the least error 
and the highest correlation with the observational data of 
the qualitative parameter related to the optimal structure 
were selected. For modeling of the neural network, data 
are usually divided into train and test groups. Therefore, 
in this study, to avoid over-fitting which results in non-
generalizability for new data, the data were divided into 
three train data (1970–2000), validation data (2001–2011) 
and test data (2012–2018). Among the available transfer 
functions, the function for the input and output layer of 
the linear function and in the hidden layer of various 
functions such as sigmoid tangent function, sigmoid log, 
etc., error back-propagation train algorithm was applied. 
The calculations related to optimal models showed that 

the number of neurons 8, 9, 8 in the hidden layer was for 
modeling and predicting EC, TDS and SAR, respectively, 
as being applied as optimal values. It should be noted that 
by increasing or decreasing the number of neurons in the 
three layers (the input, middle and output) the performance 
of the network was not significantly changed. In addition, 
in order to evaluate the performance of appropriately fit-
ted models, different statistics were used. In Table 7, the 
numerical criteria of performance evaluation of the models 
were used to predict monthly qualitative parameters of 
EC, SAR and TDS. Also, among various active function 
the hyperbolic tangent active function was selected as the 
superior active function of the artificial neural network for 
predicting and modeling monthly qualitative parameters 
for EC, and the best active function for SAR was log sig-
moid; similarly, tangent sigmoid was the best active func-
tion determined for the TDS parameters. Evaluation of the 
performance criteria of the models in Table 7 shows the 
gradual decline in the performance of the SARIMA mod-
els used for predicting and modeling the TDS and SAR 
monthly qualitative parameters from the training stage to 
the test stage so that the model performance in TDS pre-
diction. The coefficient of determination was 0.81 at the 
calibration stage and reached to 0.76. But the performance 
of the SARIMA model in predicting EC parameterization 
shows a gradual improvement of the model performance. 
So that, in the validation stage the model performance 
was better than in the calibration stage; however, in the 
reduced model performance testing phase, this is due to 
the numerical values of the model performance evaluation. 
On the other hand, artificial neural network model with 
passive structures and active functions is used to predict 
monthly qualitative parameters and showed the highest 
coefficient of determination and lowest root-mean-square 
error and mean error compared to SARIMA time series 
models and binary BL models have better performance. 

Table 5  The results of PMI 
algorithm for TDS output 
variable

Iteration Variable I(x;y) MC-I*(95) MC-I*(99) AIC(k) AIC(p) Hampel

0 logNa(t) 0.507517 0.0683791 0.0768845  − 201.039  − 187.064 12.4131
1 logCa(t) 0.269758 0.0683791 0.0768845  − 212.635  − 153.945 10.0952
2 logMg(t) 0.107627 0.0683791 0.0768845  − 180.195  − 46.3449 3.05574
3 logT(t–1) 0.0944237 0.0683791 0.0768845  − 226.098  − 18.1274 2.65314
4 Log Q(t) 0.0914213 0.0683791 0.0768845  − 271.021  − 14.3614 2.43612

Table 6  The results of PMI 
algorithm for SAR output 
variable

Iteration Variable I(x;y) MC-I*(95) MC-I*(99) AIC(k) AIC(p) Hampel

0 logNa(t) 1.015 0.0683791 0.0768845  − 537.902  − 523.927 4.451
1 logCa(t) 0.171907 0.0683791 0.0768845  − 698.673  − 639.983 2.03252
2 logMg(t) 0.122974 0.0683791 0.0768845  − 649.99  − 516.139 2.21644
3 PH(t–1) 0.0912921 0.0683791 0.0768845  − 657.061  − 415.829 1.70985
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Table 7 shows numerical criteria for evaluating the pre-
dicted values of monthly qualitative parameters using lin-
ear models of SARIMA and nonlinear bilinear time series, 
neural network, SARIMA, bilinear hybrid models. On the 
other hand, the evaluation of the performance of the mod-
els in Table 7 according to the coefficient of determination 
and average absolute error in the training-validation-test 

stages was investigated. Besides, the results showed that 
the values of the corresponding tests decreased and the 
root-mean-square error increased. In addition, determining 
both the effective input parameters to the neural network 
by PMI algorithm and the optimal structure along with 
active function is very time-consuming and exhausting 
task. Therefore, using the SARIMA-BL hybrid model is a 
suitable solution to this problem.

Conclusion

So in this study, SARIMA, bilinear time series models, 
multi-layer perceptron neural network and SARIMA-
BL hybrid models were used to predict monthly qualita-
tive parameters of SAR, TDS and EC. The validity of the 
SARIMA fit models for modeling the aforementioned 
monthly qualitative parameters was confirmed based on 
the Portmanteau statistic, the residual of autocorrelation 
and partial autocorrelation. The validity of the SARIMA-
BL hybrid and bi-linear models was verified using numeri-
cal values of Portmanteau statistics. Finally in this study, 
PMI algorithm was used to improve the performance of 
artificial neural network based on the results of PMI algo-
rithm with different time delay as input to network to pre-
dict monthly qualitative parameters. In addition, evaluated 
criteria of model showed that BL models performed better 
than SARIMA models in predicting monthly EC-TDS-SAR 
quality parameters. So that, BL models have higher coef-
ficient of determination and lower mean square root. They 
had training-validation-testing in all three phases compared 
to the SARIMA models. On the other hand, the evaluation 
of model for the studied criteria shows a gradual decrease in 
the performance of neural network models. BL models and 
hybrid models are from training to testing, respectively; the 
comparison of four models showed the tangible superiority 
of SARIMA-bilinear hybrid models in comparing to artifi-
cial neural network with effective input parameters based on 
PMI algorithm in prediction of the all there monthly quali-
tative parameters in Maroon basin. SARIMA-BL hybrid 
models performed better in all three stages of training-vali-
dation-test despite using lower input parameters than artifi-
cial neural networks with the least square root mean and the 
coefficient of determination.
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Table 7  Numerical criteria for evaluating the predicted values of 
monthly qualitative parameters using linear models of SARIMA and 
nonlinear bilinear time series, neural network, SARIMA-bilinear 
hybrid models (test stage)

Model Param-
eter 
quality

Stage R2 RMSE MAE

ANN(5-9-1) TDS Test 0.84 111.56 92.54
Validation 0.94 96.3 70
Train 0.96 88.3 55.3

BL(12,0,1,1) Test 0.79 149.96 131.79
Validation 0.81 139 121
Train 0.84 121 102

SARIMA(2,1,1)
(1,1,2)12

Test 0.76 178.36 160.42
Validation 0.79 163 148
Train 0.81 138 113

SARIMA-BL Test 0.86 105.6 102
Validation 0.83 127 114
Train 0.89 91 82

ANN(6-8-1) EC Test 0.87 180.81 153.67
Validation 0.89 164 138
Train 0.91 148 127

SARIMA(1,1,2)
(2,1,1)12

Test 0.83 290.02 264.79
Validation 0.85 217 214
Train 0.79 304 281

BL(7,2,1,1) Test 0.80 245.02 219.33
Validation 0.83 237 206
Train 0.86 221 194

SARIMA-BL Test 0.89 171.3 143.6
Validation 0.92 150 126
Train 0.95 127 101

SARIMA(1,1,1)
(1,1,1)12

SAR Test 0.73 127 186
Validation 0.70 142 196
Train 0.79 173 114

ANN(3-8-1) Test 0.81 104 156
Validation 0.87 89 113
Train 0.90 75 98

BL(5,1,1,1) Test 0.78 132 172
Train 0.81 116 151
Validation 0.83 105 147

SARIMA-BL Test 0.84 95 146
Validation 0.86 89 138
Train 0.88 0.78 127
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Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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