
Vol.:(0123456789)1 3

Applied Water Science (2023) 13:34 
https://doi.org/10.1007/s13201-022-01837-7

ORIGINAL ARTICLE

Preparation of nano zero‑valent aluminum for one‑step removal 
of methylene blue from aqueous solutions: cost analysis for scaling‑up 
and artificial intelligence

Ahmed H. Sadek1,2  · Mohamed K. Mostafa3 

Received: 23 August 2022 / Accepted: 29 November 2022 / Published online: 30 December 2022 
© The Author(s) 2022

Abstract
Methylene blue (MB) is a heterocyclic aromatic dye that is difficult to biodegrade due to its complex chemical structure. In 
this study, chemically prepared nano zero-valent aluminum (nZVAl) was investigated for the first time for one-step removal 
of MB from aqueous solutions under different experimental factors (pH, dosage, time, MB concentration, stirring rate, tem-
perature, detergents, and ionic strength). The prepared nZVAl material was characterized using XRD, TEM, SEM, EDS, and 
FTIR. Results indicated that at an initial MB concentration of 10 mg/L, pH 10, nZVAl dosage 1.0 g/L, stirring rate 200 rpm, 
and temperature 30 °C, the removal efficiency of approximately 99.0% was achieved within an equilibrium time of 90 min. 
An improvement in MB removal efficiency was observed in the presence of inorganic salts, while the presence of detergents 
resulted in a reduction in MB removal efficiency. The isotherm adsorption data were best fitted by the Freundlich isotherm 
model (R2: 0.9569), while the kinetic data were well described by the pseudo-second-order (PSO) model (R2: 0.9999). Based 
on the thermodynamic study, the MB adsorption process is physically diffusion-controlled. The adsorption of MB onto nZVAl 
was accurately described using an artificial neural network (ANN) with a structure of 11–10–1 and R2 of 0.97. The overall cost 
of scaling up the adsorption unit to be used for MB removal from aqueous solutions under the optimum conditions is about 
US$1.31/m3. Consequently, this study opens the door for other researchers to test nZVAl in treating real textile wastewater.

Keywords Adsorption mechanisms · Aluminum nanoparticles · Artificial neural network · Cost analysis and scaling-up · 
Methylene blue · Thermodynamic

Introduction

Despite the textile industry representing 7% of the total 
global exports, this sector is one of the major polluters 
worldwide (Lellis et al. 2019). Textile industries release 
a huge amount of colored/highly toxic wastewater due to 

utilizing different types of synthetic dyes during the dyeing 
process, such as methylene blue (MB) (Hamdy et al. 2018). 
MB is a cationic dye that has a complex chemical structure 
(molecular formula:  C16H18N3SCl), which makes it stable 
and difficult to be biodegraded (Hamdy et al. 2019a, b). It 
has been estimated that the MB concentration in dyes used 
by the textile industry is normally about 50 mg/L (Hamdy 
et al. 2019a, b). MB discharged from textile and dye manu-
facturing industries can cause serious health issues, includ-
ing vomiting, eye damage, nausea, skin irritation, diarrhea, 
dyspnea, convulsions, upset stomach, tachycardia, cyano-
sis, as well as deterioration of the central nervous system, 
kidneys, liver, and brain (Arabi and Sohrabi 2014; Kavitha 
and Namasivayam 2007; Li et al. 2013a, b; Li et al. 2013a, 
b). In addition, water bodies contaminated with MB may 
suffer from a lack of sunlight penetrating water, which may 
affect the entire aquatic ecosystem by reducing photosyn-
thetic function and dissolved oxygen levels (Hassan and Carr 
2018; Imran et al. 2015; Lellis et al. 2019). Therefore, water 
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contaminated with MB must be sufficiently treated before 
reaching surface water bodies.

The common methods used for MB removal from aqueous 
solutions include coagulation and flocculation, biological 
treatment, membrane filtration, electrochemical treatment, 
and adsorption processes (Chen et al. 2016; Mostafa et al. 
2021, 2017; Raman and Kanmani 2016). The coagulation 
and flocculation processes involve serious disposal prob-
lems, where large quantities of sludge and by-products are 
generated (Hamdy et al. 2018). Electrochemical treatment 
is very effective in dye removal; however, it consumes large 
amounts of energy and needs special equipment (Mahmoud 
et al. 2021c). In addition, strict controls over pH and tem-
perature are required in the case of applying biological treat-
ment methods (Chao et al. 2017). The main drawback of 
applying the membrane filtration technique is concentrated 
sludge production (Foo and Hameed 2012). Currently, the 
adsorption treatment technique has grabbed the attention of 
many researchers due to its simple design, high efficiency, 
low capital and operation costs, ease of operation, and the 
possibility of regenerating and reusing the adsorbent (Alq-
adami et al. 2016; Bao and Zhang 2012; Daneshvar et al. 
2017; Hu et al. 2011). The adsorption process is normally 
conducted in four consecutive phases (Aljeboree et al. 2017; 
Karthikeyan et al. 2005; Önal et al. 2006): (1) the adsorbate 
molecules travel from the liquid medium to the external film 
surrounding the adsorbent material; (2) the adsorbate mol-
ecules accumulated on the external film then move across 
the liquid film until reaching the exterior sites on the surface 
of the adsorbent; (3) the adsorbate molecules migrate within 
the voids of the adsorbent through intraparticle diffusion; 
and (4) the adsorbate binds to the internal adsorptive sites.

Sorbent materials can be obtained from numerous 
sources, such as industrial-derived products (Hamdy et al. 
2019a, b), agricultural wastes (Mahmoud et al. 2021b), 
carbonaceous-based materials (Senthilkumaar et al. 2005), 
and woody biomass (Gouamid et al. 2013). The commonly 
used adsorbent materials include wheat shells, algal strains, 
date palm leaves, activated carbon (AC), coir pith carbon, 
graphene oxide, activated bentonite, tamarind fruit shells, 
masau stones, Ephedra strobilacea sawdust, carbon nano-
tubes, and activated lignin-chitosan pellets (Li et al. 2013a, 
b; Mahmoud 2022). Recently, nanoscale-based materials 
have proven to be efficient and reliable in the removal of 
dye compounds from contaminated water (Elshayb et al. 
2022; Satapanajaru et al. 2011). The main advantages of 
nanomaterials over other adsorbents include high porosity, 
low production cost (Oprčkal et al. 2017; Shih et al. 2011; 
Wang et al. 2014), as well as small particle size (diameter 
range from 50 to 100 nm), which increases the surface area 
and thus allows more adsorbent molecules to come into con-
tact with the porous phase (El-Shafei et al. 2016; Mahmoud 
et al. 2021a; Wang et al. 2021). Due to its high reactivity, 

nano zero-valent aluminum (nZVAl) has received great 
attention in recent years in the field of wastewater treatment 
(Nidheesh et al. 2018). The ZVAl is not only a powerful 
adsorbent but also has a strong reductive capacity (Deng 
et al. 2020). Equation (1) demonstrates that under ambient 
conditions, nZVAl is an effective electron donor (Ileri and 
Dogu 2022; Xie et al. 2020).

Recently, researchers have reported that ZVAl may be 
capable of eliminating non-biodegradable pollutants by gen-
erating sulfate and hydroxyl radicals in a water medium (Ileri 
and Dogu 2022). Nano zero-valent aluminum has been suc-
cessfully employed in the treatment of water contaminated 
with dye compounds, chloride, bisphenol A, chromium(VI), 
phenol, nitrate, nitrobenzene, hexabromocyclododecane, and 
perchlorate (Ileri and Dogu 2022).

Prediction using an artificial neural network (ANN) has 
become an essential step in the wastewater treatment sector 
for the purpose of reducing treatment costs through pro-
cess optimization. ANN can obtain relationships between 
inaccurate data by creating a link between input variables 
against each other and with output values (Mahmoud et al. 
2020; Mahmoud and Mahmoud 2021; SaryEl-deen et al. 
2017). Ratnam et al. (2022) forecasted MB removal from 
aqueous solutions using ANN and a UV-irradiated nano-gra-
phene oxide (UV/n-GO). They have reported that the ANN 
was accurate in describing MB adsorption onto UV/n-GO 
with R2 = 0.92. Amor et al. (2021) predicted MB removal 
by titanium dioxide  (TiO2) nanoparticles using ANN. 
The authors have also confirmed the accuracy of ANN in 
describing MB adsorption onto  TiO2 nanoparticles with 
R2 = 0.996. In another study, Hamdy et al. (2019a, b) have 
conducted a comparison between using ANN and Response 
Surface Methodology (RSM) in predicting the adsorption of 
MB onto nano zero-valent iron (nZVI). They have reported 
that the ANN with R2 = 0.9313 was more accurate than the 
RSM with R2 = 0.6316 in describing MB adsorption onto 
nZVI. Mohammadzadeh Kakhki et al. (2020) have also 
reported a high R2 value of 0.92 when applying ANN in 
describing MB adsorption onto sulfur–nitrogen co-doped 
 Fe2O3 nanostructure.

To the best of our knowledge, there is no research in the 
literature regarding cationic dyes (such as MB) adsorption 
from contaminated water using nZVAl. The mineralogi-
cal, chemical, as well as physical properties of the prepared 
nZVAl were identified using X-ray diffraction (XRD), scan-
ning electron microscopy (SEM), energy-dispersive spec-
troscopy (EDS), transmission electron microscope (TEM), 
and Fourier transform infrared (FTIR). This study aims 
to investigate MB removal from aqueous solutions using 
nZVAl under different environmental factors (pH, nZVAl 

(1)Al0 → Al3+ + 3e−
(

E0 = −1.662V
)



Applied Water Science (2023) 13:34 

1 3

Page 3 of 23 34

dosage, initial MB concentration, contact time, stirring rate, 
temperature, detergents, and ionic strength). Isotherms, 
kinetics, and thermodynamic models were used to fit the 
adsorption data. The adsorption performance was also pre-
dicted using an artificial neural network (ANN) tool. ANN 
was used to obtain the correlation between the MB removal 
efficiency and the studied environmental factors. The capital 
expenditures (CAPEX) and operating expenses (OPEX) of 
scaling up the treatment unit were also estimated.

Materials and methods

Preparation of methylene blue solution

MB was obtained from Farbwerke Hoechst AG Com-
pany, Germany. One gram of MB powder was dissolved 
in 1,000 mL of Milli-Q distilled water to prepare a stock 
solution of MB (1000 mg/L). The desired concentrations of 
10, 20, 30, 40, 50, 60, 70, and 80 mg/L were then obtained 
by successive dilutions of the solution. The pH adjustment 
was conducted using sodium hydroxide solution (0.1 mol/l, 
NaOH) purchased from Honeywell Fluka Company, Ger-
many, or hydrochloric acid solution (0.1 mol/l, HCl) pur-
chased from SDFCL Sd Fine Chem Limited Company, 
India.

Preparation of nZVAl

Zero-valent aluminum nanoparticles were prepared 
by reducing aluminum ions using sodium borohydride 
 (NaBH4, powder, ≥ 98.0%, Winlab Co., UK). Precisely, 
the zero-valent aluminum nanoparticles were prepared in 
a 250 mL Erlenmeyer flask by dissolving aluminum sulfate 
 (Al2(SO4)3.18H2O, 98%, AR, Loba Chemie, India) in dis-
tilled water, and the solution was stirred vigorously using 
a magnetic stirrer at 500 rpm. To reduce aluminum ions to 
zero valence aluminum nanoparticles, a burette was used 
to add 25 mL of the aqueous borohydride solution drop-
wise to 25 mL of the aqueous solution of aluminum ions 
 (Al3+). The pH increased from pH 2 to pH 5 at the end of 
the reaction, accompanied by fizz due to the elevation of the 
produced hydrogen gas. In the meantime, the temperature 
of the reaction increased while adding the reducing agent to 
the aluminum ion solution. All experiments were performed 
at a temperature of 25 °C. The reaction could be expressed 
by Eq. (2).

The mixture was stirred for an additional 20 min after the 
end of the reaction to ensure the complete reaction between 
the reducing agent and the dissolved aluminum ions, and 

(2)
2Al3+ + 6BH−

4
+ 18H2O → 2Al0 + 6H2BO

−
3
+ 24H+ + 12H2

also to complete the growth and shape of the precipitated 
nZVAI nanoparticles. Afterward, the produced zero-valent 
aluminum nanoparticles were collected from the reaction 
medium by vacuum filtration. Then the nZVAI nanoparti-
cles were washed with a large amount of distilled water and 
finally washed 3 times with ethyl alcohol before being dried 
in a drying oven at 110 °C for 6–8 h. For storage, a thin 
layer of ethyl alcohol was added to the surface of the pre-
pared nZVAI nanoparticles, which is sufficient to preserve 
the nZVAI nanoparticles against further oxidation.

Equipment

An ultraviolet–visible spectrophotometer (T70 + UV/VIS 
Spectrometer, PG Instruments Ltd., UK) fitted with a quartz 
cell with a 1.0 cm path length was used to measure the con-
centrations of MB. The samples, after being removed from 
batch experiments, were filtrated using Whatman membrane 
filters with a 0.2 µm pore size. A maximum absorbance 
(λmax) at 670 nm was determined to find the concentrations 
of MB in the filtrate solutions. The X-ray powder diffrac-
tion (XRD, Panalytical X'Pert Pro Multipurpose Diffrac-
tometer, Netherlands) was used to analyze the nZVAl nano-
particles. The equipment was provided by CuKα radiation 
with a wavelength of 1.54 Å. The crystallite size of nZVAl 
nanoparticles was determined using the Scherrer equation 
(Eq. (3)) (Sadek et al. 2021).

where D is crystallite size, K is the crystallite shape factor, λ 
is the X-ray wavelength, β is the full width at half maximum 
(FWHM), and θ is the diffraction angle.

The High-Resolution Transmission Electron Microscope 
(HR-TEM, JEM-2100, Japan) was used to study the mor-
phology of nZVAl nanoparticles at a magnification of 25 kX 
and a voltage of 200 kV. A Field Emission Scanning Elec-
tron Microscope (FE-SEM, Philips, Quanta FEG 250, USA) 
equipped with an energy-dispersive spectrometer (EDS) was 
used to disclose the surface structure and chemical com-
position of the nZVAl nanoparticles before and after the 
adsorption process of MB at a magnification of 16 kX and 
a voltage of 20 kV. Fourier transform infrared spectroscopy 
(FTIR, JASCO FT/IR-6100A, Japan) measurements were 
conducted with KBr pellets to recognize the infrared spectra 
of the nZVAl adsorbent before and after MB adsorption in 
the range of 4000–450  cm−1.

Batch experiments

Batch experiments in Erlenmeyer flasks with a volume of 
250 mL were conducted to investigate the adsorption of MB 

(3)D =
K�

� cos �
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onto nZVAl. A one-factor at-a-time technique was used to 
examine the effects of different environmental conditions 
on MB removal efficiency, viz., pH values (2–12), nZVAl 
dosage (0.1–1.0 g/L), MB concentrations (10–80 mg/L), 
stirring rates (100–300  rpm), adsorption temperatures 
(30–60 °C), detergents (liquid Vanish granules and liquid 
Ariel: 0.1, 0.5, and 5 g), and ionic strength (sodium sul-
fate  (Na2SO4): 2.10 M to 8.43 M, sodium chloride (NaCl): 
1.72 M to 6.88 M, and sodium carbonate  (Na2CO3): 2.82 M 
to 11.31 M. The studied factors and the range of the experi-
ment for each factor were chosen based on the literature 
(Hamdy et al. 2018, 2019a, b). All experiments were con-
ducted in triplicate. Equation (4) was used for calculating 
MB removal efficiency.

where R is the removal efficiency of MB (%), Co is the initial 
MB concentration (mg/L), and Cf is the final MB concentra-
tion (mg/L).

Equation (5) was used to estimate the MB adsorption 
capacity onto nZVAl.

where q is the quantity of MB adsorbed per unit mass of 
nZVAl (mg/g), V is the solution volume (L), and W is the 
nZVAl mass (g).

Design of an artificial neural network

Neural network structure

Figure 1 shows an artificial neural network (ANN) which 
was expressed as 11–10–1 and was configured with input, 
hidden, and output layers to predict the MB removal effi-
ciency. The input layer received data from eleven experi-
mental factors, i.e., residence time, initial MB concentration, 
temperature, pH, stirring rate, nZVI dosage, the concentra-
tion of two detergents: Ariel and Vanish, and the concentra-
tion of three salts: NaCl,  Na2CO3, and  Na2SO4. The hidden 
layer is made up of 10 neurons, where the optimum numbers 

(4)R(%) =
Co − Cf

Co

× 100

(5)q =

(

Co − Cf

)

xV

W

of neurons were projected by a trial-and-error method. The 
output layer represents the MB removal efficiency. The tar-
get and input vectors were categorized into three subgroups 
(Mahmoud et al. 2021c, 2017b): 60% for training, where the 
mean squared error (MSE) is minimized by adjusting the 
weights and biases of the neural network; 20% for valida-
tion to terminate the training step early and thus avoid data 
overfitting; and 20% for testing the efficiency and validity of 
the created ANN model (Elshfai et al. 2022).

ANN properties

In this study, the data were classified by applying a feedfor-
ward backpropagation algorithm (Mahmoud et al. 2018b). 
The “tansig” transfer function (Eq. (6)) and the “purlin” 
activation function (Eq. (7)) were chosen for the hidden and 
output layers, respectively. The mean squared error (MSE) 
(Eq. (8)) was used for two main purposes: (1) to compare 
both the output and the target data; and (2) to adjust the 
weights and the biases. Since the network applied in this 
research is located in the category of small and medium-
sized networks, the Levenberg–Marquardt method (trainlm) 
was used for the training step (Mahmoud et  al. 2017a; 
SaryEl-deen et al. 2017).

where ai is the predicted output, ti is the predicted target, and 
N is the number of measured data.

Results and discussion

Characterization of nZVAl

The XRD pattern of the nZVAI particles with various 
peak intensities is displayed in Fig. 2a. The Al (111), Al 
(200), Al (220), and Al (311) planes of the α-Al0 face-
centered cubic cell phase were indicated by the high peaks 
at 38.43°, 44.60°, 64.88° and 78.09°, respectively. These 
findings prove the existence of aluminum nanoparticles in 
their zero-valent state  (Al0). Some other undesirable peaks 
have been observed in the range of 2θ = 20°–35°, which 
may be due to the presence of impurities formed during 
the reaction, such as the sodium sulfate salt  (Na2SO4). 
The  Na2SO4 was not completely eliminated during wash-
ing the precipitate, as sodium borohydride contributes to 

(6)f (x) = x,−∞ < f (x) < +∞

(7)f (x) =
ex − e−x

ex + e−x
,−1 ≤ f (x) ≤ 1

(8)MSE =

∑N

i=1

�

ti − ai
�2

N

Fig. 1  ANN of 11–10–1 structure used for the prediction of MB 
removal efficiency by nZVAl
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the sodium ion, while the sulfate ion comes from the alu-
minum sulfate salt. Therefore, several washing processes 
with different solvents are required to diminish these 
impurities. In addition to the possibility that a small per-
centage of aluminum metal was partially oxidized during 

the preparation and washing process, we expect that the 
prepared aluminum particles are  Al0 aluminum core with 
an outer oxide shell mostly of amorphous  Al2O3 which 
acts as an inert layer to protect the aluminum from further 
oxidation (Smith et al. 2017).

(a) (b)

(c)

O K

(e)

Al K

(f)(d)

C K

(g) (h)

(i) (j)
Element Weight % Atomic % Net Int. Error %

C K 14.91 21.2 40.31 12.47
O K 58.09 62.03 630.04 8.43
Na K 5.5 4.09 86.15 9.84
Al K 13.6 8.61 471.81 5.6
S K 5.35 2.85 196.03 4.18
Cl K 2.31 1.11 76.56 6.2
K K 0.24 0.1 6.99 24.17

Element Weight % Atomic % Net Int. Net Int. 
Error

C K 29.54 40.51 10.7 0.02

O K 39.3 40.47 39.2 0.01

AlK 31.16 19.03 163.2 0

Fig. 2  Characterization of nZVAl by a XRD, b TEM, c–f EDS ele-
mental mapping, g SEM image before MB adsorption, h SEM image 
after MB adsorption, i EDS spectrum (inset: Table of chemical com-

position) before MB adsorption, and j EDS spectrum (inset: Table of 
chemical composition) after MB adsorption



 Applied Water Science (2023) 13:34

1 3

34 Page 6 of 23

By the visual observation of the TEM image (Fig. 2b) 
of nZVAl particles, it could be observed that the particles 
are semi-spherical, and the majority of the nanoparticles 
range in size less than 100 nm. Moreover, previous studies 
reported that the aluminum oxide might represent the outer 
thin layer (a shell), and  Al0 was the core of the nanoparti-
cles (Nidheesh et al. 2018; Peng et al. 2022). Additionally, 
some irregularly grouped nanoparticles with different sizes 
and shapes formed significant nanoclusters and showed 
nanoparticle agglomerates consisting of primary nanopar-
ticles (Lozhkomoev et al. 2020). These findings might be 
attributed to the coupling of surface plasmons, excitons, 
dipole–dipole interactions, and the large surface area of the 
individual particles (Huang et al. 2020).

Furthermore, the primary components of this core–shell 
structure were characterized using EDS electronic mapping 
(Fig. 2c–f). According to experimental findings, the nZVAl 
nanoparticles contain the primary constituents of Al, O, and 
C. It is evident that the maps of the distribution of the Al and 
O elements, with weights% of 31.16 wt.% and 39.3 wt.%, 
respectively, have the same symmetry and density. Other-
wise, the element map of C showed a similar symmetry 
but with a lower density and more evenly spaced particle 
distributions, with a weight% of 29.54 wt.%. These results 
provide additional evidence that the nZVAl nanoparticles 
have been successfully formed since the inter-particle dis-
tributions of the Al and O elements are more intense than 
those for the C element, and the nZVAl nanoparticles have 
been coated by a thin layer of  Al2O3 as a shell.

The SEM of the synthesized nZVAl nanoparticles before 
adsorption is shown in Fig. 2g. As can be observed, the 
nanoparticles formed an uneven surface structure with lots 
of irregular and noncircular pores. Furthermore, some nano-
particles are gathered to form bigger nanoclusters, whereas 
the primary reasons for the chain-like and agglomerated 
structures of various particles with sizes less than 100 nm 
are due to the surface tension and electrostatic interaction 
with a true metal–metal inter-crystalline boundary. Similar 
chain-like aggregates have already been seen in prior work 
by El-khatib et al. (2021).

After the MB adsorption, some morphological altera-
tions were observed when the MB solution encountered the 
nZVAl surface (see Fig. 2h). It was noted that the pores 
vanished, where the dye molecules filled in the open spaces 
and organized into a variety of different sizes and shapes 
of aggregates. This demonstrated that some MB molecules 
formed an adsorbate layer covering the surface of nZVAl, 
while others were adsorbed inside the inner pores of the 
nZVAl indicating the great affinity of the nZVAl nanoparti-
cles for adsorption of MB dye.

The chemical composition of nZVAl nanoparticles 
before and after MB adsorption was examined using the 
EDS spectra (Fig. 2i, j). The presence of C and O elements 

was attributed to the use of ethanol during washing and/
or the partial oxidation of nZVAl during sample prepara-
tion and transfer. In terms of weight%, nZVAl contained 
31.16 percent aluminum. According to Sahu et al. (2014), 
the existence of a sharp peak of Al at 1.5 keV is related to 
the elemental aluminum and indicates that the major content 
of the obtained sample consists of an aluminum element. 
According to the EDS findings, the oxygen content in the 
produced nZVAl nanoparticles appears to be relatively lower 
than the aluminum content. The undefined high-intense 
peaks at 2.2 keV and other peaks at 8, 8.5, and 9.7 keV refer 
to the gold substrate that is used for the ultra-thin coating 
of the nZVAl sample during the measurement process. The 
elemental profile of the EDS after MB adsorption revealed 
that MB dye successfully adsorbed to the nZVAl surface, as 
evidenced by the development of peaks of S, Na, Cl, and K 
elements. In addition, it could be observed that the weight% 
of Al decreased from 31.16 wt.% (before MB adsorption) 
to 13.6 wt.% (after MB adsorption), and the weight% of 
O increased from 39.3 wt.% (before MB adsorption) to 
58 wt.% (after MB adsorption), respectively, indicating the 
further oxidation of nZVAl particles and the formation of a 
thicker shell of  Al2O3 layers during the adsorption process.

The FTIR spectra of pure MB between 4000 and 
450  cm−1 (Fig. 3) show the functional groups linked with 
the MB absorption peaks, which are –NH/–OH overlapped 
stretching vibration at 3445   cm−1 and CH = N stretch-
ing amide II at 1638  cm−1, respectively. The other MB 
absorption peaks include C–N at 1153   cm−1 and C–H 
out-of-plane bending vibrations of the ring at 611  cm−1, 
respectively (Alshehri and Malik 2019; Xia et al. 2019). 
The functional groups of nZVAl before and after MB 
adsorption were recorded within the infrared spectra rang-
ing between 4000 and 450  cm−1 as shown in Fig. 3. The 
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sorption of MB inside the pores and on the surface of 
nZVAl may be the reason for the decrease in peak intensi-
ties. Certain peaks also underwent peak shifting after MB 
adsorption. The contribution of O–H and N–H stretch-
ing vibrations was demonstrated by the broad peaks at 
3420   cm−1 shifted to 3452   cm−1. Additionally, a peak 
was originally at 1640  cm−1 due to the attraction of some 
water molecules on the surface of the nZVAl particles. 
The aromatic ring exhibited a C=C and C–C asymmetric 
stretching at 1431 and 1321 bands, respectively. Generally, 
the peak at 1116  cm−1 is attributed to the C–O stretch of 
alcohols, carboxylic acids, and esters where the peak at 
618  cm−1 mostly refers to Al–O bonding. These findings 
suggest that the adsorption of MB might be attributed to 

several functional groups, including C–H, C=C, C–C, and 
C–O bonds (González-Gómez et al. 2019).

Effects of operating parameters

Effect of pH

The pH of the solution has a significant impact on the oxida-
tion and the adsorption processes since it controls both the 
attraction force of the MB molecules and the surface binding 
sites (SBSs) on the nZVAl particle (Ileri and Dogu 2022). 
The removal efficiencies of MB at different pH values (2–12) 
are presented in Fig. 4a. For each pH value, all experimental 
factors were kept constant at an initial MB concentration of 
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10 mg/L, stirring rate of 150 rpm, nZVAl dosage of 0.5 g/L, 
and temperature of 30 °C, except residence time which var-
ied from 10 to 120 min. In the acidic media (pH 2–6), the 
surface of aluminum nanoparticles was positively charged 
due to the excess hydronium ions  (H+) in the solution. Thus, 
the MB cationic dye was difficult to be adsorbed as a result 
of the electrostatic repulsion (Saha 2010). There is also a 
high chance that the metal dissolves or separates at low pH 
values, thus reducing its adsorption capacity. The removal 
efficiency of MB improved as pH increased, especially in 
the alkaline media (pH ˃ 6). This is mainly due to the for-
mation of aluminum hydroxide (Al(OH)3) and aluminum 
oxide  (Al2O3) on the surface of the nZVAl which enhances 
the electron transfer between MB dye and the surface of 
the nZVAl (Hu et al. 2011). Gulicovski et al. (2008) have 
reported that the point of zero charge (PZC) for various 
aluminum hydroxides and oxides varies widely from 5 to 
9.6. For this reason, the highest MB removal efficiency was 
reported in the alkaline media at pH 10  (pHsolution >  pHPZC), 
where complexes were formed between the MB cationic dye 
and the negative charge on the nZVAl surface. Additionally, 
the alkaline pH conditions enhance the oxidation of MB 
by nZVAl. At pH 10, the MB removal efficiency increased 
significantly from 71.08 to 97.38% when the residence time 
was increased from 10 to 90 min, respectively. However, 
a further increase in residence time over 90 min showed 
a minor improvement in MB removal efficiency, reaching 
98.44%. A reduction in MB removal was observed at pH 
12, where the excess hydroxides in the solution competed 
with the negative ions on the nZVAl surface (Hamdy et al. 
2019a, b). The same findings were reported in the litera-
ture. Hamdy et al. (2019a, b; Hamdy et al. 2018) have used 
another type of metal (nano zero-valent iron (nZVI)) and 
have reported an increase in MB removal with the increase 
in pH level. SADEK and MOSTAFA (2019) have reported 
that the MB dye is better removed in high alkaline media 
(pH ~ 10). Khosravi and Arabi (2016) have reported that a 
maximum MB removal efficiency of 76.5% was achieved at 
pH 9.5 using nZVI.

Effect of nZVAl dosage

The removal efficiencies of MB at different nZVAl dosages 
(0.1 g/L–1.0 g/L) are presented in Fig. 4b. For each nZVAl 
dosage, all experimental factors were kept constant at pH 
10, an initial MB concentration of 10 mg/L, a stirring rate 
of 150 rpm, and a temperature of 30 °C, except residence 
time, which varied from 10 to 120 min. At a nZVAl dosage 
of 0.1 g/L, an increase in residence time from 10 to 120 min 
resulted in an improvement in MB removal efficiency from 
42.17 to 58.09%, respectively. Additionally, the equilibrium 
time of MB dye adsorption was 90 min. At a residence time 
of 90 min, the MB removal efficiency improved from 58.09 

to 97.38% when the nZVAl dosage was increased from 
0.1 g/L to 1.0 g/L. This indicated a positive correlation 
between the nZVAl dosage and the MB removal efficiency. 
A direct correlation exists between the absorbent dosage and 
the number of free active sites, which leads to the adsorption 
of large amounts of dyes (Arabi and Sohrabi 2014; Hamdy 
et al. 2018; Kavitha and Namasivayam 2007). In a similar 
study, Hamdy et al. (2019a, b) used nZVI for MB adsorp-
tion, and they reported MB removal efficiencies of 91% at 
nZVI dosages of 2 g/L, using 10 mg/L initial dye concentra-
tion at residence time 30 min, pH 6, stirring rate 150 rpm, 
and temperature 30 °C. In another study, Salimi et al. (2019) 
investigated the adsorption of MB dye onto nano copper 
goethite (Cu-goethite), and they achieved removal efficien-
cies of 77 and 93% at Cu-goethite dosages of 0.001 and 
0.2 g, respectively, using 10 mL of MB dye solution at a 
concentration of 40 mg/L at pH 9.

Effect of the initial MB concentration

The removal efficiencies of MB at different MB concen-
trations (10 mg/L–80 mg/L) are presented in Fig. 4c. For 
each MB concentration, all experimental factors were kept 
constant at pH 10, nZVAl dosage 1.0 g/L, stirring rate of 
200 rpm, and temperature of 30 °C, except residence time 
which varied from 10 to 120 min. At an initial MB con-
centration of 10 mg/L, the removal efficiency increased 
from 78 to 100% when the residence time increased from 
10 to 120 min, respectively. At 90 min of residence time, 
the removal efficiency of 99% was achieved at an initial MB 
concentration of 10 mg/L, which decreased to 80% with 
increasing the initial MB concentration to 80 mg/L. At high 
dye concentrations, an increase in intermolecular competi-
tion occurs on the sorbent surface due to the limited adsorp-
tion sites (Petala et al. 2013; Sadegh et al. 2017; Wei et al. 
2019a). However, at low MB concentration, the percentage 
of the total adsorbate compounds to the surface active sites 
is low, and thus, the majority of the molecules can bond to 
the nanomaterial surface (Hamdy et al. 2019a, b; Mahmoud 
et al. 2021a, b, c, d; Pathania et al. 2017).

Effect of stirring rate

The removal efficiencies of MB at different stirring rates 
(100 rpm–300 rpm) are presented in Fig. 4b. For each stir-
ring rate, all experimental factors were kept constant at 
pH 10, nZVAl dosage 1.0 g/L, an initial MB concentration 
of 10 mg/L, and temperature of 30 °C, except residence 
time which varied from 10 to 120 min. At a stirring rate 
of 100 rpm, the MB removal efficiency increased from 
65.99% to 87.96% when the residence time was increased 
from 10 to 120 min. These results indicated that the MB 
removal efficiency continued to increase till the end of the 
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experiment, which may be due to insufficient residence time 
to reach a state of equilibrium (A. Hamdy et al. 2019a, b). 
At a stirring rate of 200 rpm, the MB removal efficiency 
increased with time, reaching the equilibrium condition 
after 90 min of residence time. A stirring rate of 200 rpm 
enhanced the solid–liquid phase mass transfer by increas-
ing the chance of dye molecules coming into contact with 
nZVAl nanoparticles. Then, the MB removal efficiencies 
decreased by increasing the stirring rates to 250 rpm and 
300 rpm, which is mainly due to the unstable attachment 
mechanism (El-Sayed 2011). At high stirring rates, a distur-
bance may occur to the electrostatic forces within the system 
(Djenouhat et al. 2008; Mahmoud et al. 2018a).

Effect of temperature

The removal efficiencies of MB at different adsorption tem-
peratures (30 °C–60 °C) are presented in Fig. 4e. For each 
adsorption temperature, all experimental factors were kept 
constant at pH 10, nZVAl dosage of 1.0 g/L, an initial MB 
concentration of 30 mg/L, and a stirring rate of 200 rpm, 
except residence time, which varied from 10 to 120 min. At 
a temperature of 30 °C, the MB removal efficiency increased 
from 75 to 87%, when the residence time increased from 
10 to 120 min. At 90 min of residence time, the removal 
efficiency of 85% was achieved at an adsorption temperature 
of 30 °C, which increased to 96% by increasing the adsorp-
tion temperature to 60 °C. At high temperatures, the activa-
tion energy barrier decreases, which results in an increasing 
rate of adsorption (Alharby et al. 2021a). Additionally, high 
adsorption temperatures may result in increasing the rate 
of intraparticle diffusion of MB molecules into the nZVAl 
(Doǧan et al. 2004). Results also demonstrated that the equi-
librium time decreased from 40 to 20 min, when the temper-
ature increased from 30 to 60 °C, respectively. This indicates 
that the adsorption process of dye molecules onto nZVAl 
is most probably endothermic (Alguacil and López 2021).

Effect of detergents

Real dye wastewater may contain different types of deter-
gents that are normally applied in the cleaning process. 
In this study, the effect of two liquid detergents (Vanish 
granules and Ariel) on MB removal efficiency was exam-
ined under the optimum operating conditions. As shown in 
Fig. 4f, the MB removal efficiency has decreased from 80% 
(no detergents added) to 75 and 54% after adding liquid Van-
ish granules at a concentration of 0.1 and 0.5 g/L, respec-
tively, at 30 min residence time. Similar behaviors were 
observed for solutions containing liquid Ariel. This may be 
due to the competition between detergent substances and MB 
molecules for reactive/available sites, as well as the block-
ing that may occur to the adsorptive sites of the aluminum 

nanoparticles, where a passive layer of detergent substances 
is formed and covers the nZVAl surface (Velusamy et al. 
2021). Hamdy et al. (2018) stated that the existence of the 
phosphate groups in the detergents may play a key role in 
the formation of secondary minerals, which decrease the MB 
dye adsorption using nZVAl. However, a different behavior 
was observed when significantly increasing the concentra-
tion of the detergents in the solution from 0.5 to 5 g/L. An 
improvement in the MB removal efficiency was observed 
for a concentration of 5 g/L compared to 0.5 g/L for both 
types of detergents applied in this study. This result could 
be attributed to the generation of reactive oxygen species 
(ROS), which enhances the degradation of dye compounds 
(Arslan-Alaton et al. 2017; Asghar et al. 2015). Fenton's pro-
cess uses  O2 with metal ions such as iron and/or aluminum 
to generate ROS (Asghar et al. 2015).

Effect of ionic strength

Real dye wastewater normally contains different types of 
inorganic salts, which are applied in large quantities dur-
ing manufacturing, such as sodium chloride (NaCl), sodium 
sulfate  (Na2SO4), and sodium carbonate  (Na2CO3). The MB 
removal efficiency was examined by taking into considera-
tion the ionic strength at pH 10, nZVAl dosage of 1.0 g/L, 
an initial MB concentration of 30 mg/L, a temperature of 
30 °C, and stirring rate of 200 rpm, during residence time 
varied from 10 to 120 min. For example, at 30 min of resi-
dence time, the MB removal efficiency increased from 80.4 
to 100% with increasing the  Na2SO4 concentration in the 
solution from 0 to 8.43 M, respectively (Fig. 5a). Simi-
lar behavior was observed for NaCl and  Na2CO3 (Fig. 5b, 
c). The salt ions play a key role in forcing MB molecules 
to aggregate and migrate toward the surface of the adsor-
bent, which significantly enhances removal efficiency. The 
enhancement in MB removal after adding salts could also be 
due to the dimerization of dye molecules in aqueous solu-
tions (Kuo et al. 2008). Hamdy et al. (2018) found that an 
increase in  Na2SO4 from 0 to 5 g/L caused an improvement 
in MB removal efficiencies from 96.8% to 99.5%, respec-
tively, using an nZVI dosage of 10 g/L at 30 min residence 
time. Their study (Hamdy et al. 2018) also suggested that 
the dimerization of dye molecules and/or the dye mol-
ecules accumulation is the main reason for such improve-
ment in dye removal. Satapanajaru et al. (2011) observed 
an improvement in the removal efficiencies of reactive red 
198 (RR198) and reactive black 5 (RB5) dyes after increas-
ing the NaCl concentration from 0.1 to 1% (w/v), using an 
nZVI dosage of 0.5 g/L. Satapanajaru et al. (2011) have 
reported that the pitting corrosion by NaCl played a great 
role in enhancing the degradation rates of dye compounds in 
the nano-treatment system. Bellir et al. (2012) observed an 
improvement in the removal efficiency of basic dye (Gentian 
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Viole) by 9% after increasing the NaCl concentration from 
0 to 0.1 M, using a bentonite dosage of 1.0 g/L at a 30 min 
residence time. Their study (Bellir et al. 2012) suggested that 
an increase in salt ions causes pressure on the thickness of 
the diffuse double layer, thus increasing the attractive force 
between adsorbate species and adsorbent particles. Bellir 
et al. (2012) also stated that an increase in salt ions could 
enhance the dye adsorption on the surface of adsorbents by 
forcing the dye molecules to aggregate. Yang et al. (2011) 
mentioned that the ionic strength also controls the absorp-
tion process, where the increase in ionic strength causes 
the absorption capacity to increase. The presence of  Na+ 
increases the absorption capacity of MB by reducing the 
interaction of MB molecules with  H2O, making it more 
amiable to graphene oxide (GO). Additionally, sodium ions 
inhibit the ionization of GO. It appears that the hydrophobic-
ity of both MB and GO is enhanced by an increase in ionic 
strength. The control experiment (without the presence of 
GO) indicates that the removal of MB by direct centrifu-
gation is not significantly affected by the increase in ionic 
strength when MB concentrations are low, where the adsorp-
tion capacity remained nearly unchanged. In addition, Zhang 
et al. (2021) reported the same behavior for the adsorption 
of MB by magnetic MOF with aluminum core/shell nano-
composite  (Fe3O4@MIL-53(Al)), where they stated that 
the effect of ionic strength on adsorption is mainly reflected 
in two aspects: the salting-out effect and the competition 

effect. Thus, in the case of the  Fe3O4@MIL-53(Al) adsorp-
tion system for MB, the salting-out effect was dominant due 
to the increase in adsorption capacity on increasing the ionic 
strength. Accordingly, we suggest that the interaction of MB 
with nZVAl in the presence of salts follows a similar man-
ner. However, a different behavior was observed by Fan et al. 
(2009). They stated that competition may occur between salt 
ions and dye molecules for the adsorptive sites in case the 
salt ions increase over a threshold level, which could hinder 
the removal of the dye.

Comparison of MB removal by various Adsorbents

Table 1 includes the removal efficiencies of MB dye by some 
adsorbent materials reported in the literature compared to 
nZVAl applied in this study. It was observed that there was 
a large variation in the removal efficiencies between dif-
ferent adsorbent materials, which is due to the variation in 
the experimental conditions (e.g., adsorbent dosage, pH, 
initial dye concentration). However, it is worth mentioning 
that nZVAl exhibited a higher MB removal efficiency than 
some adsorbents, such as biochar prepared from Eucalyptus 
sheathiana bark, spinel magnesium aluminate nanoparticles, 
N. zanardinii macroalga, date palm leaves, formaldehyde-
treated sawdust, agricultural residue walnut shell, multi-
walled carbon nanotubes, and zeolite synthesized from coal 
fly ash. The following adsorbent materials: nZVI, sulfuric 
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acid-treated sawdust, oil palm waste-derived ACs, coir pith 
carbon, titanium dioxide nanoparticles, wheat shells, and 
tea waste exhibited a comparable MB removal efficiency 
to nZVAl but using higher dosages of these adsorbents. In 
addition, AC, graphene oxide, jute fiber carbon, and kaolin 
exhibited a comparable MB removal efficiency to nZVAl, 
but at a lower dosage. However, the nZVAl achieved 100% 
removal efficiency at a slower reaction time compared to 
these four adsorbents.

Adsorption isotherm

Isotherm studies are employed using Langmuir and Fre-
undlich isotherms to explain the adsorption equilibrium 
between MB molecules and the nZVAl.

Langmuir isotherm model

The Langmuir isotherm describes the adsorption process 
based on some assumptions (Langmuir 1918): (1) adsorp-
tion of molecules occurs in only one layer on the surface of 
the adsorbent (monolayer adsorption); (2) adsorption takes 
place at specific homogeneous sites; and (3) strong attraction 
occurs between the surface of the adsorbent and the adsorb-
ate (Langmuir and Waugh 2002). The linearized form of the 
Langmuir isotherm model is presented in Eq. (9) (Mahmoud 
and Mahmoud 2022).

where Ce is the MB dye concentration in the aqueous solu-
tion at equilibrium (mg/L), Qm is the maximum adsorption 
capacity, qe is the amount of MB molecules adsorbed at 
equilibrium per gram of nZVAl (mg/g), and  KL is the Lang-
muir constant (L/mg).

Figure 6a shows a linear plot of Ce/qe (g/L) versus Ce 
(mg/L), which gives an intercept of 1/(KL × Qm) and a slope 
of 1/Qm. The model constants are Qm = 4.24  mg/g and 
KL = 0.122 L/mg. The coefficient of determination (R2) for 
the Langmuir model was calculated as 0.8253. The low R2 
value indicates a poor model fit when compared with the 
experimental data. Therefore, the removal of MB dye by 
nZVAl did not follow the monolayer adsorption process.

Freundlich isotherm model

Freundlich's isotherm assumption is based on the formation 
of a heterogeneous surface of the adsorbates on the adsor-
bent surface (Ahmed Hamdy et al. 2019a, b). Equation (10) 
represents the linearized form of the Freundlich isotherm 
model (Hamdy et al. 2021).

(9)
Ce

qe
=

(

1

Qm

)

Ce +
1

KL.Qm

where KF is the Freundlich constant describing the multi-
layer adsorption capacity (mg/g)·(L/mg)1/n, and 1/n is the 
Freundlich constant describing the adsorption intensity/
strength.

Figure 6b shows a linear plot of log(qe) (mg/g) versus 
log(Ce) (mg/L), which gives an intercept of log(KF) and 
a slope of 1/n. A high R2 value (0.9569) indicated a good 
model fit when compared with the experimental data and 
suggests that multilayer adsorption played a great role in 
MB dye removal. The results also indicated that the het-
erogeneous adsorbent surface of nZVAl resulted in a high 
affinity toward cationic dye (MB). The model constants 
are 1/n = 0.4926 L/g and KF = 1.45 (mg/g)·(L/mg)1/n. The 
value of 1/n is less than unity, demonstrating the favorable 
adsorption of MB molecules onto nZVAl. Table 1 includes 
the isotherm model constants for the adsorption of MB by 
some adsorbent materials reported in the literature compared 
to the nZVAl applied in this study. The nZVAl achieved 
higher adsorption capacity than coir pith carbon (Kavitha 
and Namasivayam 2007), biochar prepared from eucalyptus 
sheathiana bark (Dawood et al. 2016), spinel magnesium 
aluminate nanoparticles (Ismail et al. 2013), N. zanardinii 
macroalga (Daneshvar et al. 2017), date palm leaves (Goua-
mid et al. 2013), and wheat shells (Bulut and Aydin 2006), 
but lower than oil palm waste-derived ACs (Baloo et al. 
2021), AC (Li et al. 2013a, b), agricultural residue walnut 
shell (Tang et al. 2017), tea waste, graphene oxide (Li et al. 
2013a, b), AC prepared from pea shells (Geçgel et al. 2013), 
activated lignin-chitosan pellets (Albadarin et al. 2017), and 
multi-walled carbon nanotubes (Li et al. 2013a, b;).

Kinetic studies

Kinetic studies are employed using pseudo-first-order (PFO), 
pseudo-second-order (PSO), and intraparticle diffusion mod-
els to quantitatively understand the kinetic adsorption of MB 
onto nZVAl.

Pseudo‑first‑order

The PFO model assumes that physical adsorption (phy-
sisorption) occurs between adsorbate species and adsor-
bent particles, and both hydrogen bonds and van der Waals 
forces have a great impact on the bonding between sorbate 
and sorbent (Mahmoud et al. 2019; Wu et al. 2021). Equa-
tion (11) represents the linearized form of the pseudo-first-
order model (Abdelmigeed et al. 2022).

(10)log
(

qe
)

=
(

1

n

)

log
(

Ce

)

+ log
(

KF

)
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where  k1 is the pseudo-first-order constant (mg/g min) and qt 
and qe are the amounts of adsorbed molecules at time t and 
equilibrium, respectively (mg/g).

Figure 7a shows a linear plot of time versus log(qe–qt), 
which gives an intercept of log(qe) and a slope 
of −  k1/2.303. The model constants are qe = 3.22 mg/g and 
k1 = 0.0274  min−1. The coefficient of determination (R2) 
for the pseudo-first-order model was calculated as 0.9016. 
Although the R2 value for the pseudo-first-order model is 
high, it is lower than the R2 value for the pseudo-second-
order model, which will be discussed in the following sec-
tion. Therefore, the pseudo-first-order equation is not the 
best model to describe the kinetic adsorption of MB onto 
nZVAl.

Pseudo‑second‑order

The pseudo-second-order (PSO) model assumes that a 
chemisorption reaction commonly occurs, in which elec-
trons are covalently exchanged or shared between sorbate 
and sorbent (Ho and McKay 1999; Mahmoud et al. 2022). 
Equation (12) represents the linearized form of the pseudo-
second-order model.

where  k2 is pseudo-second-order constant (g/mg.min).
Figure 7b shows a linear plot of time versus t/qt, which 

gives an intercept of 1/(k2 × qe
2) and a slope of 1/qe. The 

model constants are qe = 26.2 mg/g and k2 = 0.0212 (g/
mg.min). A high R2 value (0.9999) indicated a good model 
fit when compared with the experimental data and suggests 
that chemisorption plays a great role in MB dye removal, 
where a chemical bond occurs between MB molecules 
and the active sites of the nanoparticles. Additionally, 

(11)log
(

qe − qt
)

= log
(

qe
)

−
k1

2.303
t

(12)
t

qt
=

1

k2xq
2
e

+
1

qe
t

the adsorption capacity obtained from the experiment 
(qe, exp = 26.0 mg/g) was close to the one calculated by the 
model (qe, cal = 26.2 mg/g). Table 1 includes the kinetic 
model constants for the adsorption of MB by some adsor-
bent materials reported in the literature compared to the 
nZVAl applied in this study. The nZVAl achieved a higher 
adsorption capacity than activated lignin-chitosan pellets, 
date palm leaves, wheat shells, N. zanardinii macroalga, tea 
waste, and nZVI.

Intraparticle diffusion model

Equation (13) represents the intraparticle diffusion equation, 
which is mainly applied to describe the different adsorption 
stages (surface and pore volume diffusions) (WeberJr. and 
Morris, 1963).

where C is the model constant (mg/g), and  kp is the intrapar-
ticle diffusion model rate constant (mg/g/min0.5).

Figure 7c shows a plot of t0.5 versus qt, generating two 
straight lines with different slopes. In the initial phase, a faster 
mass transfer of ions to the adsorbent boundary layer occurred 
externally (kp = 0.914 mg/g/min0.5). In the following stage, the 
intraparticle diffusion of ions is considerably slow inside the 
adsorbent pores (kp = 0.1568 mg/g/min0.5).

Thermodynamic study

Van't Hoff and Gibbs–Helmholtz equations were used to com-
pute the thermodynamic characteristics of MB adsorption on 
nZVAI under various temperatures (303, 313, 323, and 333 K). 
These parameters include Gibbs free energy (G°), enthalpy 
(H°), and entropy (S°) (Eqs. (14–17)):

(13)qt = kp ⋅ t
0.5 + C

(14)ΔG
◦

= ΔH
◦

− TΔS
◦

(15)ΔG
◦

= −RT lnK
◦
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Fig. 6  Isotherm studies for the adsorption of MB dye onto nZVAl: a Langmuir model (linear form), b Freundlich model (Linear form)
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where K° is the equilibrium constant (mL/g), Ce is the 
equilibrium concentration of MB (mg/L),  qe is the uptake 
amount of MB at equilibrium (mg/g), T is the absolute tem-
perature (K), R is the gas constant (J  mol−1  K−1), and ΔH° 
(J/mol) and ΔS° (J  deg−1  mol−1) were determined from the 
slope and intercept of plot ln K° versus 1/T, respectively 
(Hamdy 2021).

Batch experiments of MB removal were performed at dif-
ferent operating temperatures ranging from 303 to 333 K in 
order to evaluate the effect of temperature on the removal 
of MB by nZVAl nanoparticles where the uptake of MB 
dye increased with increasing temperature at the same 
adsorption time. Van't Hoff and Gibbs–Helmholtz equa-
tions were used to compute the thermodynamic parameters 
such as Gibbs free energy (ΔG°), enthalpy change (ΔH°), 
and entropy change (ΔS°). The calculated ΔG° values for 
the adsorption of MB dye onto nZVAl nanoparticles at all 
temperatures are shown in Fig. 8a and listed in Table 2. The 
values of ΔH° and ΔS° were determined from the slopes 
and intercepts of the plot of ln Kº vs 1/T (Fig. 8b) and are 
also listed in Table 2. It could be observed that with an 
increase in the temperature from 303 to 333 K, the K° values 

(16)lnK
◦

=
−ΔH

◦

RT
+

ΔS
◦

R

(17)K
◦

=
qe

Ce

raised from 307.14 to 739.47 mL/g, respectively. This sug-
gests that the high temperatures increase the interactions 
between the MB molecules and the nZVAl nanoparticles. 
The positive value of ΔH° (+ 23.217 kJ/mol) demonstrates 
the endothermic nature of the removal process and reveals 
that the adsorption process is an energy-consumption pro-
cess because, at relatively high temperatures, the dye efflu-
ents are usually produced and increase the diffusion of the 
dye in the solution, which increases the dye adsorption rate. 
This supports the results obtained earlier where the MB dye 
uptakes increase with the increase in solution temperature 
(Soldatkina and Yanar 2021).

While the enthalpy range for physisorption is between 
20 and 40 kJ/mol, the value for chemisorption is between 
80 and 400 kJ/mol (Chowdhury et  al. 2012). Thus, the 
positive value and low heat quantity required for enthalpy 
demonstrated that MB adsorption was physically natural. 
Although the process was physical in nature, as the tem-
perature increased, the nZVAl nanoparticles' capacity also 
increased. This result was explained by the fact that the 
vibrational energies of MB molecules increased as they 
reacted with nZVAl nanoparticles at high temperatures. In 
terms of enthalpy value, the ion exchange reaction is typi-
cally between physical adsorption and chemical sorption. 
However, in our study, based on thermodynamic investi-
gation, the process was identified as physical adsorption 
because the ΔH° value is 23.217 kJ/mol. The isotherm 
form of MB adsorption onto nZVAl nanoparticles suggests 
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that solid–solid attractive forces were prominent in MB 
adsorption, indicating the occurrence of physical monolayer 
adsorption. Similar results were also observed in the litera-
ture (Fil et al. 2014).

Additionally, the positive values of ΔS° represented that 
the degree of freedom and randomness at the solid–liquid 
interface irregularly increased with concentration decreased 
during the adsorption process. These results were achieved 
due to the strong solute–solute attractive interactions, which 
boosted the adsorption of MB onto nZVAl nanoparticles' 
surface and reduced the rate of adsorption–desorption (Wei 
et al. 2019b). On the contrary, the negative ΔG° values 
(−14.427 to −18.288 kJ/mol) suggested that the feasibility 
of MB removal by nZVAl nanoparticles and the adsorption 
process was of spontaneous nature. In addition, the decrease 
in the value of ΔG° with an increase in the temperature of 
the solution has demonstrated that the adsorption of MB 
is thermodynamically favored at higher temperatures, and 
the adsorption mechanism is physisorption. This phenom-
enon has also been observed in the adsorption of MB onto 
peat (Fernandes et al. 2010) and onto AC at different ionic 
strengths (Ghasemi and Asadpour 2007).

Activation parameters

From the pseudo-second-order rate constant k2 (Table 3), 
the activation energy Ea for adsorption of MB onto nZVAl 

nanoparticles was determined using the Arrhenius equation 
(Eq. (18)) (Alharby et al. 2021b):

where A is the Arrhenius constant, k is the rate constant, R is 
the gas constant (8.314 J  mol−1  K−1), ΔEa is the activation 
energy (kJ  mol−1), and T is the temperature (K). ΔEa can be 
obtained from the slope of a plot of ln k2 vs 1/T.

The degree of activation energy may provide insight into 
the type of sorption. Adsorption can be classified as either 
a physical or chemical type. Because the forces involved in 
physical adsorption are weak, the activation energy is usu-
ally < 40 kJ  mol−1. While the chemical reaction process is 
represented by higher values because chemical adsorption 
is more specific and involves forces that are much stronger 
than in physical adsorption. In this work, the slope and inter-
cept of the ln  k2 vs 1/T plot were used to determine the 
values of ΔEa and A (Fig. 9). The ΔEa was calculated to 
be 17.65 kJ  mol−1 and A to be 18.65 g.mg−1.min−1 for the 
adsorption of MB on nZVAl nanoparticles (Table 3). It was 
easily concluded that the activation energy value was posi-
tive and lower than 40 kJ/mol indicating that the feasibility 
of the adsorption process and that the process might involve 
active physical adsorption. Consequently, the adsorption 
process is physically diffusion-controlled, and intra-particle 
diffusion is the rate-limiting step in adsorption. Accordingly, 

(18)ln k2 = lnA −
ΔEa

RT

Fig. 8  a Plot of Gibbs’ free energy change vs temperature, b Plot of ln Kº vs 1/T to determine the enthalpy (ΔH°) and entropy (ΔS°)

Table 2  The thermodynamic 
parameters and the distribution 
and adsorption constants for the 
adsorption of MB onto nZVAl 
nanoparticles ([MB] = 30 mg/L; 
nZVAI dosage = 1 g/L) at 
different temperatures

T (ºK) Kº (mL/g) Ln Kº ΔGº (kJ/mol) ΔHº (kJ/mol) ΔSº (J 
 deg−1  mol−1)

R2

303 307.14 5.7273 −14.427 23.217 124.24 0.9332
313 393.78 5.9758 −15.550 49.682
323 456.58 6.1237 −16.444 50.913
333 739.47 6.6059 −18.288 54.921
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the MB adsorption onto nZVAl is expected to occur by spon-
taneous and endothermic physisorption. This agrees with 
other results of this study, and with the results of Suteu and 
Malutan (2013).

Artificial neural network

Adjusted weights and biases

A weight matrix (W10×11) was generated as a result of the 
connection between each hidden layer neuron and each 
component of the input vector (P11×1). A net input (u10 × 
1 = ΣW10×11.P11×1 + b10×1) was produced after adding the 
weighted input (ΣW10×11.P11×1) to the 10-length bias (b10×1). 
The “tansig” function is used to transfer this net input to 
the output layer. A weight matrix (W1×10) was generated 
because of the connection between the output layer single 
neuron and each hidden layer neuron (P10×1). A net input 
(u1×1 = ΣW1×10.P10×1 + b1×1) was produced after adding the 
weighted input (ΣW1×10.P10×1) to 10-length bias (b1×1). The 
“tansig” function is then used to transfer this net input to 
the output layer.” function is used to transfer this net input 
to the output layer.

Training and validation performance

As shown in Fig. 10a, the training step was conducted with 
(6) validation checks and the gradient magnitude (2.3989) 
exceeded the least error level  (1e−5). Since the maximum 
allowable number of validation checks is 6 epochs, the train-
ing step was terminated for this reason. Figure 10b shows a 
plot of MSE versus epoch number. For the training step, a 
normal trend was observed and the MSE reduced gradually, 
where the lowest value was recorded at epoch 6. For both 
the validation and test steps, the MSE increased gradually 
after epoch 0. This trend for the validation step indicates data 
overfitting. The best validation performance was reported as 
10.7804 at epoch 0.

Regression plot

Figure 10c shows a plot of network targets versus net-
work outputs. The dashed and solid lines indicate the per-
fect result and the best-fitting, respectively. The R2 values 

were reported as 0.974 for training, 0.970 for validation, 
and 0.960 for testing, which indicates a strong correlation 
between the output and the target data. The proposed model 
was also proved to be reliable in predicting the MB removal 
efficiency, where the overall R2 value was 0.970. Conse-
quently, 97% of the variations in MB removal efficiency by 
nZVAl were explained by the 11 parameters considered in 
this study (residence time, initial MB concentration, tem-
perature, pH, stirring rate, nZVI dosage, the concentration 
of two detergents: Ariel and Vanish, and the concentration 
of three salts: NaCl,  Na2CO3, and  Na2SO4). Thus, the cre-
ated ANN can be a useful tool in precisely estimating the 
MB removal efficiency, taking into consideration the studied 
range.

Cost estimation of scaling up the adsorption unit

In this section, the Capital Expenditures (CAPEX) and the 
Operating Expenses (OPEX) were calculated based on a 
study by (Hamdy et al. 2019a, b), which used iron nano-
particles to remove MB from aqueous solutions. The cost 
was estimated based on the optimal operating conditions 
obtained during lab experiments.

Amortization cost (AC)

The amortized cost represents the annual interest expendi-
tures out of the capital costs over the lifetime of the treat-
ment unit. The capital cost was multiplied by an amortiza-
tion factor (α) for AC estimation (Eq. (19)).

Table 3  Activation parameters 
for adsorption of MB 
onto nZVAl nanoparticles 
([MB] = 30 mg/L; nZVAI 
dosage = 1 g/L) at different 
temperatures

T 1/T k2 (g  mg−1  min−1) ln k2 ΔEa (kJ  mol−1) A (g  mg−1  min−1) R2

303 0.0033 0.018 −4.0173 17.644 18.654 0.723
313 0.003195 0.0175 −4.04555
323 0.003096 0.0319 −3.44515
333 0.003003 0.0297 −3.51661

Fig. 9  The plot of rate constant (ln k2) vs temperature (1/T) to deter-
mine the activation energy (ΔEa) of the reaction
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where AC is the expenses per  m3 of treated wastewater, α is 
an amortization factor (Eq. (20)), I is the annual amortiza-
tion cost obtained from local providers (i.e., 5000 $/year), tW 
is the daily working hours (i.e., 18 h/day), tR is the treatment 
time (i.e., adsorption time = 90 min), D is the operating days 
per year (assuming 260 days/year), V is the volume of treat-
ment tank  (m3), and D is the yearly operating days (assuming 
260 days/year) (Eq. (21)).

where i is the annual interest rate (assuming 0.04%), Q is the 
daily wastewater discharge  (m3/day), and L is the lifetime 
(i.e., 10 years).

(19)AC
(

$∕m3
)

=

(

I

V .D
x
tR

tW

)

x�

(20)� =
i(1 + i)L

(1 + i)L − 1

(21)V = Qx
tR

tw

Operating cost (OC)

The OC was calculated by summing the following three 
items: (1) cost of reagent (material), (2) maintenance cost, 
and (3) energy cost (Gar Alalm and Nasr 2018). Equa-
tion (22) was used to estimate the cost of reagents (e.g., for 
pH adjustment). The cost of labor was excluded from this 
study since the same labor working in the facility will oper-
ate the treatment unit.

where RC is the reagent cost per  m3 of treated wastewater ($/
m3), P is the cost per gram of reagent ($/g), and C is chemi-
cal dosage (g/m3).

Equation (23) was used for energy cost estimation.

where E is the hourly cost of electricity ($/h), and EC is 
the energy cost per  m3 of treated wastewater ($/m3). The 
maintenance cost was assumed 2% of the yearly investment 
(MC = 0.02 × AC).

(22)RC = C × P

(23)EC =
ExtW

Q

Fig. 10  Prediction of MB removal efficiency using ANN: a training performance, b best validation performance, and c regression plot between 
target and output
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Total cost (TC)

The cost was estimated by assuming the daily flow rate 
is about 100  m3 (Table 4). In this case, the volume of the 
adsorption tank will be 8.33  m3. Consequently, the AC was 
estimated at US$ 0.16/m3, equivalent to 12.2% of the TC. 
The EC was calculated as US$0.15/m3 using an electricity 
tariff of US$ 0.10/kWh (A. S. Mahmoud et al. 2021c). The 
RC cost for adsorbent material was about US$ 1.0/m3. The 
MC was estimated at US$ 0.0032/m3. Therefore, the OC 
was 1.15 $/m3 (i.e., 87.8% TC), resulting in a TC of US$ 
1.31/m3. In a comparable study, (Mahmoud et al. 2021c) 
found that the total cost of treating real textile wastewater 
using an adsorption process (nano bimetallic iron/copper 
(Fe/Cu)) was US$ 6.0/m3. Hamdy et al. (2018) also found 
that the total cost of removing MB from aqueous solutions 
using the adsorption process (iron nanoparticles) was US$ 
1.66/m3.

Conclusion

This study demonstrated that the nZVAl particles are effec-
tive in the adsorption of MB from aqueous solutions. A 
removal efficiency of 99% was achieved at an initial MB 
concentration of 10 mg/L, pH 10, nZVAl dosage of 1.0 g/L, 
stirring rate of 200 rpm, the temperature of 30 °C, and an 
equilibrium time of 90 min. A reduction in MB removal 
efficiency was observed in the presence of detergents, while 
the presence of inorganic salts resulted in an improvement 
in MB removal efficiency. The adsorption data were well 
described by the Freundlich isotherm model (R2: 0.9569, 
KF = 1.45 (mg/g)·(L/mg)1/n) and the pseudo-second-
order kinetic model (R2: 0.9999, qe = 26.2 mg/g). Based 
on the thermodynamic study, the positive value of ΔH° 
(+ 23.217 kJ/mol) demonstrated the endothermic nature of 
the removal process and reveals that the adsorption process 
is an energy-consumption process. The enthalpy positive 
value and low heat quantity required for enthalpy demon-
strated that MB adsorption was physically natural. The total 
treatment cost, including capital expenditures and operating 

expenses, is about US$ 1.31 per cubic meter. Under the stud-
ied 11 parameters, the ANN model was able to precisely 
predict the MB removal efficiency with an R2 value of 0.97. 
This model can also be used to maximize MB uptake by 
nZVAl under different environmental conditions.
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