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Abstract
Drought, rising demand for water, declining water resources, and mismanagement have put society at serious risk. Therefore, 
it is essential to provide appropriate solutions to increase water productivity (WP). As an element of research, this study 
presents a hybrid machine learning approach and investigates its potential for estimating date palm crop yield and WP under 
different levels of subsurface drip irrigation (SDI). The amount of applied water in the SDI system was compared at three 
levels of 125% (T1), 100% (T2), and 75% (T3) of water requirement. The proposed ACVO-ANFIS approach is composed 
of an anti-coronavirus optimization algorithm (ACVO) and an adaptive neuro-fuzzy inference system (ANFIS). Since the 
effect of irrigation factors, climate, and crop characteristics are not equal in estimating the WP and yield, the importance of 
these factors should be measured in the estimation phase. To fulfill this aim, ACVO-ANFIS employed eight different feature 
combination models based on irrigation factors, climate, and crop characteristics. The proposed approach was evaluated on a 
benchmark dataset that contains information about the groves of Behbahan agricultural research station located in southeast 
Khuzestan, Iran. The results explained that the treatment T3 advanced data palm crop yield by 3.91 and 1.31%, and WP by 
35.50 and 20.40 kg/m3, corresponding to T1 and T2 treatments, respectively. The amount of applied water in treatment T3 
was 7528.80  m3/ha, which suggests a decrease of 5019.20 and 2509.6  m3/ha of applied water compared to the T1 and T2 
treatments. The modeling results of the ACVO-ANFIS approach using a model with factors of crop variety, irrigation (75% 
water requirement of SDI system), and effective rainfall achieved RMSE = 0.005, δ = 0.603, and AICC = 183.25. The results 
confirmed that the ACVO-ANFIS outperformed its counterparts in terms of performance criteria.
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Introduction

Date palm scientifically known as  Phoenix dactylifera 
L., is the sixth most important horticultural product in Iran, 
accounting for about 5.5% of its total horticultural produc-
tion (Dehghanisanij and Salamati 2017; Agricultural sta-
tistics 2018). Due to the specific climatic conditions such 
as drought, increasing demand for water, decreasing water 
resources in the southern regions of Iran, implementation 
of new pressurized irrigation systems and using fertiliza-
tion in groves seem necessary. The realization of sustainable 
agriculture in any region requires efficient water manage-
ment strategies. One of the efficient irrigation systems that 
have performed positively is the subsurface drip irrigation 
(SDI) system (Ahmed Mohammed et al. 2020; Mohammed 
et al. 2021a, b; Alnaim et al. 2022). The main objective 
of the SDI system is to increase water productivity (WP) 
(Dehghanisanij and Salamati 2017). Scientific studies show 
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that using the SDI method reduces water consumption by 
25–50% for row crops and citrus orchards compared with 
surface drip irrigation (Davis 1967). In the SDI method, 
soil moisture during the crop growth period is close to the 
field capacity (FC) and the crop receives its required water 
without consuming large energy (Al Wahaibi 2018; Ahmed 
Mohammed et al. 2020; Mohammed et al. 2021a, b).

The rising demand for agricultural products and diffi-
culties in accessing farm data demonstrate the need to use 
appropriate models to estimate crop yields and WP. Most 
input parameters of crop models are not available in Iran. 
Crop management, crop nutrition, irrigation, soil character-
istics, and climatic conditions are among the factors influ-
encing the estimation of yield and energy consumption. Due 
to the impossibility of simultaneously studying the effects 
of irrigation, soil, and climate on the crop, efficient WP and 
yield estimation methods are required (Golabi et al. 2013). 
Powerful statistical techniques and neural networks have 
led to the development of yield and WP estimation models 
(Safari et al. 2019; Bagheri et al. 2012).

Researchers in simulating variables such as the amount 
of weekly evapotranspiration (Landeras et al. 2009), daily 
evaporation (Piri et al. 2009), predicting air temperature 
(Smith et al. 2009), solar radiation (Mubiru 2008), pre-
dicting the performance of pressurized irrigation systems 

(Ababaei and Verdinejad 2013), have used artificial neural 
networks (ANNs). In recent years, artificial intelligence (AI) 
methods are powerful alternatives to calculate the yield and 
WP parameters. Table 1 lists some of the recent studies that 
employed meta-heuristic algorithms to estimate WP and 
yield parameters.

Determining the harvest time is one of the main decisions 
of harvest management. Harvesting sooner or later than opti-
mum date will lead to a reduction in revenue. The purpose 
of this study is to evaluate the ability of intelligent hybrid 
approaches based on artificial intelligence in estimating WP 
and date palm crop yield under SDI for planning at harvest 
time. It is also possible to select the best possible features 
from the factors affecting the date palm crop yield using the 
proposed hybrid approach, and the modeling process using 
these features.

Materials and methods

Case study

This study was conducted at Behbahan agricultural research 
station located in Khuzestan, Iran. This station is situated 
5 km northeast of Behbahan city at 30° 35'N and 50° 16'E. 

Table 1  Some key points of intelligent methods for estimating yield and WP

Method Inference

ANNs (Shirdeli and Tavassoli 2015) The use of the ANNs can improve the cultivation of saffron in arid and 
semi-arid regions

Random forest (RF) (Jeong et al. 2016) The RF algorithm has a high capability in estimating crop yield by 
considering the minimum number of parameters

An improved genetic algorithm (GA)-back propagation (BP) (Gu et al. 
2017)

The GA-BP algorithm describes the relationship between yield and 
irrigation water under subsurface drip irrigation more accurately

ANNs (Abrougui et al. 2019) ANNs have good efficiency in estimating crop yield
Boosted tree regression (BRT) and probabilistic neural network 

 (ANNPNN) (Zhang et al. 2019)
ANNPNN performs better in modeling the rice yield response function

Radial basis function (RBF) and feed-forward neural (GFF) models 
(Emami and Choopan 2019)

The RBF model with the input parameter of irrigation water levels 
could better estimate the barley yield

Fuzzy logic method (Upadhya and Mathew 2020) This method can be helpful in developing the latest irrigation methods 
and optimizing yield

Cloud IoT solution (Mohammed et al. 2021a, b) CSIS validation proved that automatic irrigation of palm trees con-
trolled by sensor-based irrigation scheduling (S-BIS) is more efficient 
than time-based irrigation scheduling (T-BIS)

Season's optimization algorithm (SO) and support vector regression 
(SVR) (Dehghanisanij et al. 2021)

The SO–SVR hybrid method has high efficiency in estimating WP and 
yield

Machine learning algorithms (Rashid et al. 2021) Machine learning approaches accurately predict Palm Oil yield
A hybrid tree growth optimization algorithm (TGO) and adaptive 

neuro-fuzzy inference system (ANFIS) (Dehghanisanij et al. 2022)
Based on the TGO-ANFIS model results irrigation with an equal ratio 

of the well and treated wastewater resulted in improving soil and cot-
ton growth conditions and yield during the study

Supervised learning algorithms (Lad et al. 2022) Estimating crop stability using monitored algorithms helps to increase 
farm yield

ANNs combined with sensitivity analysis (Belouz et al. 2022) The results showed that ANNs provided more accurate predictions of 
greenhouse tomato yield
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Its area is 64 hectares; 62 hectares are arable land. Figure 1 
shows the geographical location of the study area.

Methodology

This study was conducted in the form of a randomized 
complete block design with three replications for 3 years 
(2013–2016). For irrigation management, SDI system at 
three levels based on water requirements of 125% (T1), 
100% (T2), and 75% (T3) and two palm varieties (Khasi 
and Zahedi) were considered as main plots and sub-plots, 
respectively. Date palms were planted as offshoots in 1990. 
The primary method of irrigating the palms was surface irri-
gation. In 2013, date palms were equipped with surface and 
subsurface drip irrigation. The placement of date palms (at 
planting time) has been implemented in three repetitions. 
In other words, at the time of planting, the station of date 
palms was implemented as treatment and replication. Then, 
SDI treatment was implemented for date palms. Therefore, 
the date palms are placed in the main plots, and the different 
irrigation levels treatment placed in the sub-plots. The SDI 
was 16 mm polyethylene pipes equipped with 4 l/h−1 inline 
pressure compensative emitters 70 cm apart. The subsurface 
drip pipes were installed 40 cm below the soil surface, one 
meter from the trunk of the palm tree on each side of the 
row. The trees received 48 l/h−1 through the SDI method 
since 12 emitters belong to each tree. At the inlet of each 

SDI line, sensitive flow meters whose resolution was one-
tenth of a liter were installed. Installation depth, distance of 
emitters from each other and tree trunks were determined 
based on international results and soil texture. The average 
applied water in T1, T2, and T3 treatments was measured as 
1264.80, 1003.88, and 752.88 mm during 3 years, respec-
tively. Zahedi and Khasi varieties are harvested in the form 
of Khalal and Tamr, respectively. The Zahedi variety is har-
vested earlier than the Khasi variety (about 10–15 days). 
Irrigation operation is stopped at the time of harvesting of 
both varieties. The yield of each tree in each treatment was 
calculated once all trees had been harvested and weighed. 
MSTATC statistical software was used to analyze physical 
characteristics and percentages of fruit moisture and total 
sugar. The fruit moisture was determined in a vacuum dryer 
at a temperature of 70 °C according to the AOAC standard 
method (AOAC 1990). The amount of total sugar and regen-
erating sugar was determined by Fehling's method (Hosseini 
1990). Duncan's multiple range test was used to compare the 
means of different treatments.

Irrigation scheduling

The Penman–Monteith equation was used to calculate ref-
erence evapotranspiration based on daily data of Behba-
han synoptic meteorological station (Allen et al. 1998). 
Irrigation time was calculated by monitoring the daily 

Fig. 1  Geographical location of the study area (Ghorbani et al. 2021)
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meteorological information. Irrigation interval was set at 
daily. Based on the conducted studies and the FAO 56 
model, the crop coefficient was determined (Norouzi and 
Zolfibavareyani 2010). In Table 2, date crop coefficients 
during the growing season are presented.

The results of water sample analysis and soil physical 
and chemical properties are presented in Tables 3 and 4. 
All measurements and laboratory tests which performed 
in this study are in accordance with scientific and interna-
tional standards, such as soil texture determination (ASTM 
2007), volumetric soil moisture monitoring (Devices 
2008) and water quality analysis (EPA). Table 5 shows 
the average water consumption of different treatments.

Pe: Effective rainfall; T1: 125% water requirement (in 
SDI system); T2: 100% water requirement (in SDI system); 
T3: 75% water requirement (in SDI system); Total T1, T, 
and T3: Applied Water (Irrigation water + Pe).

Water productivity was calculated as follows (Howell 
2001):

 where Y denotes the economical yield (kg  ha−1) measured 
base on the delivered product to the market, ET shows the 
evapotranspiration (mm), I indicated irrigation water meas-
ured using a volumetric flow meters (mm), P indicates a 
wetted area (%), Dp indicates deep percolation (mm), Roff 
shows surface runoff (mm), and ΔS shows a change in soil 
moisture (mm).

(1)WP =
Y (usually economical yield)

ET

(2)ET = I + P + DP + Roff ± ΔS

(3)ET = I ± ΔS

Table 2  Crop coefficient for 
the date

Month Apr May June July August September

Kc 0.91 0.94 0.97 1.00 1.00 1.00

Table 3  Quality of the water 
used for irrigation

Source of water EC (μs/cm) pH Ca2+ Mg2+ Na+ HCO3
− Cl−

Well 3080 7 11.5 9.5 14.5 3 12

Table 4  Physical and chemical 
properties of soil samples

EC: Electrical Conductivity; pH: Acidity of water;  SO4
2−: Sulfate;  Cl−: Chloride;  HCO3

−: Bicarbonate; 
 Na+: Sodium;  Ca2+: Calcium;  Mg2+: Magnesium; Sicl: Silty clay loam

Depth (cm) Mg2+ Ca2+ Na+ HCO3
− Cl− SO4

2− pH Texture EC (ds/m) Silt Sand Clay

0–30 12.5 31.25 54.34 8.75 5 51.55 8.55 Sicl 5.74 46 7 47
30–60 11.25 36.25 19.02 6.25 6.25 40.98 7.83 Sicl 3.01 42 9 49
60–90 18.75 26.25 40.76 6.25 10 60.68 8.06 Sicl 3.81 48 9 43

Table 5  Average applied water 
in experimental treatments

Month Pe (mm) T1  (m3/ha) T2  (m3/ha) T3  (m3/ha) Total T1 Total T2 Total T3

January 86.60 – – – 866.50 866.50 866.50
February 12.00 – – – 119.60 119.60 119.60
March 33.00 – – – 330.10 330.10 330.10
April 24.80 800.60 640.40 480.30 1048.80 888.70 728.60
May 0.20 1959.90 1567.90 1175.90 1961.60 1569.60 1177.60
June 0.00 2663.40 2130.70 1598.00 2663.40 2130.70 1598.00
July 1.00 2855.10 2284.10 1713.10 2865.10 2294.10 1723.00
August 0.70 2519.00 2015.20 1511.40 2526.30 2022.50 1518.70
September 4.30 1750.10 1400.10 1050.10 1793.20 1443.10 1093.10
October 5.00 – – – 49.60 49.60 49.60
November 55.10 – – – 551.30 551.30 551.30
December 85.00 – – – 850.20 850.20 850.20
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Irrigation method

Subsurface drip irrigation

Subsurface drip irrigation system could be a low-pressure, 
tall proficiency water system framework that employs buried 
dribble tubes or dribble tape to meet trim water needs. These 
innovations have been a portion of inundated agribusiness 
since the 1960s; with the innovation progressing quickly 
within the final three decades. This is often particularly rea-
sonable for dry, semi-arid, hot, and blustery regions with 
restricted water supply, particularly on sandy soils (Camp 
et al. 2000). Figure 2 shows the cross section of the subsur-
face drip irrigation method (Li et al. 2020).

Yield and WP estimation methodology based 
on intelligent methods

Anti‑coronavirus optimization algorithm (ACVO)

ACVO is a multi-agent swarm intelligence strategy which is 
inspired by the containment protocols considered to reduce 
the spread of the COVID-19 (Emami 2022). Figure 3 shows 
the flowchart of the ACVO algorithm.

This algorithm is a population-based algorithm which 
begins its work with a population of solutions. The algo-
rithm is equipped with three operators including social 
distancing, quarantine, and isolation. The algorithm moves 
the persons around the solution space and hopefully causes 
the persons to converge to the global optimum of the cost 

function. The main principle behind the algorithm is to 
direct the persons to a safe location in the solution space 
where the disease transmission is minimal and health pro-
tocols are well followed.

In the population creation step, the algorithm generates 
a collection of solutions. Each solution in the population is 
referred to as a person. In the social distancing stage, the 
algorithm attempts to create a safe distance between people 
in the population.

In the quarantine phase, the suspected individuals with 
COVID-19 should be monitored to determine whether they 
are infected or not. In the ACVO, the individuals suspected 
of having the COVID-19 are those ones that attain low fit-
ness in optimization phase. The suspected individuals should 
be quarantined for a while to determine the effect of the virus 
on them. To simulate the quarantine process, the algorithm 
first selects q number of the weakest individuals to form the 
quarantine list. Then, the algorithm randomly selects some 
variables from each suspected individual and mutates their 
values. At the end of the quarantine phase, if the fitness of a 
suspected individual is equal to or greater than its fitness on 
the first day of quarantine, then the individual is returned as 
healthy, otherwise, the individual should be isolated.

In the isolation phase, the algorithm aims to treat infected 
people so that they can recover their health. The algorithm 
injects some variables of the fittest healthy individual into 
the infected individuals. To fulfill this aim, some variables of 
the best-fit individual are randomly selected and combined 
with the corresponding variables of the infected individuals. 
This issue improves the fitness of infected individuals and 
moves them toward global optimum.Fig. 2  Cross section of the subsurface drip irrigation method

Social distancing

Quarantine

Isolation

No

Yes

Parameter setting

Stop condition 
are met?

End

Population initialization

Return the best person

Fitness computation

Begin

Fig. 3  Flowchart of the ACVO algorithm
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The three phases of social distancing, quarantine, and isola-
tion are applied to the population for predetermined times to 
improve the fitness of population. Finally, the healthiest indi-
vidual is considered as the optimal solution to the optimization 
problem.

Adaptive neuro‑fuzzy inference system (ANFIS)

The ANFIS, first introduced by Jang (1993), is an efficient 
kind of multilayer feed-forward ANNs developed based on 
fuzzy inference system (FIS). ANFIS integrates and makes 
full use of the advantages of both ANNs and FIS in a unified 
framework. It is highly adaptive and fast to learn, reflects a 
nonlinear process structure, and requires less memory. Clas-
sical prediction methods are sometimes not able to deal with 
uncertainty in data (Alarifi et al. 2019). ANFIS is an efficient 
predictor under such cases. The FIS is build according to the 
if–then rules, thus the relationship between input and output 
variables can be identified by regulations and handled uncer-
tainty can be handled easily.

Figure 4 shows the typical architecture of the ANFIS net-
work comprising five layers with two inputs and one output. 
There five include fuzzification, implication, normalization, 
defuzzification, and combination. In the ANFIS structure, the 
nodes are divided into two categories: fixed and adaptable. The 
nodes of layers 1 and 4 are adaptive, while the nodes of layers 
2, 3, and 4 are fixed nodes. The parameters in adaptive nodes 
can be learnt by optimization algorithms.

To explain the working principle of each layer, we take two 
fuzzy if–then rules into account as follows: 

(4)R1: if (x is A1) and (y is B1) then f = p1x + q1y + r1

(5)R2: if (x is A2) and (y is B2) then f = p2x + q2y + r2

 where R shows each rule, x, y are the inputs variables, Ai 
and Bi are fuzzy sets, and f is the output of the system. The 
parameters pi , qi and ri are consequent variables that should 
be determined during the training phase.

In the fuzzification phase, the values of the crisp input 
variables are modified by membership functions. In this 
layer, each node generates a membership value of a linguistic 
label. The node function of the ith node may be membership 
functions such as linear, Gaussian, trapezoidal, triangular or 
other types. The node function of the ith node (Oi) using in 
the Gaussian form can be defined as follows:

 where ci and �i are respectively the center and width of 
the ith fuzzy set Ai or Bi. These parameters affecting the 
membership function's shape and should be tuned during 
the model optimization phase.

The implication phase in layer 2 is responsible to compute 
the firing weight of rules as follows:

Layer 3 performs strength normalization for each fuzzy 
rule as below

The variable wi is the firing weight of the ith fuzzy rule 
calculated in implication phase.

(6)O1
i
= �Ai

(x) = e

−(x−ci)
2

2�2
i for i = 1, 2

(7)O1
i
= �Bi

(y) = e

−(y−ci)
2

2�2
i for i = 3, 4

(8)O2
i
= Wi = �Ai

(x).�Bi
(y) i = 1, 2

(9)
O3

i
= Wi =

wi

2
∑

j=1

wj

, i = 1, 2

Fig. 4  The basic structure of 
ANFIS



Applied Water Science (2023) 13:56 

1 3

Page 7 of 13 56

Layer 4 is devoted to defuzzification phase. Each node at 
this layer computes a linear function as follows:

 where Wi is the output of layer 3. The coefficients of pi , qi 
and ri are identified during training phase by minimizing the 
following equations.

Layer 5 is in charge of combining the output of layer 4 
as follows:

ACVO‑ANFIS

Two kinds of structural parameters in ANFIS model are 
antecedent and consequent parameters that need to be 
tuned. To optimally tune these parameters, researchers usu-
ally used gradient-based methods. The main drawback of 
gradient-based methods is that they frequently get stuck in 
local optimality often with slow convergence rate. An effi-
cient alternative is meta-heuristic algorithms that easily can 
reach to global optimum with high convergence rate. As an 
element of research, in this paper, we used ACVO algorithm 
to optimally tune the antecedent and consequent parameters 
of the ANFIS model. Figure 5 shows the working principle 
of the proposed ACVO-ANFIS approach.

Data normalization

To avoid negative effect of different scales of variables on 
estimation models, it is necessary to correct the data through 
preprocessing. The data were normalized as follows:

 where, xi is the observed value and x is the normal data cor-
responding to xi. Modeling data were randomly divided into 
two parts, 80% for the training and 20% for the model test.

Results and discussion

Datasets used

Seven important factors that affect the WP and yield of 
date palm are irrigation type (I), average temperature (T), 
average relative humidity  (RHavg), sunshine (Rn), minimum 
wind speed (Umin), crop variety (V), and effective rainfall 

(10)O4
i
= Wifi = Wi(pix + qiy + ri)

(11)O5
i
=
�

i

wifi =

∑

i

wifi

∑

i

wi

, i = 1, 2

(12)x =
xi − xmin

xmax − xmin

(Pe). Since these factors are not of equal importance and 
may be associated with uncertainty, in intelligent models, 
the selection of important factors is essential. Table 6 and 
Fig. 6 present the effective and best-performing factors in 
estimating WP and yield. 

Load train data

Initialize ACVO and ANFIS parameters

Calculate fitness function

Social distancing

Quarantine

Stop conditions are met? 

Updated population

Optimized ANFIS model 

No
Yes 

End

Start

Execute the ANFIS and learn its parameters 
through training 

t=
t+

1

Isolation

Form ANFIS structure using generated population

Fig. 5  Flowchart of the proposed ACVO-ANFIS approach

Table 6  Effective input factors

Model Inputs parameters

φ1 I, T, RHavg, Rn, Umin, V, Pe

φ2 I,  RHavg, Rn, Umin, V, Pe

φ3 I, T, Rn, Umin, V, Pe

φ4 I, T,  RHavg, Umin, V, Pe

φ5 I, T,  RHavg, Rn, V, Pe

φ6 I, T,  RHavg, Rn, Umin, Pe

φ7 I, T,  RHavg, Rn, Umin, V
φ8 I, V, Pe
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Performance criteria

This section describes the performance criteria, the case 
study used to evaluate the proposed approach and its coun-
terparts, the comparison algorithms, and the process of fea-
ture selection. Four criteria including root-mean-squared 
error (RMSE), standard deviation (δ), and Akaike infor-
mation criterion  (AICc) (Emami et al. 2021) were used to 
evaluate the performance of the proposed method. Table 7 
presents the mathematical formulation of these measures.

In Eqs. (13–15), ji and ii are the observed and predicted 
values, respectively. j and i are average of observed and 
predicted values. k is the number of parameters, n is number 
of samples, and �

�
 is the residuals’ standard deviation.

Quantity features

Table 8 summarizes the combined analysis of variance 
(ANOVA) of quantitative features of the date palm. The sta-
tistical results justify that there was no significant difference 
between irrigation levels, crop variety, the interaction of irri-
gation levels and cultivar in fruit weight, fruit flesh to kernel 

weight ratio, and yield. The results of the ANOVA analy-
sis of WP confirmed that there was a significant difference 
between irrigation treatments at the level of 5% probability, 
while there was no significant difference between the two 
date varieties. The results of mutual analysis of ANOVA of 
year and crop variety showed that in all quantitative features, 
there is a significant difference at the level of 1% probability.

As shown in Table 9, treatment T3 (75% water require-
ment) with WP = 0.698 kg/m3 is superior to treatments 
T1 and T2. This is likely due to the efficient water utiliza-
tion of the functional absorbent root zoon (Alnaim et al. 
2022). The SSDI system with 75% water requirement is 
the most appropriate choice for date palm irrigation in 
arid and semi-arid regions due to its positive effect on 
WP and yield without changing the chemical quality of 
the soil (Alnaim et al. 2022). Plant nutrient uptake can be 
increased and enhanced by appropriate water use within 
tree systems (Manzoor Alam 1999; Bainbridge 2006; 
Ahmed Mohammed et al. 2020). The reduction of irri-
gation water has improved the physical properties of the 
date palm fruit (Alnaim et al. 2022). Ahmed Mohammed 
et al. (2020) reported that the SDI system significantly 
increased data palm crop yield and fruit quality, which is 
consistent with the results of the present study. Rastegar 
and Zargari (2011), Alihouri and Tishezan (2011), and 
Mohebbi and Alihouri (2013), reported that the highest 
WP was achieved for treatments in which 25% less irriga-
tion was applied. In a similar study, Ahmed Mohammed 
et al. (2020) concluded that the SDI system has a positive 
effect on the efficiency of applied water and increasing 
data palm crop yield in arid and semi-arid regions. Sarhadi 
and Sharif (2017), showed that the lowest amount of dry-
ing damage of date bunch was with the highest applied 
water, which was consistent with the results of the present 

Fig. 6  Some input factors in 
estimating WP and yield

Table 7  Indicators for evaluation the proposed hybrid approach

Inputs parameters Model

RMSE =

�

1

n

n
∑

i=1

(ji − ii)
2

(13)

�% =

n
∑

i=1
�
(ii−ji)�

n
∑

i=1

ji

×100

(14)

AICc =
2kn+(n ln(�2

�
)(n−k−1))

n−k−1

(15)
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study. The length of the fruit has a negative relation-
ship with the amount of applied water. In other words, 
the reduction of applied water increased the length of the 
fruit (Sarhadi and Sharif 2017). Alikhani-Koupaei et al. 
(2018), showed that reducing applied water was effective 
in increasing fruit sugar content. The number of clusters 
and fruit moisture had a positive and significant effect at 
the level of 5% probability on WP. The negative effect 
of cluster drying on WP was consistent with the results 
of Sarhadi and Sharif (2017). In Table 8, the values with 
common letters in a column are not significantly different 
(p < 0.05). The results of this study on WP are consist-
ent with the findings of Mohebbi and Alihouri (2013) and 
Farzamnia and Ravari (2005). 25% decrease in the water 
requirement of date palm crop yield did not have any influ-
ential changes on WP compared to yield. Mohebbi (2005) 
and Saleh et al. (2014) showed that applied water of more 
than 65% of the water requirement caused a decrease in 
WP, which is consistent with the results of the present 
study. The superiority of the treatment T3 compared to 
T1 and T2 treatments can be related to the overestimation 
of evaporation–transpiration estimation models. Several 
researchers are trying to provide unknown methods for 
estimating water requirements or correcting the usual 

methods, such as Penman–Monteith equation (Schymanski 
and Or 2017; McColl 2020).

Modeling results

The results of selecting the desired features using the 
ACVO-ANFIS hybrid approach indicate that the model 
φ8 with factors of crop variety (V), irrigation (75% 
water requirement of SDI system), and effective rain-
fall (Pe), with values of RMSE = 0.005, δ% = 0.603, and 
 AICC = 83.25, have the greatest impact on yield and WP. 
Table 10 presents the results obtained with the ACVO-
ANFIS approach. Sensitivity examination appeared 
that after irrigation, crop variety, and effective rain-
fall parameters, the average temperature (T), minimum 
wind speed (Umin), and sunshine hours (Rn) parameters 
are additionally fundamental in estimating the yield and 
WP. Dehghanisanij et al. (2021), reported that irrigation-
fertilizer parameters (PMDI, F) and crop variety (V) is 
the most effective parameters in estimating the yield 
and WP of tomato crops. In a similar study, Sadras and 
Calvino (2001), showed that irrigation is the most impor-
tant parameter in estimating soybean and corn yields. Kaul 
et al. (2005) introduced available water as the most effec-
tive parameter in estimating crop yield. Montazer et al. 

Table 8  Combined analysis of 
variance of quantitative features

SV Sources of variation, df Degrees of freedom, Fw Fruit weight, RFF Ratio of fruit flesh to kernel weight, 
NS Number of strings in a cluster, NF Number of fruits inclusters, Y Year, Rep Repetition, I Irrigation, E 
Error, V Variety, CV Coefficient of variation
**Significant at the level of 1% probability; *Significant at the level of 5% probability; n.s. No significant 
difference

SV df Fw (gr) RFF NS NF Yield (kg) WP

Y 2.00 30.57** 13.81n.s 1121.40n.s 6,883,570.6n.s 54,113,596.60n.s 0.380n.s

Rep 6.00 0.86** 1.67n.s 143.20n.s 132,658.70n.s 277,650.60n.s 0.003n.s

I 3.00 1.33** 1.35n.s 29.60n.s 183,132.20n.s 4,063,547.40n.s 0.193*
Y*I 6.00 5.06** 1.88* 118.10n.s 537,312.90** 2,997,609.90** 0.020**
E 18.00 1.21 0.65 136.70 125,532.70 459,389.50 0.003
V 1.00 32.17** 59.93n.s 13,736.50** 11,759,229.30** 6,238,491.50n.s 0.043n.s

Y*V 2.00 6.34** 17.69** 1001.50** 2,279,572.00** 25,673,504.90** 0.154**
I*V 3.00 0.22** 8.00n.s 504.80** 499,934.80n.s 1,052,752.40n.s 0.008n.s

Y*I*V 6.00 0.62** 2.62n.s 38.80n.s 205,091.00** 3,020,614.20** 0.018n.s

E 24.00 0.86 1.72 100.20 54,467.00 673,331.00 0.007
CV - 12.28 16.59 14.74 12.65 11.10 14.79

Table 9  Comparison of the 
mean of some quantitative traits 
and WP at different levels of 
irrigation

IL Irrigation levels of SDI system
Values with a common superscript in each column indicate no significant difference (p<0.05)

IL Fw RFF NS NF Yield WP (kg/m3)

T3 7.80a 8.10a 67.80a 1757.80a 7288.30a 0.698a

T2 7.70a 7.60a 69.70a 1990.60a 7192.70a 0.555b

T1 7.40a 8.20a 67.20a 1824.90a 7003.20a 0.452c
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(2010) reported irrigation and rainfall parameters as the 
most important parameters in estimating wheat yield. 

Next, modeling of WP and yield estimates was performed 
by considering irrigation, effective rainfall, and crop variety 

factors as inputs of the ACVO-ANFIS approach (Figs. 7 and 
8).

According to the results, it is clear that the predicted and 
observed values are in good agreement, which indicates the 

Table 10  Evaluation of hybrid 
approach in WP and yield 
estimation

Model Train Test Membership 
functions

RMSE δ% AICc RMSE δ% AICc c σ

φ1 0.008 0.873 203.20 0.011 1.113 216.90 0.5 0.1
φ2 0.010 1.108 206.80 0.014 1.412 239.25 0.4 0.2
φ3 0.007 0.860 33.10 0.009 0.880 206.12 0.5 0.1
φ4 0.017 1.145 225.50 0.021 1.653 254.60 0.3 0.2
φ5 0.014 1.345 216.40 0.017 1.492 241.10 0.7 0.2
φ6 0.020 1.598 236.90 0.024 1.650 264.25 0.1 0.1
φ7 0.023 1.648 263.90 0.032 1.715 285.30 0.4 0.2
φ8 0.004 0.586 16.12 0.005 0.603 183.25 0.5 0.1
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Fig. 7  a, b Comparison of predicted Yield with observed values a ACVO-ANFIS on test dataset b ACVO-ANFIS on the training dataset
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good performance of the ACVO-ANFIS hybrid approach. 
Jayashree et al. (2016), predicted sugarcane yield using a 
fuzzy-neural network (FNN) with a genetic algorithm (GA), 
imperialist competitive algorithm (ICA), and particle swarm 
optimization (PSO), the results of which are consistent with 
the present study.

Comparison approaches

There are a few approaches in yield and WP estimation 
using intelligent methods. The proposed ACVO-ANFIS is 
compared with five state-of-the-art approaches including 
season's optimization-support vector regression (SO-SVR) 
(Dehghanisanij et al. 2021), Gaussian process regression 
algorithm (GPR), (Sharifi 2021), random forest (RF) 
(Prasad et al. 2021), genetic algorithm-back propagation 

neural network (GA-BP) (Gu et  al. 2017), and ANN 
(Abrougui et al. 2019). The results rendered by the ACVO-
ANFIS approach and other counterparts are compared in 
Table 11. The results indicate the high efficiency of the 
ACVO-ANFIS approach with RMSE of 0.005 compared 
to other similar methods. In general, the ACVO algorithm 
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Fig. 8  a, b Comparison of predicted WP with observed values a ACVO-ANFIS on the training dataset b ACVO-ANFIS on test dataset

Table 11  Comparison of SO–
SVR model with other methods

Model RMSE δ%

GPR 0.055 –
RF 0.045 –
SO–SVR 0.006 0.614
GA-BP 0.007 –
ANN 0.077
ACVO-ANFIS 0.005 0.603
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is a fast convergence algorithm, and surpasses the coequal 
algorithms in optimizing the ANFIS parameters and thus 
estimating the data palm crop yield and WP. However, the 
ACVO-ANFIS approach needs to be parameterized, and 
the performance of ACVO-ANFIS is scarcely less than 
perfection. It is suggested that in future analyses, ACVO 
algorithm be combined with SVR, ANN and other neural 
network models to increase accuracy and provide general-
izable results. Hence, in future analyses, it was offered to 
combine the ACVO algorithm with SVR, ANN, and other 
models to improve errors and supply generalizable results.

Conclusion

In this study, a hybrid approach based on the ANFIS and 
ACVO algorithm was proposed to estimate date palm 
yield and WP under different levels of drip irrigation. The 
training of the proposed model was performed using data 
collected from Behbahan agricultural research station. In 
ACVO-ANFIS, eight models were used to determine the 
most efficient parameters in estimating and yield and WP. 
The statistical analysis demonstrated that there is no sig-
nificant difference between irrigation levels, crop variety, 
and the interaction of irrigation levels and cultivar in fruit 
weight, fruit flesh to kernel weight ratio, and yield. The 
results of selecting the desired features using the ACVO-
ANFIS hybrid approach indicate that the model φ8 with 
factors of crop variety (V), irrigation (75% water require-
ment of SDI system), and effective rainfall (Pe), with val-
ues of RMSE = 0.005, δ% = 0.603, and AICC = 83.25, have 
the greatest impact on data palm crop yield and WP. In 
comparison, the ACVO-ANFIS approach performed bet-
ter than the practical methods. The results proved that the 
proposed ACVO-ANFIS approach has promising perfor-
mance in estimating the yield and WP parameters. The 
output of the ACVO-ANFIS approach can be developed as 
a user-friendly mobile application. One of the promising 
research directions is to test the proposed approach with 
a large dataset to identify its strengths and weaknesses. 
Another work is to enhance the operators of the ACVO 
algorithm to improve the estimation performance of the 
ACVO-ANFIS approach.
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