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Abstract
Sediment transport is a normal phenomenon in rivers and streams, contributing significantly to ecosystem production and 
preservation by replenishing vital nutrients and preserving aquatic life’s natural habitats. Thus, sediment transport prediction 
through modeling is crucial for predicting flood events, tracking coastal erosion, planning for water supplies, and managing 
irrigation. The predictability of process-driven models may encounter various restrictions throughout the validation process. 
Given that data-driven models work on the assumption that the underlying physical process is not requisite, this opens up 
the avenue for AI-based model as alternative modeling. However, AI-based models, such as ANN and SVM, face problems, 
such as long-term dependency, which require alternative dynamic procedures. Since their performance as universal function 
approximation depends on their compatibility with the nature of the problem itself, this study investigated several distinct 
AI-based models, such as long short-term memory (LSTM), artificial neural network (ANN), and support vector machine 
(SVM), in predicting sediment transport in the Johor river. The collected historical daily sediment transport data from Janu-
ary 1, 2008, to December 01, 2018, through autocorrelation function, were used as input for the model. The statistical results 
showed that, despite their ability (deep learning and machine learning) to provide sediment predictions based on historical 
input datasets, machine learning, such as ANN, might be more prone to overfitting or being trapped in a local optimum than 
deep learning, evidenced by the worse in all metrics score. With RMSE = 11.395, MAE = 18.094, and R2 = 0.914, LSTM 
outperformed other models in the comparison.
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Abbreviations
LSTM	� Long short-term memory
ANN	� Artificial neural network
SVM	� Support vector machine
ACF	� Autocorrelation function
RMSE	� Root mean square error
MAE	� Mean absolute error
R2	� Coefficient of determination
AI	� Artificial intelligence
MLP	� Multilayer perceptron
FFNN	� Feed-forward neural network
SSC	� Suspended sediment concentration
Q	� Discharge
SSL	� Suspended sediment load
GPR	� Gaussian process regression
Cv	� Volumetric sediment concentration
HS-ANN	� Harmony search–artificial neural network
PCC	� Pearson correlation coefficient
RBF	� Radial basis function
RNN	� Recurrent neural network

Introduction

Sediment is a naturally occurring substance that decomposes 
during weathering and erosion processes and is subsequently 
transported by the action of natural forces such as water, 
wind, or ice or by the gravitation force on the particles (Fas-
soni-Andrade and de Paiva 2019; Liu et al. 2019). There 
are three basic types of sediments: clastic, biogenic, and 
chemical sediments. Firstly, clastic sediments are inorganic 
sediments formed due to rock erosion and weathering; they 
are classified based on their dominant grain size. The frag-
ment's primary grain size is stone, followed by a cobble, 
pebble, sand, silt, and clay as the smallest grain. Secondly, 
biogenic sediments are the organic sediments produced by 
organisms through their life activities. They may compose of 
shell remnants, skeletal remains, or fragments of coral reefs. 
Finally, chemical sediments are a mixture of all evaporite 
minerals, including halite, sylvite, bassanite, and gypsum. 
In addition, it contains deposits of iron phosphates, minerals, 
manganese, silica, and metal sulfide. These mixtures are the 
products of inorganic processes in the sedimentary environ-
ment. Their common characteristics are typically dissolved, 
entrained, and transported in surface water, such as rivers, 
lakes, and oceans, through sediment transport (Matos et al. 
2019; Żarczyński et al. 2019).

When sediments flow through a fluid medium, often riv-
ers and streams, due to a combination of forces acting on 
them, such as gravity and fluid movement, they are trans-
ported along the streams (Addo-Bediako et al. 2021; Kuriqi 
et al. 2020). The three commonly known modes of sediment 
movement are bed load, suspended load, and dissolved load. 

Bed load means the load that goes upstream to downstream 
on the riverbed (Goldstein et al. 2019; Ma et al. 2020). The 
bed loads contain clastic sediments such as rocks, pebbles, 
and sand, as well as biogenic sediments, which are heavier 
and denser than water, and these sediments can only roll, 
slip, and salt down the river bed. A river also holds sus-
pended loads of mud, silt, and fine sand. While these mate-
rials are denser than water, they remain suspended due to 
the instability of the streamflow, forming swirls and eddies 
caused by friction between the stream and its canal. Dis-
solved loads come mostly from groundwater when bedrock 
and aquifers are chemically degraded as surface water passes 
through the rocks and aquifers into streams. Suspended load 
is the most typically borne by streams and rivers (Mao et al. 
2019; Wilkes et al. 2019). Furthermore, the rate of being 
transported rises in relation to human land use and practices 
such as agriculture and urbanization, which decreases vege-
tation coverage and makes rainwater quickly wash sediments 
into streams (Harada et al. 2019; Wesselman et al. 2019).

Extreme suspended loads in streams may endanger 
aquatic life and have a negative impact on the ecosystem 
(Sathya et al. 2022). After all, the suspended solids can clog 
the fish gills and impede light penetration into the stream 
bed, limiting the rate of photosynthesis of aquatic plants and 
resulting in a decrease in the dissolved oxygen level of the 
streams, which can be lethal to aquatic life. Besides, silta-
tion happens when suspended solids such as silt settle in the 
stream bed; it can alter the bottom of the stream and impact 
the organisms that live on the surface. A high concentra-
tion of suspended solids in a water body also might make 
drinking water treatment difficult. The increased coagulation 
and sediment filtering operations will necessitate additional 
funding, including extra chlorine for turbid water disinfec-
tion. However, the suspended solids have a positive side that 
reacts with the toxic chemicals that dissolve in the stream 
and make it less harmful to aquatic life. Thus, it is essential 
to precisely forecast the flow of sediments in order to ana-
lyze the conditions of the stream, reduce their impacts and 
enable the planning of a better solution or mitigation method 
(Hapsari et al. 2019; Zhang and Yang 2020).

Background

Over the last few decades, hydrologists have simulated sedi-
ment transport using linear and nonlinear models to deter-
mine the optimum one for accurately predicting sediment 
transport (Lu and Chiang 2019). Nevertheless, the river 
sediment is not only time-varying and spatially distributed, 
but it also inhibits nonlinear behavior. Simple models can 
not effectively characterize and simulate sediment trans-
port, including conventional linear and nonlinear statisti-
cal models, such as regression analysis. The effort to inno-
vate and build a detailed, balanced, and accurate sediment 
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transport model has thus never been halted (Mėžinė et al. 
2019). Recently, many researchers have adopted artificial 
intelligence (AI) based model to develop robust models for 
solving engineering problems (Kumar et al. 2022) (Rahman 
et al. 2022). In forecasting sediment transport, a variety of 
AI approaches, spanning from machine learning to deep 
learning, have been used:

Gaussian process regression (GPR)

Roushangar and Shahnazi (2020) used Gaussian process 
regression (GPR) to estimate the sediment transport rate 
of 19 gravel-bed rivers in the USA. They compared their 
developed SVM to GPR, which is a specific type of kernel-
based model. Furthermore, this study investigated two sce-
narios: hydraulic characteristics only in the first scenario, 
and hydraulic and sediment properties in the second. Find-
ings showed that the GPR model performed better. They also 
noticed that input based on the second scenario contributed 
to more accurate forecasts.

Artificial neural network (ANN)

Afan et al. (2015) used ANN to estimate the average load 
of sediments. For this reason, two distinct ANN algorithms, 
FFNN and RBF, were used. The neural networks are fed and 
validated using sediment flow data from the Johor river sta-
tion in Rantau Panjang on a regular basis. The results show 
that combining sediment load data with flow data provides a 
detailed model for predicting sediment load. Comparing the 
findings reveals that the FFNN model has better efficiency 
in estimating the daily sediment load than the RBF model.

Support vector machine (SVM)

Shafaghat and Dezvareh (2020) utilized the support vec-
tor machine (SVM) in estimating the sediment transport 
forecast. Due to thediversity of SVM, they approached the 
forecasting of sediment tranport in two different machine 
learning task, namely the classification and regression. The 
findings showed that classifying the sediment transport 
despite without inputting information such as bed and beach 
profiles, it could achieve a satisfactory performance. Also, 
the other forecast form of regression further substantial the 
capability of SVM in predicting sediment transport rate.

Long short‑term memory (LSTM)

Kaveh et al. (2021) considered LSTM to predict suspended 
sediment concentration in the Schuylkill River, USA. In their 
study, the LSTM expanded the recurring neural network 
with memory cells to store and output information instead 
of recurring modules, enabling the learning of long-term 

relationships. Observed time series of river discharge in the 
daily interval and sediment concentrations were used as input 
to develop their proposed model. Their results were tested and 
compared with the feed-forward neural network and the adap-
tive neuro-fuzzy inference models used algorithms in predict-
ing sediment concentration in literature. The model prediction 
accuracy comparison showed that the LSTM model could 
estimate not only sediment concentration but also cumula-
tive suspended sediment load to a high degree of accuracy.

Hybrid ML with other techniques

Zounemat-Kermani et al. (2020) proposed a hybrid model that 
comprises a metaheuristic harmony search algorithm (HS) and 
artificial neural network (ANN) for forecasting sediment trans-
port in sewer pipe systems in terms of volumetric sediment 
concentration. They used the factor analysis methodology to 
solve the difficulties of selecting the optimal input variables 
number and considering the model's effective parameters. A 
multiple linear regression (MLR), a comparison model to the 
developed model, is also used to tackle the same formulated 
problem. Based on the comparative analysis, the HS-ANN 
model surpassed the existing MLR model in successfully pre-
dicting sediment transport in sewage networks. Apart from 
metaheuristic, another hybridization involve the mechanism of 
transforming the raw dataset into simpler and much meaningful 
input sub-series. For instance, Ebtehaj et al. (2016) adopted the 
wavelet transform in order to decompose the observed sediment 
trqansport into smaller components, known as decomposed 
wavelets. They demonstrated that a smoother and decomposed 
sub-series was relatively easier to predict.

Problem statement

The problems with sediment transport prediction have gar-
nered significant attention because of how crucial sediment 
movement is in shaping the Earth's surface. The adoption 
of a well-grounded tool to estimate the suspended sediment 
load is often the point of interest. Although contemporary 
numerical models have improved, river sediment load move-
ment remains challenging and has yet to be fully elucidated. 
A direct technique, for example, that requires the deploy-
ment of a hydrometric station for monitoring and sample 
purposes can be costly and time-consuming, especially in 
distant areas (Bandini et al. 2020). While indirect procedures 
are less expensive, reconciling theoretical results to observa-
tions is challenging due to sediment particle sensitivity to 
many environmental conditions (Asadi et al. 2021). Moreo-
ver, the bulk of experimentally validated equations is limited 
to a narrow range of environment situations, restricting their 
application even further (Ebtehaj et al. 2014).

Alternatively, to avoid the computation of the complex 
sediment transport rate, the rising of artificially intelligent 
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algorithms, such as ANN and SVM, has revolutionized 
various time series forecasting, including sediment trans-
port prediction. One of the main advantages of such 
approach is that the underlying physical process of the 
complex sediment transport process is not requisite (Gold-
stein et al. 2019). While they excel in automatic adap-
tivity and self-learning, they nonetheless have significant 
drawbacks. One of them is inadequate to ensure that the 
search technique will result in an ideal solution only with 
their competent exploitation search (Chong et al. 2020). 
Furthermore, given the spatial and temporal aspects, mul-
tiple studies have raised concerns that the black box model 
fails to capture long-term reliance when provided with a 
substantial historical datasets (Samal et al. 2021; Xing 
et al. 2020).

A recurrent neural network (RNN), a variant of ANN, 
was initially adopted due to its compatibility to sequential 
data as RNN processes memory which allows it to learn 
long-term dependency. However, as indicated in the study 
by Vaswani et al. (2017), they showed that when RNNs are 
trying to learn long-term dependency information, they 
suffer from vanishing or exploding gradient, leading to 
deteriorate in model performance. Consequently, address-
ing the spatial and temporal aspects has led the research-
ers to the field of deep learning, such as the application 
of LSTM or CNN. The current research indicates that 
applying CNN may solve the spatial dependency of a time 
series, but the temporal domain aspect is still challenging 
(Vo et al. 2017). This research was therefore motivated by 
the lack of a reliable sediment transport model that could 
account for temporal inequality. While there might be a 
number of AI-based applications in forecasting sediment 
transport, such as the study by Kaveh et al. (2021), a thor-
ough investigation is necessary due to the characteristics 
of sediment load transport being influenced by various 
factors that individually different from one another.

Contribution of the study

•	 In view of the mentioned issues, the following are the 
study’s contributions:

•	 In tackling a machine learning regression task in the 
sediment transport application for the temporal ine-
quality, the proposed deep learning LSTM model is 
compared to traditional machine learning.

•	 The research of input lag selection for developed auto-
correlation function (ACF) based sediment transport 
prediction models is investigated and addressed.

•	 An investigation is carried out into how differentiated 
SVM and ANN are in sediment transport prediction, 
which typically has identical competence in many 
areas.

Methodology

Study area

The Johor River is located south of the Malaysian Peninsular 
(Fig. 1). The basin surface elevation ranges from 20 to 540 m 
(Katimon et al. 2018). It has five main branches (Gemuroh, 
Linggui, Lemekik, Lebak, and Semanggar). The channel 
flows north to south, culminating in the Johor Strait. Johor 
river water is used for water supply in the Malaysian state of 
Johor, containing the city of Johor Bahru. Hence, the Johor 
river’s water quality is critical for the state. The collected data 
between 01/01/2008 to 10/12/2018 in Sungai Rantau,, Johor 
river basin, was recorded daily for ton per day. The reason for 
the selected station is that, compared to other stations in the 
Sungai Rantau area of the Johor River Basin, the data col-
lected throughout the research period is to be the most trust-
worthy. Furthermore, several stations have incomplete data, 
rendering the sediment movement forecasting technique dif-
ficult. Figure 2 shows the daily sediment of the Johor river 
from 01/01/2008 to 10/12/2018. Table 1 presents the statistical 
properties of the daily sediment dataset of the Johor river.

Long short‑term memory (LSTM)

The LSTM approach was developed in 1997. Schmidhuber 
and Hochreiter (1997) proposed LSTM, which proved to be 
much faster in terms of convergence and more accurate and 
reliable than other models. LSTM is a particular kind of RNN 
(called recurrent neural networks, also known as RNN) used in 
deep learning applications. However, unlike a neural network, 
apart from processing the input via multiple hidden layers, 
they also stored the information in them and iterated to offer 
new information.

U and W represent the weights in different gates: input gate 
( it ), gate modulates input ( ̃ct ), forget gate ( gt ), and gate out-
put ( ot ). b represents the bias term,ct represents a cell state, 
and ht represents the hidden state. These gates handle the 

(1)gt = �
(
Ugxt +Wght−1 + bf

)

(2)it = �
(
Uixt +Wiht−1 + bi

)

(3)c̃t = tanh
(
Ucxt +Wcht−1 + bc

)

(4)ct = gt ∗ ct−1 + it ∗ c̃t

(5)ot = �
(
Uoxt +Woht−1 + bo

)

(6)ht = ot ∗ tanh
(
ct
)
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information obtained from the previous cycle and decide 
how much of the recent information to forward to the sub-
sequent phase. LSTM can learn the long-term dependencies 
resulting from its unique architectural nature, as shown in 
Fig. 3 (Li et al. 2017). It is one of the main advantages of 
LSTM compared to RNN, which previously lost the infor-
mation reported in dealing with long-term dependence 
problems.

Time series forecasting using deep learning code has 
been applied to predict daily sediment at the Johor river. The 
training progress of the developed LSTM model is shown 
in Fig. 4.

Artificial neural network (ANN)

MLP and FFNN are the simplest ANN in which the node’s 
connections do not form a loop; in other words, the flow of 
information is only in a single forward direction. FFNN can 
be a single-layer perceptron or an MLP, depending on the 
number of hidden layers available. The single-layer percep-
tron consists of a single-layer output node connected directly 

Fig. 1   Johor river and its sampling station

Fig. 2   Daily sediment at Johor river from 01/01/2008 to 10/12/2018

Table 1   Statistical properties of the daily sediment at Johor river

Daily sediment for the selected period (tons)

Mean 185.404
Standard error 4.101
Median 108.000
Mode 23
Standard deviation 259.262
Sample variance 67,200.040
Kurtosis 31.218
Skewness 4.521
Range 3347.400
Minimum 5.600
Maximum 3353.000
Sum 740,690.700
Count 3995
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to the input by a series of weights. On the contrary, a multi-
layer perceptron is a network interconnected with multiple 
layers of hidden or computational units. The sigmoid func-
tion is a commonly used activation function in a multilayer 
perceptron (Fiyadh et al. 2019). Figure 5 depicts the general 
architecture of the MLP model.

Support vector machine (SVM)

This section provides a basic overview of SVM. The sup-
port vector machine (SVM) is an efficient data categoriza-
tion and regression approach, which was initially proposed 

by Cortes and Vapnik (1995). There are accountable 
decision functions, for example, and hyperplanes capa-
ble of delineating positive and negative data that defined 
the maximum margins. It displays the variance from the 
nearest positive to a hyperplane sample and maximizes 
the variance between the nearest negative sample and the 
hyperplane. Data points closest to the separating hyper-
plane are support vectors (Fig. 6).

The main principle behind SVM in regression is to use 
a nonlinear kernel function to translate the input data into 
a higher-dimensional space where a linear estimate func-
tion is defined as follows:

Fig. 3   Basic structure of LSTM

Fig. 4   Training progress of the developed LSTM model
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where ϕ(x) represents the high-dimensional function spaces, 
mapped nonlinearly from the x input space along with the 
weight vector W  and bias b . By minimizing the regularized 
function R(C), the coefficients w and b are estimated:

where N represents the total training dataset and d repre-
sents the target value of regression task. L�

(
di, yi

)
 stands 

for the ε -insensitive loss function, which return zero when 
the forecast value within the error tolerance ε . C represents 
the penalized coefficient in the optimization problem that 

(7)y(x) = wT�(x) + b

(8)R(C) = C
1

N

N∑

i=1

L�,
(
di, yi

)
+

1

2
∥ w ∥2

(9)

measures the trade off between the loss function and regular-
ized term. And then Eq. (8) is transformed into the constraint 
function given by Eq. (10) by adding the following positive 
slack variables �i and �∗

i
 as follows:

The first term ( 1
2
∥ w ∥2 ) is the weights vector norm. The 

parameters that governs the throughout regression process 
are the variables C , ε , and ϕ(x). When the x does not falls 
within the tube, there is bound to form �i or �∗

i
 , and there a 

minimization is required. The SVM is then trained by mini-

mizing the loss error C(
N∑

i=1

�
�i + �∗

i

�
 and regularized penalty 

term 1
2
∥ w ∥2 . Since the kernel function establishes the fea-

ture space, selecting the appropriate kernel function is cru-
cial in SVM regression. Four common types of SVM kernel 
functions were used as follows:

(10)Minimize ∶ R(C) = C(

N∑

i=1

(
�i + �∗

i

)
+

1

2
∥ w ∥2

(11)Linear Kernel ∶ K
(
xi, xj

)
= xT

i
× xj

(12)
Polynomial Kernel ∶ K

(
xi, xj

)
=

(
𝛾xT

i
× xj + r

)d
, 𝛾 > 0

(13)

Radial Basis Kernel ∶ K
(
xi, xj

)
= exp

(

−
|
||
|
||
xi − xj

|||
|||

2
)

, 𝛾 > 0

(14)Sigmoid Kernel ∶ K
(
xi, xj

)
= tanh

(
xT
i
× xj + r

)

Fig. 5   General structure of 
MLP

Fig. 6   Basic concept of SVM
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Herer , and d are kernel parameters.

Evaluation metrics

In this study, three different statistical metrics were used to 
validate the reliability of the proposed model: root mean 
square error (RMSE), coefficient of determination (R2), and 
mean absolute error (MAE). RMSE and MAE are the two 
most commonly used metrics for determining the accuracy 
of continuous variables. They are excellent for estimating 
the average size of errors and penalizing values that deviate 
from observed values. Lower numbers are desired since they 
are negative-oriented scores. R2 is a goodness-of-fit measure 
that provides a fitted regression line. This metric’s value runs 
from 0 to 1, with 0 indicating no connection and 1 indicating 
predictions are identical to observed values. The following 
statistical indicators were used: 

•	 The mean absolute error MAE:

•	 The root mean square error RMSE:

•	 The coefficient of determination R2:

Results and discussion

Assessing the best input and data partition

A preliminary study of input selection and data partition was 
performed prior to model development. Understanding the 
input selection is critical for model development. Also, due to 
the nature of a data-driven approach, determining input lag is 
merely another hyperparameter to be optimized (Wunsch et al. 
2021). In the hydrological process, the significance of history 
is related to the time lag between input and output reactions, 
such as river discharge and sediment transport rate response, as 
reported in the previous study by Malik et al. (2019). Intrigu-
ingly, the analysis yielded the following input selection: A time 
lag of 1 was adequate as input to the model. Malik et al. (2019) 
performed a Gamma test to test out the impact of the input fea-
tures on daily SSC. They demonstrated that models based on 
input lag 1 and 2 performed much better than other input lags 

(15)MAE =

∑n

i=1
ABS(yi − �(xi))

n

(16)RMSE =

√√√
√1

n

n∑

i=1

(So − Sp)2

(17)
R2 =

{
(1∕N) ∗

∑
[(xi − X) ∗ (yi − Y)∕(�x ∗ �y2)

}

among the combinations tested. More crucially, input lag 1 
corresponded to the variable sediment concentration, whereas 
input lag 2 corresponded to the variable streamflow. Following 
that, Idrees et al. (2021) confirmed that an input selection anal-
ysis based on input lag up to lag-1 was sufficient. They also 
indicated that the input combination would change depending 
on the techniques utilized. In agreement with them, this study 
also demonstrated that a time lag of 1 was adequate input to 
the model through another input feature selection known as 
autocorrelation function (ACF). It might appear to reveal that 
ACF may be an alternative in selecting the input lag variable 
to determine the magnitude of input lag despite the linearity 
property. Table 2 shows the considered parameter as input to 
the model. The selected input lag was sufficient for machine 
learning and deep learning models to learn from past data suc-
cessfully. Under the same input lag, the data were divided into 
80% training and 20% testing data.

Training for the machine learning and deep learning 
models

Different model architectures of LSTM, ANN, and SVM were 
developed to determine the best optimum set of hyperparam-
eters for predicting sediment transport in the Johor river in 
Malaysia. A 200 number of hidden neurons selected was due 
to improved performance of ANN and LSTM at an iteration of 
250. As for the SVM model, a linear support vector regression 
was used in this study, considering that the task required was a 
regression type of machine learning. The optimal hyperparam-
eters for SVM were: capacity = 10.0, epsilon = 0.1, and RBF 
was the chosen kernel function with gamma equal to 1. These 
simulations were conducted on a workstation equipped with an 
Intel Core(TM) i7-7700HQ CPU and 16 GB of RAM.Intel®.

Evaluation of model performances

An infographic in the form of a line chart and scatter plot 
(Fig. 7) was generated to display the acquired findings of 
sediment transport prediction, ranging from standard machine 
learning such as ANN and SVM to deep learning LSTM. Fig-
ure 7 also shows how AI-based models could be employed 
effectively as an alternative model to predict sediment trans-
port, with the estimated series displaying a significant correla-
tion with the actual series. The low value of R2 obtained ANN 
was also seen in a study by Yadav et al. (2022). It may imply 
that ANN requires some form of hybridization to achieve satis-
factory results. Therefore, to improve the model performance, 
they adopted the GA to optimize the architecture of the ANN 

Table 2   Lag time input to the 
models

Model Input Output

Model I St − 1 St
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Fig. 7   Training and testing 
performance of the developed 
model



	 Applied Water Science (2023) 13:79

1 3

79  Page 10 of 13

model. While scatter plot has been used in most research stud-
ies, one minor downside of such graphical representation is 
that it is challenging to quantify how well or poorly the models 
perform.

On the contrary, the violin plots (Fig. 8) reveal a much 
clearer distinction between LSTM (deep learning), ANN, 
and SVM (machine learning). Except for the SVM model, 
all developed algorithms could consistently predict the 
sediment transport in terms of 4 measures statistics: mini-
mum, first quartile, median, and third quartile. Among the 
developed models, LSTM was able to predict the maximum 
sediment transport more accurately than other algorithms. 
Besides, a violin plot also provides additional information, 
which is the distribution of the estimated data. Generally, the 
shape of the violin plot of LSTM and ANN-MLP is more 
similar to the measured value. Compared to them, the SVM 
model had higher dispersion of estimated data based on 
the violin plot than in the measured value. And worse yet, 
the model also failed to predict the maximum, lowest, and 
median sediment transport values.

Other comprehensive findings of the quantitative meas-
ures utilized to evaluate the performance of the constructed 
model (Table 3) are tabulated. Overall, LSTM scored the 
best in all three performance criteria, indicating the impor-
tance of such a model in estimating sediment transport. The 

significance of these results in study employing such net-
works resides in their memory-storing capabilities as well 
as their universality in a sequence data application. ANN 
performed moderately in between LSTM and SVM. Finally, 
SVM had the lowest accuracy in terms of all the measure 
metrics. Such evidence was also shown in a study by Al-
Mukhtar (2019), in which they found that ANN was a better 
choice than SVM in their comparison, therefore recognizing 

Fig. 7   (continued)

Fig.8   Violin plot of predicted against. Measured of sediment trans-
port
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that SVM performs well in sediment transport prediction. 
However, research conducted by Shafaghat and Dezvareh 
(2020) discovered that ANN outperformed SVM, albeit by 
a modest margin of roughly 4%. As stated in the introduc-
tion, because they work as universal function approximations 
based on their compliance with the nature of the problem, 
it is generally preferable to make a comparison in each con-
ducted experiment. Another key statistic used to quantify 
the model's capacity to respond to new data is the generaliz-
ability of the developed model. It is frequently described as 
the variation in a model's performance between training and 
test sets of data derived from the same probability. Since 
AI-based model used in this work is a supervised learning 
approach, overfitting might be a possible concern. Not only 
does LSTM have better training dataset accuracy, but it also 
performs better in the testing dataset assessment metric. It 
demonstrates how well LSTM is in predicting the unforeseen 
dataset. It ought to also be noted that the testing error is 
lower than the training error, which might be attributable to 
sampling bias in the testing dataset.

The prior section's adopted measure discovered the best 
model for predicting river sediment. However, without bench-
marking criteria, determining which model performs better is 
difficult. While RMSE and MAE are crucial measurements 
for comparing models, they provide little to no information 
on which model is best suited for a specific job. Therefore, an 
RMSE-Standard Deviation Ratio (RSR) was employed and 
defined in Eq. 1 to deliver a far more meaningful comparison 
result. Table 4 shows the RSR index ranges in terms of per-
formance rate and class. The findings were tabulated; Fig. 9 
reveals that the application of the LSTM model is related to 
the lowest RSR value, followed by ANN and SVM. It is dis-
covered that the SVM model for this dataset is incapable of 
extracting the underlying relationship between input and out-
put parameters.

where Smean
i

 is the mean derived from the simulation dataset 
(Ehteram et al. 2020).

Conclusions

Predictions of sediment transport are vital for forecasting 
flood events, monitoring coastal erosion, water resource 
planning, and irrigation management. Three models of AI, 
such as LSTM, ANN, and SVM, were developed and then 
validated to assess their performance in sediment transport 
prediction. The findings in this study showed that the input 
lag selection based on ACF showed that a lag value of 1 was 
adequate for the model to train. It implies that ACF can work 
as an alternative input lag selection aside from Gamma tests. 
Despite the fact that all of the developed models had a high 
R2 value, ranging from 0.79 to 0.91, giving the impression 
that they performed similarly, they were rather diverse. The 
outperform of ANN and SVM might be attributed to infor-
mation loss while dealing with the long-term dependency on 
sediment transport time series. While this study may con-
firm or contradict some previous findings, the general trend 
revealed that they operate effectively in sediment transport, 
provided that both are being utilized and compared simulta-
neously. Another importance finding in this study is that, in 
practice, the developed LSTM deep learning model may be 
used as an alternative model for predicting the time-varying 
and spatially distributed sediment transport as it outperforms 
better than either SVM or ANN. Deep learning models with 

(18)RSR =

�
∑N

i=1

�
Sobs
i

− Ssim
i

�2

�
∑N

i=1

�
Sobs
i

− Smean
i

�2

Table 3   Summary of the developed model performances

Models type Evaluation metrics

MAE RMSE R2

LSTM Training 20.105 31.436 0.989
Testing 18.094 11.395 0.914

ANN-MLP Training 39.260 85.945 0.909
Testing 24.794 16.998 0.914

SVM Training 118.404 135.080 0.904
Testing 115.093 53.340 0.914

Table 4   RSR range and the 
corresponding performance rate

Performance rating Unsatisfactory Satisfactory Good Very good

RSR value RSR > 0.7 0.6 ≤ RSR ≤ 0.7 0.5 ≤ RSR ≤ 0.6 0.00 ≤ RSR ≤ 0.5

0.12

0.3

0.51

0

0.1

0.2

0.3

0.4

0.5

0.6

LSTM ANN SVM

RSR

Fig. 9   RSR value for the computed models
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additional feature extraction capabilities, such as memory stor-
age capability, might be thought of as a unique contribution to 
sediment transport prediction. Nonetheless, incorporating the 
geographical state of the area into deep learning algorithms 
such as LSTM in anticipating sediment migration might be a 
significant finding in future studies.

There is, however, still opportunity for improvement. 
This study primarily focuses on the standalone model, even 
though hybridization may be crucial. In fact, the inclusion of 
hybridization would frequently lead to model enhancement by 
introducing components, such as metaheuristic algorithms or 
data preprocessing, to complement its current model. These 
new components can improve the training procedure of the 
model through better searchability or reduce the complexity 
in the dataset for the model to learn the pattern easier. How-
ever, because the potential of deep learning LSTM for its 
memory-storing capacity to anticipate sediment movement 
is of particular relevance in the current investigation, these 
hybridization can be studied further. Also, it is worth mention-
ing that climate changes play a vital role in characterizing the 
variation in the river flow, which increase erosion, resulting in 
an increase in the sediment load movement. The absence of 
climatic components in the model will increase the uncertainty 
of the outcome.Last but not least, working on more than one 
station may give more substantial evidence to illustrate the 
capabilities of the developed models.
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