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Abstract
Flood is one of the natural hazards that causes widespread destruction such as huge infrastructural damages, considerable 
economic losses, and social disturbances across the world in general and in Ethiopia, in particular. Dega Damot is one of the 
most vulnerable districts in Ethiopia to flood hazards, and no previous studies were undertaken to map flood-prone areas in 
the district despite flood-prone areas identification and mapping being crucial tasks for the residents and decision-makers to 
reduce and manage the risk of flood. Hence, this study aimed to identify and map flood-prone areas in Dega Damot district, 
northwestern Ethiopia, using the integration of Geographic Information System and multi-criteria decision-making method 
with analytical hierarchy process. Flood-controlling factors such as elevation, slope, flow accumulation, distance from rivers, 
annual rainfall, drainage density, topographic wetness index, land use and land cover, Normalized Difference Vegetation 
Index, soil type, and curvature were weighted and overlayed together to achieve the objective of the study. The result shows 
that about 86.83% of the study area has moderate to very high susceptibility to flooding, and 13.17% of the study area has 
low susceptibility to flooding. The northeastern and southwestern parts of the study area dominated by low elevation and 
slope, high drainage density, flow accumulation, topographic wetness index, and cropland land use were found to be more 
susceptible areas to flood hazards. The final flood susceptibility map generated by the model was found to be consistent with 
the historical flood events on the ground in the study area, revealing the method’s effectiveness used in the study to identify 
and map areas susceptible to flood.

Keywords  Flood · Susceptibility to flood hazard · Geographic information system · Multi-criteria decision-making · AHP · 
Dega damot district

Introduction

Flood is one of the natural disasters that causes massive 
destruction such as enormous infrastructural damages, sub-
stantial economic losses, and social disturbances across the 

world (Dang and Kumar 2017; Das and Gupta 2021; Farhadi 
and Najafzadeh 2021; Hong et al. 2018a, b). The destruction 
due to floods has increased in recent years in several coun-
tries around the world because of climate change and envi-
ronmental degradation caused by improper land use manage-
ment (Das and Gupta 2021; Hagos et al. 2022; Kanani-Sadat 
et al. 2019; Ozkan and Tarhan 2016).

In Ethiopia, flood is one of the major natural hazards 
which causes significant damage to the lives, livelihoods, 
and property in different parts of the country (World Bank 
2019; NDRMC 2018). According to the United Nations 
Office for Disaster Risk Reduction (UNDRR 2022), flood 
and drought are the most recurrent natural disasters in 
Ethiopia caused by extreme weather events. Flooding in the 
country is mainly related to prolonged heavy rainfall and 
the topography of the highlands and lowland plains with 
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natural drainage systems formed by the principal river basins 
(NDRMC 2018).

The National Disaster Risk Management Commission of 
Ethiopia (NDRMC 2018, 2020) identified Dega Damot (the 
study area) and Bahir Dar Zuria districts from West Gojjam 
Zone of Amhara National Regional State as flood risk areas 
during rainy seasons. Hence, this study aimed to identify 
and map areas susceptible to flood in Dega Damot district. 
No previous studies were undertaken to identify and map 
flood-prone areas in the district despite the district being 
recognized as a flood risk area in northwestern Ethiopia.

Sustainable management of flood risk is dependent upon 
the development of knowledge of the risk and probability of 
flood events (Binns 2022). In recent years, potential flood 
risk area mapping is considered as the major strategic com-
ponent to effectively manage, reduce and mitigate the poten-
tial impacts of flood hazards since the maps can provide 
residents and stakeholders with information on potential 
flood-prone areas (Abdelkarim et al. 2020; Rahmati et al. 
2015).

Different methods and models were developed by pre-
vious researchers to investigate and map flood hazards. 
In recent years, the integrated use of geospatial technolo-
gies (GIS and remote sensing) with other models/methods 
has become the most popular method to examine flood 
hazards. Multi-criteria decision analysis (MCDA) using 
analytical hierarchy process (AHP) (Ajibade et al. 2021; 
Allafta and Opp 2021; Aydin and Birincioğlu 2022; Das 
and Gupta 2021; Karymbalis et al. 2021; Wubalem et al. 
2021), frequency ratio (FR) (Ali et al. 2020; Tehrany et al. 
2017; Wubalem et al. 2021; Yariyan et al. 2020), hydro-
logic engineering centers river analysis system (HEC-RAS) 
(Demir and Kisi 2016), fuzzy logic (Ajibade et al. 2021; 
Kanani-Sadat et al. 2019), logistic regression (LR) (Ali et al. 
2020; Tehrany et al. 2017; Wubalem et al. 2021), artificial 
neural networks (ANN) (Tamiru and Dinka, 2021), fuzzy 
weights-of-evidence (fuzzy-WofE) (Hong et al. 2018a, b; 
Tehrany et al. 2017), support vector machine (SVM) (Son 
et al. 2021), random forest (RF) (Farhadi and Najafzadeh, 
2021; Son et al. 2021; Wang et al. 2015; Zhao et al. 2018), 
two-dimensional flood routing model (FLO-2D) (Erena et al. 
2018), and adaptive neuro-fuzzy inference system (ANFIS) 
(Hong et al. 2018a, b; Razavi-Termeh et al. 2018) integrated 
with geospatial technologies (GIS and remote sensing) are 
the indispensable methods developed and employed by pre-
vious researchers for flood hazard area identification and 
mapping.

Ali et al. (2020) employed the integration of GIS, multi-
criteria decision-making (MCDM) approach, bivariate sta-
tistics (frequency ratio and statistical index), and logistic 
regression to identify flood-prone areas of the Topľa river 
basin in Slovakia. Demir and Kisi (2016) used GIS and 
Hydrologic Engineering Centers River Analysis System 

(HEC-RAS) to produce a flood hazard map of the Mert river 
basin in Turkey. Hong et al. (2018a, b) used the integra-
tion of the fuzzy weight of evidence (fuzzy-WofE), logistic 
regression (LR), random forest (RF), and support vector 
machines (SVM) with GIS to produce a flood susceptibility 
map of Poyang county in China. Razavi-Termeh et al. (2018) 
integrated adaptive neuro-fuzzy inference systems (ANFIS) 
with metaheuristic algorithms and GIS to map flood hazards 
of the Jahrom basin in the Fars Province of Iran. Tehrany 
et al. (2017) predicted flood-prone areas of Xing Guo in the 
Southern Jiangxi Province of China using the combination 
of GIS with standalone frequency ratio, the weight of evi-
dence, and logistic regression methods. Zhao et al. (2018) 
employed the random forest model to develop a flood sus-
ceptibility map of mountainous areas in China.

Many recent previous studies employed the combina-
tion of GIS-based multi-criteria decision analysis (MCDA) 
and analytical hierarchy process (AHP) to identify and map 
flood-prone areas. For instance, Abdelkarim et al. (2020) 
integrated the analytic hierarchy process and GIS-based 
multi-criteria decision analysis to assess flood risk areas 
in the Al-Shamal Train Pathway of Al-Qurayyat Region, 
Kingdom of Saudi Arabia. Aydin and Birincioğlu (2022) 
integrated nine flood-controlling factors to assess flood-
risk areas using a GIS‑based analytical hierarchy process 
in the Bitlis Province of Turkey. Desalegn and Mulu (2021) 
employed the integration of GIS-based multi-criteria deci-
sion analysis with AHP to assess and map flood vulnerabil-
ity in the Fetam watershed, upper Abay basin of Ethiopia. 
Similarly, Hagos et al. (2022) employed the combination 
of GIS-based multi‑criteria decision analysis and AHP to 
combine seven flood-controlling factors to assess and map 
flood-prone areas in the upper Awash River basin of Ethio-
pia. Furthermore, other researchers (Ajibade et al. 2021; 
Allafta and Opp 2021; Astutik et al. 2021; Das and Gupta, 
2021; Dash and Sar, 2020; Hadipour et al. 2020; Karymbalis 
et al. 2021; Mahmoud and Gan, 2018; Ogato et al. 2020; 
Wubalem et al. 2021; Zzaman et al. 2021) also integrated 
multi-criteria decision analysis (MCDA) and analytical hier-
archy process (AHP) with Geographic Information System 
to identify and map areas prone to flood.

Multi-criteria decision-making (MCDM) has been recog-
nized as a significant method for evaluating complex deci-
sion problems which often involve incomparable data or cri-
teria like the identification and mapping of flood-prone areas 
using several factors (Abdelkarim et al. 2020; Ali et al. 2020; 
Allafta and Opp, 2021; Karymbalis et al. 2021); and the 
analytical hierarchy process (AHP) is the most commonly 
used method in multi-criteria decision-making (Abdelkarim 
et al. 2020; Das and Gupta, 2021). Hence, in this study, the 
integration of the GIS-based multi-criteria decision analy-
sis (GIS-MCDA) approach and analytic hierarchy process 
(AHP) was employed to identify and map flood-prone areas 
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in the study area with the identification of eleven factors 
that affect the occurrence of floods, including elevation, flow 
accumulation, slope, distance from rivers, rainfall, drain-
age density, topographic wetness index, land use land cover, 
Normalized Difference Vegetation Index, soil type and cur-
vature of the land surface.

Materials and methods

Study area

Dega Damot district is located in the West Gojjam Zone of 
Amhara National Regional State, Ethiopia (Fig. 1). It lies 
between 10°40′51.414" N and 11°05′18.875" N latitude, and 
37°28′54.888" E and 37°46′28.574" E longitude. The district 
is a part of the Northwestern highlands of Ethiopia with an 
area coverage of 831.23 square kilometers. The landscape of 
the district is quite diversified. The topography of the district 

is characterized by gently sloping level terrains, steep to very 
steep hillside slopes, and deeply incised V-shaped valleys 
with an altitude range from 1725 m above sea level (m.a.s.l) 
in the northeastern part of the district to 3,594 m.a.s.l in the 
southeastern parts of the district. The district is dissected by 
several large and small tributaries of the Abay river basin. 
Gumara is the largest and longest perennial river in the dis-
trict that drains throughout the year.

According to the agro-climatic zones classification of 
the Ministry of Agriculture of Ethiopia, Dega (temperate, 
sub-humid highlands), Woyina Daga (cool humid high-
lands), and Wurch (cold highlands) are the three agro-cli-
matic zones found in the district. The majority of the dis-
trict area (71.89%) is characterized by Dega agro-climatic 
zone (temperate, sub-humid highlands). The remaining 
24.83% and 3.28% of the district area are characterized by 
the Woyina Daga agro-climatic zone (cool, humid high-
lands) and Wurch (cold highlands) agro-climatic zone, 
respectively. Woyina Dega agro-climatic zone is found 

Fig. 1   Location map of the study area
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in the southwestern borders and northeastern parts of the 
district, and the Wurch (cold highlands) agro-climatic 
zone is found in the southeastern border of the district.

The rainfall data of five meteorology stations (Motta, 
Feres bet, Digo Tsion, Genet Abo, and Dembecha) 
obtained from the National Meteorological Agency of 
Ethiopia show that the mean annual rainfall of the district 
varies from 1306.2 to 1643.2 mm. The district receives 
its maximum rainfall during the summer season (locally 
known as kiremt) which extends from June to August. The 
annual mean minimum and mean maximum temperatures 
of the district are 10°c and 21°c, respectively, with maxi-
mum temperatures in the district occurring from February 
to May.

The digital soil map (Fig. 5a) obtained from the Min-
istry of Water, Irrigation, and Energy of Ethiopia shows 
that Chromic Luvisols, Eutric Cambisols, Lithosols (now 
Leptosols), Chromic Vertisols, Pellic Vertisols, and 
Eutric Nitisols are the soil types found in the study area. 
Chromic Luvisols is the dominant soil type which cov-
ers an area of about 38,233.71 ha (46%) of the total area 
of the district followed by Eutric Cambisols and Eutric 
Nitisols which covers an area of 21,665.32 ha (26.07%) 
and 13,776.60 ha (16.57%), respectively.

The data obtained from Environmental System 
Research Institute (ESRI) show that dense vegetation, 
shrubland, grassland, cropland, bare land, built area, 
and water body are the land use and land cover (LULC) 
types in the district. Cropland shares the greatest size 
of all other land use types accounting for an area of 
67,886.52  ha (81.67%) followed by dense vegetation 
and shrubland which accounts for about 6,335.34  ha 
(7.62%) and 5,570 ha (6.70%) of the total area of the 
district, respectively. Climatically, the district is condu-
cive to the production of different cereal and vegetable 
crops. Ethiopian teff, maize, barley, potato, bean, pea, and 
onion are the major crops grown in the district during the 
rainy season.

Data types and sources

The required data for this study were collected from dif-
ferent sources (Table1). STRM GDEM Digital Elevation 
Model with 30 m spatial resolution was downloaded from 
the U.S Geologic Survey website for the retrieval of different 
flood-controlling factors. Sentinel 2A satellite image with a 
spatial resolution of 10 m acquired on 27 March 2022 was 
also downloaded from the U.S Geologic Survey website. 
The near-infrared and red bands of the satellite image were 
used to prepare the Normalized Difference Vegetation Index 
(NDVI) factor map. The acquisition date of the Sentinel 2A 
image was purposively selected to reduce the atmospheric 
effect since the season is dry with the lowest percent or zero 
monthly cloud cover. A high-quality and accurate Sentinel 
2 land use and land cover (LULC) map of 2021 with 10 m 
spatial resolution was downloaded from the Environmental 
System Research Institute (ESRI) website. Precipitation data 
(1995–2020) of five meteorology stations (Feres bet, Motta, 
Genet Abo, Digo Tsion, and Dembecha) were collected from 
the National Meteorological Agency (NMA) of Ethiopia. 
The digital soil map of the district was obtained from the 
Ethiopian Ministry of Water, Irrigation, and Energy. The 
river map of the district with 15 arc-second resolutions was 
downloaded from the HydroSHEDS website.

Methods

The integration of GIS-based multi-criteria decision-making 
(MCDM) and analytical hierarchy process (AHP) was used 
to identify and map potential areas vulnerable to flood in the 
study area. Spatial data layers of the eleven factors that affect 
the occurrence of floods such as elevation (El), the slope 
of the land (Sl), flow accumulation (FA), distance to riv-
ers (DR), rainfall (Rf), drainage density (DD), topographic 
wetness index (TWI), land use land cover (LULC), Normal-
ized Difference Vegetation Index (NDVI), soil type (ST) and 
curvature of the land surface (Cu) were prepared in a raster 
format by using GIS and remote sensing techniques from the 
data collected from different sources (Fig. 2).

Table 1   Data types and sources used to map flood-prone areas

Data types Data Sources

STRM DEM Digital Elevation Model (30 m spatial resolution) Downloaded from U.S Geologic Survey (http://​earth​explo​rer.​usgs.​gov/)
Digital Soil Map of the District (1:250,000 scale) Ethiopian Ministry of Water, Irrigation, and Energy
Sentinel 2 10 m spatial resolution Land Use/Land Cover (LULC) Map 

(2021)
Environmental System Research Institute (ESRI) (https://​livin​gatlas.​

arcgis.​com/​landc​over/)
Monthly Rainfall Data (1995–2020) National Meteorological Agency (NMA) of Ethiopia
Sentinel 2A satellite image (10 m spatial resolution) (acquired on 27 

March 2022)
Downloaded from U.S Geologic Survey (http://​earth​explo​rer.​usgs.​gov/)

River map of the study area with 15 arc-second resolution Downloaded from the HydroSHEDS website (https://​www.​hydro​sheds.​
org/)

http://earthexplorer.usgs.gov/
https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
http://earthexplorer.usgs.gov/
https://www.hydrosheds.org/
https://www.hydrosheds.org/
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All raster factor maps were reclassified to a common 
measurement scale from 1 (very low) to 5 (very high) 
using Reclassify tool of Spatial Analyst Tools and rescaled 
to 10 m spatial resolution using Resample tool of Data 
Management Tools in the ArcGIS environment. After 
the reclassification of all flood-controlling factor maps, 
analytical hierarchy process (AHP) model was applied to 
assign a relative weight of influence to each factor. The 
final flood susceptibility map of the district was derived by 
overlaying the eleven flood-controlling spatial layers using 
the weighted overlay method in the ArcGIS environment. 
ArcGIS 10.8 and ERDAS IMAGINE 2014, and Microsoft 
Excel software were exhaustively used to process, create, 
and overlay digital raster layers, and for AHP analysis, 
respectively.

Methods of flood‑controlling factors map preparation 
and reclassification

The factors to be considered in flood susceptibility map-
ping using multi-criteria decision-making (MCDM) are not 
fixed, and there is no common guideline to select the factors. 
For this study, eleven factors closely associated with flood 
occurrence were selected based on the assessment of previ-
ous studies, data availability, expert opinion, as well as the 
physical and natural setup of the study area. The factors con-
sidered for this study and the methods employed to process/
prepare each factor map are described below.

The digital elevation model (DEM) (raster representation 
of a continuous surface where each cell represents the eleva-
tion of a particular location) map of the district has been 
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reclassified into five flood susceptibility classes and rescaled 
to a 10-m spatial resolution to create an elevation factor map. 
The slope and the curvature maps were directly derived from 
the DEM map of the study area using the slope and curva-
ture tools, respectively, in the Spatial Analyst Tools of the 
ArcGIS environment.

The DEM map of the district was filled to create free of 
sinks/depressionless DEM, and then, the flow direction (the 
direction the stream flows in each cell) map was derived 
from the filled DEM map. Next, the flow accumulation ras-
ter map was created from the flow direction map. Filling 
the DEM map, creating flow direction, and computing flow 
accumulation were performed using Hydrology tools such as 
Fill, Flow Direction, and Flow Accumulation, respectively, 
in the Spatial Analyst Tools of ArcGIS software.

Since there is only one meteorology station (Feres bet) 
in the study area, the rainfall record of the other four nearby 
meteorology stations such as Motta, Genet Abo, Digo Tsion, 
and Dembecha was used to prepare the rainfall factor map. 
Rainfall point data of five meteorology stations with their 
mean annual rainfall were created by importing the data into 
ArcGIS software from the data obtained from the National 
Meteorology Agency of Ethiopia. Then, the mean annual 
rainfall of the five stations was interpolated by Inverse Dis-
tance Weighted (IDW) method in the ArcGIS10.8 environ-
ment with a cell size of 10 m and clipped using the district 
boundary shapefile to generate a continuous rainfall map of 
the district.

The drainage network map was created from the flow 
accumulation map using the Raster Calculator tool in the 
ArcGIS environment, and later, the drainage density map 
was derived from the drainage network map using the Line 
Density tool in the Spatial Analyst Tools of ArcGIS 10.8 
software. The Euclidean Distance tool in the Spatial Ana-
lyst Tools of ArcGIS environment was used to create dis-
tance to the river raster map after the extraction of study 
area rivers from the river network data downloaded from the 
HydroSHEDS website.

The Topographic Wetness Index (TWI) map of the dis-
trict was derived using equation (Eq. 1) suggested by Moore 
et al. (1991). The Raster Calculator of Spatial Analyst Tools 
in the ArcGIS environment was used to generate the TWI 
map.

 where W represents the topographic wetness index, As rep-
resents the cumulative upslope area draining through a point 
(per unit contour length), and B represents the local slope 
angle in degrees.

To develop the LULC factor map, first, the LULC map of 
the district was extracted from the land use and land cover 

(1)W = Ln

(

As

tanB

)

(LULC) map downloaded from the ESRI website. Next, 
appropriate land use and land cover (LULC) class names 
were assigned to each land use and land cover using ArcGIS 
software since the classes are assigned by numbers in the 
downloaded LULC map.

To develop the soil type factor map, primarily, the soil 
types of the watershed were identified through extraction 
using ArcGIS 10.8 software from the Digital Soil Map of 
Ethiopia obtained from the Ethiopian Ministry of Water, 
Irrigation and Energy (EMWIE), and the extracted vector 
soil map was converted into a raster format.

The NDVI map of the district was prepared from a Sen-
tinel 2A satellite image downloaded from the U.S Geologic 
Survey website. The NDVI map was prepared from the Sen-
tinel 2A satellite image by applying equation (Eq. 2) given 
below using ERDAS IMAGINE 2014 software.

where NDVI is the Normalized Difference Vegetation Index, 
NIR is surface spectral reflectance in the near-infrared band 
(which is band 8 in the Sentinel 2A satellite image) and RED 
is surface spectral reflectance in the red band (which is band 
4 in the Sentinel 2A satellite image).

After the preparation of all flood-controlling factors in 
raster format, all factors were reclassified into five common 
measurement scales from 1 (very low susceptibility to flood-
ing) to 5 (very high susceptibility to flooding) and rescaled 
to the same spatial resolution (10 m). The higher classified 
ranking value (5) corresponds to areas more susceptible to 
floods, while the lower value (1) corresponds to those areas 
less susceptible to floods. Since there is no common reclas-
sification scale of flood-controlling factors, the classes of all 
factors were determined based on the assessment of previous 
studies and the local context of the study area.

Analytical hierarchy process (AHP)

The analytical hierarchy process (AHP) suggested by Saaty 
(1987) is the most commonly used and effective method 
in the multi-criteria decision-making (MCDM) process to 
assign the relative importance of each criterion or factor 
considered in the study, and many different previous studies 
(Abdelkarim et al. 2020; Ajibade et al. 2021; Allafta and 
Opp 2021; Astutik et al. 2021; Aydin and Birincioğlu 2022; 
Danumah et al. 2016; Das and Gupta 2021; Elsheikh et al. 
2015; Karymbalis et al. 2021; Mahmoud and Gan 2018; 
Ogato et al. 2020) have employed this method to weight 
each flood-controlling factors and, finally, to identify and 
map flood-prone areas.

The factors employed for flood susceptibility mapping 
using multi-criteria decision-making were given weights 

(2)NDVI =
(NIR − RED)

(NIR + RED)
=

(Band 8 − Band 4)

(Band 8 + Band 4)
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based on the local physical characteristics of the study 
area and assessment of previous studies. As suggested by 
Saaty (1987), the following step-by-step procedures were 
employed to assign relative weights for each flood-control-
ling factor used in this study.

1.	 Based on the relative importance, a value ranging from 1 
to 9 was assigned to each factor to construct the pairwise 
comparison matrix (Table 3). According to the scale, 
1 refers to equal importance and 9 refers to extreme 
importance.

2.	 Next, the normalized pairwise comparison matrix table 
(Table 4) was prepared by dividing each value in the 
column in the pairwise comparison matrix by the sum 
of the column.

3.	 In the third stage, the weight of each factor was com-
puted (Table 4) by dividing the sum of each row in the 
normalized pairwise comparison matrix table by the 
number of factors (which is eleven for this study).

After the computation of weights for each flood-control-
ling factor, the consistency check was performed using the 
equations given below to check whether the comparison is 
correct/consistent or not. The consistency index (CI) is cal-
culated using the following equation (Eq. 3) as given by 
Saaty (1987).

 where CI is the consistency index, n is the number of fac-
tors being compared in the matrix, and λmax is the highest 
eigenvalue of the pairwise comparison matrix.

As suggested by Saaty (1987), the maximum eigenvalue 
(λmax) of the comparison matrix was calculated (Table 5) by 
the following procedures:

1.	 multiplying each value in the column (in the matrix table 
which is not normalized) by the criteria weight

2.	 computing the weighted sum value by adding the values 
in the rows

3.	 calculating the ratio of each weighted sum value to the 
respective criteria weight, and

4.	 averaging the ratio of the weighted sum value to the 
criteria weight

Finally, the consistency ratio (CR) was computed using 
the following equation (Eq. 4) suggested by Saaty (1987) to 
verify the consistency of the comparison.

(3)CI =
�
max

− n

n − 1

(4)CR =
CI

RI

where CR is the consistency ratio, CI is the consistency 
index, and RI is the random index which varies according 
to the number of factors used in the pairwise comparison 
matrix. If the CR is below 0.10, it means that the pairwise 
comparison matrix has an acceptable consistency. Other-
wise, if the CR is greater than or equal to 0.10, it means that 
pairwise comparison has inadequate consistency, and the 
comparison process must be repeated until the value of CR 
is achieved below 0.10 (Saaty 1987).

Method of flood susceptibility map preparation

After the preparation and reclassification of each flood-con-
trolling factor to a common measurement scale of 1(very 
low) to 5 (very high) using ArcGIS software and weighting 
of the factors using the AHP approach, the spatial layers 
were integrated and overlayed together in the Spatial Analyst 
Extension of the ArcGIS environment using the weighted 
overlay technique by applying equation (Eq. 5) given below 
to derive the flood susceptibility map of the study area. 
Many previous studies (Ali et al. 2020; Allafta and Opp 
2021; Aydin and Birincioğlu 2022; Das and Gupta 2021; 
Dash and Sar 2020; Hadipour et al. 2020; Kanani-Sadat et al. 
2019) employed this equation (Eq. 5) to generate the flood 
vulnerability map.

where FS is the flood susceptibility, n is the number of deci-
sion criteria, xi is the particular normalized criterion, and 
wi is the respective weight of the criterion. The cell/pixel 
values of the raster layers are multiplied by their weight/per-
centage influence obtained by AHP analysis, and the results 
are added together to create the flood susceptibility output 
raster map.

Results and discussion

Flood‑controlling factors processing

The eleven flood-controlling factors used in the study such 
as elevation, slope, flow accumulation, distance from riv-
ers, rainfall, drainage density, topographic wetness index, 
land use and land cover, Normalized Difference Vegetation 
Index, soil type, and curvature of the land surface were used 
to identify and map potential areas susceptible to flood inun-
dation. By studying and analyzing these factors, the spatial 
distribution of flood susceptibility in the study area was 
identified and mapped. More details of the analysis of each 
factor are presented below.

(5)FS =

n
∑

i=0

x
i
∗ w

i
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Elevation

One of the factors used to assess flood risk is elevation. Gen-
erally, the lower elevated areas have a higher probability of 
flood occurrences compared to higher elevated areas because 
lower elevated areas have comparatively higher river dis-
charge and get flooded faster by the flow of high water (Hong 
et al. 2018a, b; Lee and Rezaie, 2022; Zzaman et al. 2021). 
The altitude of the study area ranges from 1725 to 3594 m 
above sea level. As shown in Fig. 3a, areas with low eleva-
tion which are located in the northeastern and southwestern 
parts of the study area (altitude below 2500 m above sea 
level) are the most vulnerable areas to flood inundation. On 
the other hand, areas over central parts which extends from 
southeastern to northwestern parts of the district (altitude 
above 2800 m above sea level) have low and very low sus-
ceptibility to flooding. About 13.97% (11,612.52 ha) and 
32.57% (27,074.88 ha) of the study area have a very high 
and high susceptibility to flooding inundation, respectively 
(Table 2).

Slope

The slope of the land controls the velocity of surface water 
flow. As the slope decreases, the velocity of surface water 
flow decreases, and the amount of water over the land and 
the probability of a flood increases (Astutik et al. 2021; 
Das and Gupta 2021; Zzaman et al. 2021). Mountain areas 
generally have steeper slopes that prevent the collection 
of water, whereas lowlands or flatlands with gentle slopes 
have a higher probability of flood inundation (Wang et al. 
2015). The reclassified slope map (Fig. 3b) shows that about 
58.16% (48,348 ha) of the study area has a slope range from 
0 to 15 degrees which belongs to very high susceptibility 
to flooding inundation. About 33.67% (27986.22 ha) and 
7.83% (6512.04 ha) of the study area are characterized 
by high (15–30°) and moderate (30–45°) susceptibility to 
flooding, respectively. Areas of low (45–60°) and very low 
(60–68.84°) flood susceptibility cover about 0.32% and 
0.01%, respectively (Table 2). Gently sloping areas are found 
in the northeastern, central, and southwestern borders of the 
study area. Similarly, Yariyan et al. (2020) considered slopes 
from 0 to 15, 15 to 30, 30 to 45, 45–60, and > 60 degrees as 
very high, high, moderate, low, and very low susceptibility 
to floods, respectively.

Flow accumulation

Flow accumulation highlights the amount of flow accumu-
lated in each raster pixel based on the cumulative weights 
of the preceding pixels (Ajibade et al. 2021). Flow accumu-
lation is probably the most important parameter for delin-
eating flood-prone areas (Kazakis et al. 2015). It helps us 

to map out the convergence zone of surface runoff. High 
flow accumulation means that the area is more likely to be 
flooded (Kazakis et al. 2015; Mahmoud and Gan, 2018). In 
this study, the reclassification used by Mahmoud and Gan 
(2018) was adopted to reclassify the flow accumulation of 
the study area into five classes. Hence, as shown in Fig. 3c 
and Table 2, the flow accumulation values are classified into 
five categories: very low (< 250 pixels), low (250–2195 
pixels), moderate (2195–3415 pixels), high (3415–15,125 
pixels) and very high (> 15,125 pixels). The red and blue 
pixels (Fig. 3c) represent areas with very high and high flow 
accumulation, respectively, while the yellow and light blue 
pixels represent areas with low and very low flow accumula-
tion, respectively. The higher the flow accumulation values 
in the area, the more vulnerable it is to flooding.

Rainfall

The consideration of rainfall as a factor in flood suscepti-
bility analysis is a must since we cannot think about flood 
occurrence without it. It is the most crucial triggering factor 
for the occurrence of floods because flood inundation is due 
to a huge volume of runoff flows as a result of excessive 
heavy rainfall or prolonged rainfall (Allafta and Opp 2021; 
Hong et al. 2018a, b). The mean annual rainfall of the district 
varies from 1306.18 to 1643.19 mm/year and reclassified 
(1306.18–1338 mm), (1338–1433 mm), (1433–1513 mm), 
(1513–1618 mm), and (1618–1643.19 mm) as very low, 
low, moderate, high, and very high contribution to flooding, 
respectively. The classification adopted by Das and Gupta 
(2021) was used to reclassify the rainfall map of the study 
area. As shown in Fig. 3d, the western parts of the study area 
are the most susceptible parts to flood inundation compared 
to the eastern parts. About 1.94%, 27.13%, 35.04%, 35.57%, 
and 0.33% of the study areas were classified as very low, 
low, moderate, high, and very high vulnerability to flooding, 
respectively (Table 2).

Distance from the river

Areas that are close to rivers have a higher probability of 
flood inundation than areas located far away from the rivers 
since surplus water from the rivers initially reaches along-
side river banks and adjoining lowland areas (Mahmoud and 
Gan 2018). This is because as the distance increases, the 
slope and elevation become higher (Lee and Rezaie 2022; 
Zzaman et al. 2021). In the study area, areas that are within 
a distance of 500 m from the river are categorized as very 
highly susceptible to flooding, while areas within a distance 
of 1000, 1500, 2000, and > 2000 m from the river are consid-
ered to have high,  moderate, low, and very low vulnerability 
to flooding, respectively (Fig. 4a and Table 2). Similarly, 
a study conducted by Shadmehri Toosi et al. (2019) and 
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Fig. 3   Elevation a, slope b, flow accumulation c and rainfall d factor maps
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Table 2   Flood conditioning factors, their classes, rating values, area coverage, and percentage

Factor Class Flood susceptibility Rating Class pixels Area

ha Percent (%)

Elevation (El) (m) 1725–2200 Very high 5 1,161,252 11,612.52 13.97
2200–2500 High 4 2,707,488 27,074.88 32.57
2500–2800 Moderate 3 2,045,988 20,459.88 24.61
2800–3000 Low 2 1,345,959 13,459.59 16.19
3000–3594 Very Low 1 1,051,605 10,516.05 12.65

Slope (Sl) (degree) 0–15 Very high 5 4,834,800 48,348 58.16
15–30 High 4 2,798,622 27,986.22 33.67
30–45 Moderate 3 651,204 6,512.04 7.83
45–60 Low 2 26,469 264.69 0.32
60–68.84 Very Low 1 1197 11.97 0.01

Flow Accumulation (FA) (pixels)  < 250 Very low 1 8,037,585 8,0375.85 96.70
250–2195 Low 2 176,652 1,766.52 2.13
2195–3415 Moderate 3 17,451 174.51 0.21
3415–15,125 High 4 43,497 434.97 0.52
 > 15,125 Very high 5 37,107 371.07 0.45

Rainfall (Rf) (mm) 1306.18–1338 Very low 1 161,518 1,615.18 1.94
1338–1433 Low 2 2,255,033 22,550.33 27.13
1433–1513 Moderate 3 2,912,303 29,123.03 35.04
1513–1618 High 4 2,956,341 29,563.41 35.57
1618–1643.19 Very high 5 27,097 270.97 0.33

Distance to the rivers (DR) (m) 0–500 Very high 5 1,595,489 15,954.89 19.19
500–1000 High 4 1,676,426 16,764.26 20.17
1000–1500 Moderate 3 1,475,296 14,752.96 17.75
1500–2000 Low 2 1,317,168 13,171.68 15.85
2000–6832.92 Very Low 1 2,247,913 22,479.13 27.04

Drainage density (DD) (km/km2) 0–0.4 Very low 1 2,789,073 27,890.73 33.55
0.4–1 Low 2 4,089,884 40,898.84 49.20
1–1.5 Moderate 3 1,328,810 13,288.1 15.99
1.5–2 High 4 101,758 1,017.58 1.22
2–2.1 Very high 5 2767 27.67 0.03

Topographic Wetness Index (TWI) 2.48–5.91 Very low 1 3,773,259 37,732.59 45.39
5.91–8.09 Low 2 3,276,252 32,762.52 39.41
8.09–10.18 Moderate 3 803,727 8,037.27 9.67
10.18–12.63 High 4 319,608 3,196.08 3.85
12.63–22.77 Very high 5 139,446 1,394.46 1.68

Land use/Land cover (LULC) Dense vegetation Very low 1 632,736 6,327.36 7.61
Shrub land Low 2 557,869 5,578.69 6.71
Grassland Moderate 3 119,483 1,194.83 1.44
Cropland/Bare land High 4 6,792,448 67,924.48 81.72
Built Area/Water body Very high 5 209,756 2,097.56 2.52

Soil Type (ST) Eutric Cambisols Very low 1 2,166,242 21,662.42 26.06
Eutric Nitisols Low 2 1,376,194 13,761.94 16.56
Chromic Luvisols Moderate 3 3,822,611 38,226.11 45.99
Leptosols High 4 891,982 8,919.82 10.73
Chromic/Pellic Vertisols Very high 5 55,263 552.63 0.66
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Das and Gupta (2021) considered areas within the distance 
of 500, 1000, 1500, 2000, and > 2000 m from the river as 
very high, high, moderate, low, and very low vulnerability 
to flooding, respectively.

Drainage density

The drainage density represents the ratio of the total length 
of streams within an area to the size of the area (Zzaman 
et al. 2021). The higher the drainage density, the higher 
the surface runoff and the higher the probability of flood-
ing (Abdelkarim et al. 2020; Das and Gupta 2021; Lee and 
Rezaie 2022; Mahmoud and Gan 2018). A study conducted 
by Ali et al. (2020) considered areas with drainage den-
sity values less than 0.45 km/km2, (0.45–1.01 km/km2), 
(1.01–1.64 km/km2), (1.64–2.47 km/km2) and greater than 
2.47 km/km2 as very low, low, moderate, high and very high 
susceptibility to flooding, respectively. Likewise, as shown 
in Fig. 4b and Table 2, the drainage density value in this 
study is classified into five categories: very low (0–0.4 km/
km2), low (0.4–1 km/km2), moderate (1–1.5 km/km2), high 
(1.5–2 km/km2) and very high (> 2.1 km/km2). The heavy 
blue color (Fig. 4b) represents areas with very high drainage 
density, while the light blue color represents areas with low 
drainage density.

Topographic wetness index (TWI)

Topographic Wetness Index is an index used to quantity the 
topographical effect on runoff generation and flow accumu-
lation volume at any given place. It depicts the tendency 
of water to collect at a given spot or travel downhill due to 
gravitational pressure (Lee and Rezaie 2022). Topographic 
Wetness Index is capable to predict areas susceptible to 
saturated land surfaces and areas that carry the potential 
to produce overland flow (Hong et al. 2018a, b). The TWI 
is directly proportional to flood risk; the higher the TWI 
value, the greater the likelihood of flood inundation (Das and 

Gupta 2021). A study conducted by Ali et al. (2020) consid-
ered areas with a TWI from 5.57 to 7.58, 7.58 to 8.68, 8.68 
to 10.17, 10.17 to 12.63, and 12.63 to 22.09 as very low, 
low, moderate, high and very high susceptibility to flood-
ing, respectively. Likewise, as shown in Fig. 4c and Table 2, 
the TWI of the study area was classified into five classes of 
susceptibility to flooding such as very low (2.48–5.91), low 
(5.91–8.09), moderate (8.09–10.18), high (10.18–12.63), 
and very high (12.63–22.77) which covers 45.39%, 39.41%, 
9.67%, 3.85% and 1.68% of the study area, respectively.

Land use and land cover (LULC)

One of the most important factors for flood occurrence is 
land use and land cover. Because vegetation slows the rapid 
flow of water and induces high infiltration, areas with a high 
density of vegetation are often less vulnerable to flood risk. 
In urban and residential areas, on the other hand, runoff 
increases due to impermeable surfaces and little infiltration 
(Allafta and Opp 2021; Das and Gupta 2021; Kazakis et al. 
2015; Zzaman et al. 2021). Allafta and Opp (2021) consid-
ered shrub land, cropland, bare land, urban, and waterbody 
as very low, low, moderate, high, and very high susceptibil-
ity to flooding, respectively. Das and Gupta (2021) catego-
rized waterbody, build-up, agriculture, sparse vegetation, 
and dense vegetation as very high, high, moderate, low, and 
very low vulnerability to flooding, respectively. Hagos et al. 
(2022) also classified built-up areas, farmland, grassland, 
shrubland, and forestland areas as extremely high, high, 
moderate, low, and extremely low vulnerability to flood-
ing, respectively. Likewise, the LULC map of the study 
area (Fig. 4d) in this study is categorized as very high (built 
area and water body), high (cropland/bare land), moderate 
(grassland), low (shrubland), and very low (dense vegeta-
tion) susceptibility to floods. Crop land is the major LULC 
type of the district covering about 81.72% of the study area 
(Fig. 4d and Table 2), representing high susceptibility to 

Table 2   (continued)

Factor Class Flood susceptibility Rating Class pixels Area

ha Percent (%)

Normalized Difference Vegetation 
Index (NDVI)

− 0.16–0.29 Very high 5 7,512,607 75,126.07 90.38

0.29–0.38 High 4 650,874 6,508.74 7.83

0.38–0.45 Moderate 3 134,280 1,342.8 1.62

0.45–0.51 Low 2 13,346 133.46 0.16

0.51–0.59 Very Low 1 1185 11.85 0.01
Curvature (Cu) Convex (positive) Moderate 3 1,804,005 18,040.05 21.70

Concave (negative) High 4 1,807,470 18,074.7 21.74
Flat (close to zero) Very high 5 4,700,817 47,008.17 56.55
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Fig. 4   Distance from the rivers a, drainage density b, Topographic Wetness Index c, and land use/land cover d factor maps
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flooding. Dense vegetation and shrubland cover about 7.61% 
and 6.71%, respectively.

Soil types

The infiltration process is highly dependent on the nature 
of the soil. The fine texture composition of the soil reduces 
infiltration and increases surface runoff. Hence, areas cov-
ered by fine soil texture are more likely to be flooded than 
areas with coarse soil texture (Allafta and Opp 2021; Hagos 
et al. 2022; Hong et al. 2018a, b). As shown in Fig. 5a, the 
soil types of the study area are classified as very low (Eutric 
Cambisols), low (Eutric Nitisols), moderate (Chromic Luvi-
sols), high (Leptosols), and very high (Chromic Vertisols 
and Pellic Vertisols) susceptibility to floods. About 57.38% 
of the study area is characterized by moderate to very high 
susceptibility to floods. The rest 16.56% and 26.06% of the 
study area are characterized by low and very low susceptibil-
ity to flooding, respectively (Table 2). Similarly, Ogato et al. 
(2020) considered areas with Eutric Cambisols, Eutric Niti-
sols, Chromic Luvisols, Leptosols, and Chromic Vertisols as 
very low, low, moderate, high, and very high susceptibility 
to floods, respectively.

Normalized difference vegetation index (NDVI)

Normalized Difference Vegetation Index is an index rep-
resenting the vegetation density over an area, and it is one 
of the factors used for determining flood susceptibility (Ali 
et al. 2020). Higher vegetation density decreases the speed 
of the runoff and flood inundation (Tehrany et al. 2017). As 
shown in Fig. 5b, this study considered areas with NDVI 
values from − 0.16 to 0.29, 0.29 to 0.38, 0.38 to 0.45, 
0.45 to 0.51, and 0.51 to 0.59 as very high, high, moder-
ate, low and very low susceptible to flooding, respectively. 
Areas with high to very high NDVI values are found in the 
central and southeastern parts of the district. Similarly, a 
study conducted by Ali et al. (2020) considered areas with 
NDVI values < 0.29, 0.29 to 0.38, 0.38 to 0.45, 0.45 to 0.51, 
and > 0.51 as very high, high, moderate, low, and very low 
susceptibility to flooding, respectively. In this study, an 
NDVI value of less than 0.29 (high susceptibility to flood-
ing) covers about 90.38% of the study area, and 7.83% and 
1.62% of the study area have NDVI value 0.29–0.38 and 
0.38–0.45, respectively.

Curvature

Curvature defines the morphology of the surface topogra-
phy of an area (Das and Gupta 2021) or it is the rate of 
slope change in a particular direction (Zzaman et al. 2021). 
A positive curvature value indicates a convex surface, a 
negative curvature value indicates a concave surface, and 

a value close to zero indicates a flat surface, and the flat 
curvature is very prone to flooding followed by concave 
and convex (Astutik et al. 2021; Das and Gupta 2021; Zza-
man et al. 2021). As shown in Fig. 5c, the curvature of the 
earth’s surface in this study was classified into three classes: 
Concave (− 19.33 to − 0.47), flat (− 0.47 to 0.49), and 
convex (0.49–26.22). As shown in Table 2, about 56.55% 
(47,008.17 ha) and 21.74% (18,074.7 ha) of the research area 
are characterized by flat and concave curvature, respectively. 
The remaining 21.70% (18,040.05 ha) of the study area is 
characterized by convex curvature.

Analytical hierarchy process (AHP) analysis

After the reclassification of each flood-controlling fac-
tor (Fig. 6), AHP analysis was performed to assign rela-
tive weight or influence of flood-controlling factors subject 
to weighted overlay. A pairwise comparison matrix was 
developed (Table  3), the normalization of the pairwise 
comparison and the weight of the factors was computed 
(Table 4), and the consistency check of the comparison was 
performed (Table 5) according to the procedures suggested 
by Saaty (1987). Table 4 shows the final criteria weight for 
each flood-controlling factor, which reflects the estimated 
relative influence of each factor on flooding occurrence in 
the study area: elevation (17.61%), the slope of the land 
(15.16%), flow accumulation (14.86%), annual rainfall 
(11.36%), distance from rivers (11.04%), drainage density 
(8.13%), topographic wetness index (5.69%), land use and 
land cover (7.21%), soil type (3.97%), Normalized Differ-
ence Vegetation Index (2.82%), and curvature (2.15%). The 
Consistency Index (CI = 0.07) was calculated using Eq. (3), 
and the consistency ratio (CR = 0.05) was computed using 
Eq. (4). To calculate the CI, the calculated highest eigen-
value (λmax = 11.72) and the number of factors (n = 11) were 
used. To calculate CR, the random index (RI) of 1.51 was 
used. The random index (RI) varies depending on the num-
ber of factors and it is 1.51 for eleven factors according to 
different authors (Abu Dabous and Alkass, 2008; Aydin and 
Birincioğlu, 2022; Danumah et al. 2016; Weng et al. 2018). 
The calculated value of consistency ratio (CR) is 0.05 (5%) 
which is acceptable to use the comparison for weighted over-
lay since it is less than 0.1 (10%).

Flood susceptibility map of the study area

As shown in Fig. 7, the final flood susceptibility map of 
Dega Damot district was developed by the integration 
of eleven flood-controlling factors thematic maps. The 
weighted overlay integration classified the district into five 
flood susceptibility classes: very high (5), high (4), moderate 
(3), low (2), and very low (1) susceptibility. Table 6 shows 
the estimated area of each susceptibility class: 0.0005% 
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Fig. 5   Soil type a, Normalized Difference Vegetation Index b, surface curvature c, and kebeles of the district d (kebele is the lowest administra-
tive unit in Ethiopia)
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Fig. 6   Reclassification of flood-controlling factors (a-k) and result (l) map



	 Applied Water Science (2022) 12:255

1 3

255  Page 16 of 21

Table 3   Pairwise comparison 
matrix for selected flood-
controlling factors

El elevation, Sl slope, FA flow accumulation, RF annual rainfall, DR distance to rivers, DD drainage den-
sity, TWI topographic wetness index, LULC land use and land cover, ST soil type, NDVI Normalized differ-
ence vegetation index, and Cu curvature

Factors El Sl FA Rf DR DD TWI LULC ST NDVI Cu

El 1 2 2 2 2 3 3 2 3 4 4
Sl 1/2 1 1 3 2 3 3 1 4 5 5
FA 1/2 1 1 2 2 3 3 2 4 4 6
Rf 1/2 1/3 1/2 1 2 2 3 2 3 4 5
DR 1/2 1/2 1/2 1/2 1 2 3 3 4 4 4
DD 1/3 1/3 1/3 1/2 1/2 1 2 2 3 4 5
TWI 1/3 1/3 1/3 1/3 1/3 1/2 1 1 2 3 4
LULC 1/2 1 1/2 1/2 1/3 1/2 1 1 2 3 4
ST 1/3 1/4 1/4 1/3 1/4 1/3 1/2 1/2 1 2 3
NDVI 1/4 1/5 1/4 1/4 1/4 1/4 1/3 1/3 1/2 1 2
Cu 1/4 1/5 1/6 1/5 1/4 1/5 1/4 1/4 1/3 1/2 1

Table 4   Normalized pairwise comparison matrix and calculated criteria weight for each factor

CW criteria weight

Factors El Sl FA Rf DR DD TWI LULC ST NDVI Cu Sum CW CW (%)

El 0.2000 0.2797 0.2927 0.1884 0.1832 0.1901 0.1494 0.1326 0.1118 0.1159 0.0930 1.9368 0.1761 17.61
Sl 0.1000 0.1399 0.1463 0.2826 0.1832 0.1901 0.1494 0.0663 0.1491 0.1449 0.1163 1.6680 0.1516 15.16
FA 0.1000 0.1399 0.1463 0.1884 0.1832 0.1901 0.1494 0.1326 0.1491 0.1159 0.1395 1.6344 0.1486 14.86
Rf 0.1000 0.0466 0.0732 0.0942 0.1832 0.1267 0.1494 0.1326 0.1118 0.1159 0.1163 1.2499 0.1136 11.36
DR 0.1000 0.0699 0.0732 0.0471 0.0916 0.1267 0.1494 0.1989 0.1491 0.1159 0.0930 1.2148 0.1104 11.04
DD 0.0667 0.0466 0.0488 0.0471 0.0458 0.0634 0.0996 0.1326 0.1118 0.1159 0.1163 0.8945 0.0813 8.13
TWI 0.0667 0.0466 0.0488 0.0314 0.0305 0.0317 0.0498 0.0663 0.0745 0.0870 0.0930 0.6263 0.0569 5.69
LULC 0.1000 0.1399 0.0732 0.0471 0.0305 0.0317 0.0498 0.0663 0.0745 0.0870 0.0930 0.7929 0.0721 7.21
ST 0.0667 0.0350 0.0366 0.0314 0.0229 0.0211 0.0249 0.0331 0.0373 0.0580 0.0698 0.4367 0.0397 3.97
NDVI 0.0500 0.0280 0.0366 0.0235 0.0229 0.0158 0.0166 0.0221 0.0186 0.0290 0.0465 0.3097 0.0282 2.82
Cu 0.0500 0.0280 0.0244 0.0188 0.0229 0.0127 0.0124 0.0166 0.0124 0.0145 0.0233 0.2360 0.0215 2.15

Table 5   Calculating the consistency of pairwise comparison (CR = 0.05)

WSV weighted sum value, CW criteria weight

Factors El Sl FA Rf DR DD TWI LULC ST NDVI Cu WSV CW WSV/CW

El 0.1761 0.3033 0.2972 0.2273 0.2209 0.2440 0.1708 0.1442 0.1191 0.1126 0.0858 2.1011 0.1761 11.93
Sl 0.0880 0.1516 0.1486 0.3409 0.2209 0.2440 0.1708 0.0721 0.1588 0.1408 0.1073 1.8437 0.1516 12.16
FA 0.0880 0.1516 0.1486 0.2273 0.2209 0.2440 0.1708 0.1442 0.1588 0.1126 0.1287 1.7954 0.1486 12.08
Rf 0.0880 0.0505 0.0743 0.1136 0.2209 0.1626 0.1708 0.1442 0.1191 0.1126 0.1073 1.3640 0.1136 12.00
DR 0.0880 0.0758 0.0743 0.0568 0.1104 0.1626 0.1708 0.2163 0.1588 0.1126 0.0858 1.3123 0.1104 11.88
Dd 0.0587 0.0505 0.0495 0.0568 0.0552 0.0813 0.1139 0.1442 0.1191 0.1126 0.1073 0.9491 0.0813 11.67
TWI 0.0587 0.0505 0.0495 0.0379 0.0368 0.0407 0.0569 0.0721 0.0794 0.0845 0.0858 0.6528 0.0569 11.47
LULC 0.0880 0.1516 0.0743 0.0568 0.0368 0.0407 0.0569 0.0721 0.0794 0.0845 0.0858 0.8269 0.0721 11.47
ST 0.0587 0.0379 0.0371 0.0379 0.0276 0.0271 0.0285 0.0360 0.0397 0.0563 0.0644 0.4512 0.0397 11.37
NDVI 0.0440 0.0303 0.0371 0.0284 0.0276 0.0203 0.0190 0.0240 0.0198 0.0282 0.0429 0.3217 0.0282 11.43
Cu 0.0440 0.0303 0.0248 0.0227 0.0276 0.0163 0.0142 0.0180 0.0132 0.0141 0.0215 0.2467 0.0215 11.50
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(0.41 ha), 13.17% (10,950.37 ha), 78.39% (65,158.88 ha), 
8.39% (6,973.25 ha) and 0.05% (40.01 ha) of the study area 
are classified as very low, low, moderate, high, and very high 
susceptibility to flooding, respectively. About 86.83% of the 
study area is characterized by moderate to very high suscep-
tibility to flooding. The remaining 13.17% of the study area 
is characterized by low to very low susceptibility to flooding. 
The flood susceptibility map (Fig. 7) shows that most of the 
northern, northeastern, southern, and southwestern parts of 
the study area are the more vulnerable areas to flooding.

The result shows that Arefa Medihanialem, Chewane 
Bihande, Lije Nigus Chat Warka, Geshet, Arefa Masikena, 
Fenkatit Gendawuha kebeles, eastern parts of Chat Warka 

Fig. 7   Flood susceptibility map 
of the study area

Table 6   Flood susceptibility, area coverage, and percentage

Flood susceptibility Class pixels Area

ha Percent (%)

Very low (1) 41 0.41 0.0005
Low (2) 1,095,037 10,950.37 13.17
Moderate (3) 6,515,888 65,158.88 78.39
High (4) 697,325 6,973.25 8.39
Very high (5) 4001 40.01 0.05
Total 8,312,292 83,122.92 100.00
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and Santima Yeshoh kebeles, northern parts of Meles Mis-
ana Meda kebele, northern and northwestern parts of Shangi 
Dereke and Gens kebeles in the northern and northeastern 
parts of the study area were identified as the more vulner-
able areas to flood. Abyela Ayketuba, Gius Debtera, and 
Senebo Genetemariyam kebeles, southern and southwestern 
parts of Tigire Debdebo, Telim Butila, Dengayber, Gesa-
gis Shimbirma, Agembi, Gudiba Sekela, Taeme, and Amija 
Wefchana kebeles, northern and northwestern parts of Guan-
sit and Filatit Akabit kebeles in the southern and southwest-
ern parts of the district are also more vulnerable areas to 
flood. These areas are mainly dominated by low elevation 
and relatively flat slopes, high drainage density, high rainfall 
amount, high flow accumulation, high TWI, and cropland 
land use/land cover.

By considering the percentage of area coverage from 
moderate to very high flood susceptibility (Table 7), Arefa 
Medihanialem, Chewane Bihande, Lije Nigus Chat Warka, 
Geshet, Chat Warka, Arefa Masikena, Damot Tsion, Fenkatit 
Gendawuha, Shangi Dereke, Feres Bet Michael, Gesagis 
Shimbirma, Filatit Akabit, Guansit, Abyela Ayketuba, Telim 
Butila, Gius Debtera, Senebo Genetemariyam, Agembi, and 
Dengayber kebeles were identified as the most susceptible 
kebeles to the risk of flood in the district.

On the other hand, some parts of the district such as 
southern and southwestern parts of Meles Misana Meda 
kebele, northern, northeastern, and western parts of San-
tima Yeshoh kebele, western and northwestern parts of Chat 
Warka kebele, central and northwestern parts of Gudiba 
Sekela kebele, northern and eastern parts of Telim Butila 
kebele in the western and northwestern parts of the study 

Table 7   Percentage of flood 
susceptibility in the kebeles of 
the district

Kebeles in the District Area (ha) Flood Susceptibility area (%) in the kebele

Very low (1) Low (2) Moderate (3) High (4) Very high (5)

Feres Bet Town 1,24.35 – 0.47 99.53 – –
Arefa Medihanialem 3,309.16 – 2.34 94.90 2.755 –
Genis 1,278.87 – 15.62 82.62 1.763 –
Chewane Bihande 3,514.55 – 3.19 89.45 7.357 –
Lije Nigus Chat Warka 5,732.73 – 2.04 90.15 7.818 –
Meles Misana Meda 3,185.44 – 22.60 76.60 0.806 –
Chat Warka 2,291.04 – 10.96 85.05 3.984 –
Geshet 2,771.80 – 3.31 86.52 10.167 0.01
Arefa Masikena 2,931.32 – 2.27 89.72 8.003 –
Fenkatit Gendawuha 2,418.24 – 2.92 94.21 2.867 –
Shangi Dereke 2,592.26 – 5.77 81.59 12.571 0.06
Santima Yeshoh 3,380.93 – 17.60 79.55 2.853 –
Feres Bet Michael 1,940.75 – 7.36 85.86 6.781 –
Gudiba Sekela 2,930.16 – 16.90 76.26 6.834 –
Telim Butila 2,669.69 – 10.33 83.07 6.52 0.08
Gesagis Shimbirma 2,708.37 – 6.84 79.60 13.28 0.28
Zikuala Wegem 2,482.32 – 14.27 85.09 0.64 –
Damot Tseyion 1,513.19 – 11.75 86.01 2.24 –
Bizuhan 1,021.26 – 23.51 76.01 0.48 –
Damot Sefatira 1,880.85 – 55.94 43.67 0.40 –
Dikulkana 1,804.48 – 52.22 47.37 0.41 –
Aklat Weybegn 2,418.72 – 34.53 62.94 2.53 –
Filatit Akabit 2,045.21 – 8.97 82.09 8.94 –
Guansit 2,261.99 – 7.11 84.16 8.73 –
Abyela Ayketuba 3,944.83 – 1.65 75.05 22.82 0.48
Gius Debtera 3,163.45 – 1.30 77.23 21.15 0.32
Agembi 1,760.86 – 10.33 78.57 11.10 –
Senebo Genetemariyam 1,918.16 – 4.56 91.39 4.05 –
Dengayber 2,797.12 – 4.59 81.98 13.42 –
Taeme Abakidan 3,095.71 – 33.68 60.91 5.41 –
Tigire Debdebo 3,717.34 0.01 15.77 78.90 5.32 –
Amija Wefchana 3,518.10 – 41.42 57.37 1.21 –
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area, and northern and northwestern parts of Gesagis Shim-
birma kebele, southern parts of Zikuala Wegem, Dikulkana 
and Damot Sefatira kebeles, eastern parts of Damot Tsion 
kebele, central part of Bizuhan kebele, northern and north-
eastern parts of Aklat Weybegn, Agembi, Taeme Abakidan, 
Tigire Debdebo, and Amija Wefchana kebeles in the south-
eastern parts of the district are areas with low susceptibility 
to flooding inundation. The areas with low flood suscepti-
bility are dominated by high slopes and elevation, low flow 
accumulation, low drainage density, high NDVI, and dense 
vegetation cover.

Validation of the result

Model validation is essential to check whether the model 
output adequately represents the actual conditions on the 
ground/field or not. Model validation can be performed by 
comparing the model output with the observed flood event 
on the ground (Hagos et al. 2022; Mahmoud and Gan, 2018; 
Ogato et al. 2020; Tadesse et al. 2022). In this study, to vali-
date the reliability of the model output, the historical flood 
events on the field collected from the study area Agricultural 
Office were compared with the locations of flood susceptible 
areas on the produced flood susceptibility map, and the point 
data collected from Google Earth were superimposed on the 
flood susceptibility map generated by the model.

According to Dega Damot District Agricultural Office 
(DDDAO 2022), Shangi Dereke, Feres Bet Michael, Gesa-
gis Shimbirma, Geshet, Lije Nigus Chat Warka, Santima 
Yeshoh, Fenkatit Gendawuha, Arefa Masikena, Gudiba 
Sekela, and Damot Tsion kebeles are the kebeles that have 
been frequently affected by flood hazard in the recent past 
years. These kebeles are also among the highly suscepti-
ble areas to flood hazards identified by the model used in 
this study. This means the historical flood event on the field 
obtained from the district agricultural office agreed well with 
the flood susceptibility map generated by the model used in 
the study or indicated the reliability of the flood suscepti-
bility map predicted by the model. The district Agriculture 
Office also said that most of the kebeles located in Gumara 
and Muza watersheds in the northern and northeastern parts 
of the district have been affected by frequent flash floods 
in the past years, which is also directly consistent with the 
result of this study. During this study period, out of the kebe-
les identified by the model as highly vulnerable to flood, two 
kebeles, namely Arefa Masikana and Geshet, experienced 
flood events which also substantiates the reliability of the 
model output.

In addition, to validate the model output, point data were 
collected from main river plains/flood plains using Google 
Earth and superimposed on the flood susceptibility map 
(Fig. 7), which also validates the reliability of the model 
output. It is known that river plains are highly susceptible 

to flood and the data collected from the river plains/flood 
plains must be placed over the highly susceptible classes on 
the flood susceptibility map generated by the model. Super-
imposing the point data collected on the output flood sus-
ceptibility map is one of the methods to validate the model 
output which was also employed by previous studies (Hagos 
et al. 2022; Ogato et al. 2020).

Conclusion

Dega Damot is one of the districts in northwestern Ethiopia 
susceptible to flood hazards due to heavy rainfall and its 
topography. This study was carried out to identify and map 
areas prone to flood in Dega Damot district, Northwestern 
Ethiopia, using the integration of geographic information 
system (GIS), multi-criteria decision-making (MCDM), and 
analytical hierarchy process (AHP). Eleven flood-controlling 
factors such as elevation, slope, flow accumulation, distance 
to rivers, rainfall, drainage density, topographic wetness 
index, land use land cover, Normalized Difference Vegeta-
tion Index, soil type, and curvature were computed, mapped, 
weighted, and overlayed together to identify and map poten-
tial flood-prone areas in the district.

The result showed that about 78.39%, 8.39%, and 0.05% 
of the study area experienced moderate, high, and very 
high susceptibility to flooding, respectively. The remaining 
13.17% of the study area is characterized by low to very low 
susceptibility to flooding. The high and very high suscepti-
bility to flooding was found in areas dominated by low eleva-
tion and relatively flat slope, high drainage density, rainfall 
amount, flow accumulation, TWI, and cropland land use/
land cover.

Arefa Medihanialem, Chewane Bihande, Lije Nigus 
Chat Warka, Chat Warka, Geshet, Arefa Masikena, Fen-
katit Gendawuha, Damot Tsion, Shangi Dereke, Feres Bet 
Michael in the central, northern and northeastern parts of the 
study area; and Gesagis Shimbirma, Filatit Akabit, Guansit, 
Abyela Ayketuba, Gius Debtera, Senebo Genetemariyam, 
Agembi, Telim Butila and Dengayber kebeles in the south-
ern and southwestern parts of the district were identified 
as the most susceptible kebeles to the risk of flood in the 
district.

In this study, the validity of the model output was evalu-
ated by comparing the historical flood events with the model 
output and the historical flood events on the field agreed well 
with the flood susceptibility map generated by the model.

The integrated use of GIS-based multi-criteria decision-
making (MCDM) and analytical hierarchy process (AHP) 
was found to be indispensable, less costly, and effective for 
the identification and mapping of areas vulnerable to flood 
for effective flood risk management.
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